1
|
Silva NJ, Anderson S, Mula SA, Escoubas CC, Nakajo H, Molofsky AV. Microglial cathepsin B promotes neuronal efferocytosis during brain development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626596. [PMID: 39677624 PMCID: PMC11642881 DOI: 10.1101/2024.12.03.626596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Half of all newborn neurons in the developing brain are removed via efferocytosis - the phagocytic clearance of apoptotic cells. Microglia are brain-resident professional phagocytes that play important roles in neural circuit development including as primary effectors of efferocytosis. While the mechanisms through which microglia recognize potential phagocytic cargo are widely studied, the lysosomal mechanisms that are necessary for efficient digestion are less well defined. Here we show that the lysosomal protease cathepsin B promotes microglial efferocytosis of neurons and restricts the accumulation of apoptotic cells during brain development. We show that cathepsin B is microglia-specific and enriched in brain regions where neuronal turnover is high in both zebrafish and mouse. Myeloid-specific cathepsin B knockdown in zebrafish led to dysmorphic microglia containing undigested dead cells, as well as an accumulation of dead cells in surrounding tissue. These effects where phenocopied in mice globally deficient for Ctsb using markers for apoptosis. We also observed behavioral impairments in both models. Live imaging studies in zebrafish revealed deficits in phagolysosomal fusion and acidification, and live imaging of cultured mouse microglia reveal delayed phagocytosis consistent with impairments in digestion and resolution of phagocytosis rather than initial uptake. These data reveal a novel role for microglial cathepsin B in mediating neuronal efferocytosis during typical brain development.
Collapse
|
2
|
Hu H, Qin Y, Qu Z, Huang Y, Ren X, Liu M, Liu F, Gao P. The Zpr-3 Antibody Recognizes the 320-354 Region of Rho and Labels Both Rods and Green Cones in Zebrafish. Zebrafish 2024; 21:394-400. [PMID: 39316468 DOI: 10.1089/zeb.2024.0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Retinal markers with high quality and specificity are important for the observation of pathologic changes of retinal cells during retinal development, degeneration, and regeneration. The zpr-3 antibody is widely used to label rods in zebrafish, but the exact antigen is still unknown. In this study, we provided evidence to demonstrate that the antigen gene of zpr-3 is rho, which encodes the rod opsin, and the exact epitope of zpr-3 is the 320-354 region of Rho protein. More importantly, our immunofluorescence assays indicated that zpr-3 labels both the outer segments of rods and green cones on zebrafish retinal sections, probably due to the cross-reaction with the green-cone opsin. Our work is valuable for the scientific community to interpret the experimental data involving the zpr-3 antibody.
Collapse
Affiliation(s)
- Hualei Hu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yayun Qin
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Zhen Qu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yuwen Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Ren
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Liu
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Pan Gao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Tao ZS, Wu XJ, Yang M, Shen CL. Astaxanthin prevents bone loss in osteoporotic rats with palmitic acid through suppressing oxidative stress. Redox Rep 2024; 29:2333096. [PMID: 38623993 PMCID: PMC11025413 DOI: 10.1080/13510002.2024.2333096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
OBJECTIVES The study aimed to assess the role of Astaxanthin (ATX) in palmitic acid(PA) -induced bone loss in Ovariectomized(OVX) rats. METHODS In the OVX rat model, we observed that PA affects bone metabolism and accelerates bone loss. Additionally, treatment with ATX was able to suppress the deleterious effects of PA and a simultaneous decrease in serum MDA levels and an increase in SOD was observed. RESULTS In addition, rats treated with ATX were observed to have significantly increased bone mass and elevated activity of SIRT1 and SOD2 in bone tissue. When MC3T3-E1 and RAW264.7 cells induced osteoblast and osteoclast differentiation, the ATX intervention was able to significantly restore the restriction of osteogenic differentiation and the up-regulation of osteoclast differentiation with PA therapy. Furthermore, we confirm that PA damage to cells is caused by increased oxidative stress, and that ATX can target and modulate the activity of SIRT1 to regulate the levels of oxidative stress in cells. CONCLUSION Summarizing, ATX may inhibit PA-induced bone loss through its antioxidant properties via the SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, Anhui, People’s Republic of China
- Anhui Province Key Laboratory of Noncoding RNA Basic and Clinical Transformation, No. 2, Zhe Shan Xi Road, Wuhu, Anhui, People’s Republic of China
- Department of Spinal Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei, Anhui, People’s Republic of China
| | - Xing-Jing Wu
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, Anhui, People’s Republic of China
| | - Min Yang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, Anhui, People’s Republic of China
| | - Cai-Liang Shen
- Department of Spinal Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei, Anhui, People’s Republic of China
| |
Collapse
|
4
|
Bravo-Sagua R, Lopez-Crisosto C, Criollo A, Inagi R, Lavandero S. Organelle Communication: Joined in Sickness and in Health. Physiology (Bethesda) 2023; 38:0. [PMID: 36856309 DOI: 10.1152/physiol.00024.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Organelles are membrane-lined structures that compartmentalize subcellular biochemical functions. Therefore, interorganelle communication is crucial for cellular responses that require the coordination of such functions. Multiple principles govern interorganelle interactions, which arise from the complex nature of organelles: position, multilingualism, continuity, heterogeneity, proximity, and bidirectionality, among others. Given their importance, alterations in organelle communication have been linked to many diseases. Among the different types of contacts, endoplasmic reticulum mitochondria interactions are the best known; however, mounting evidence indicates that other organelles also have something to say in the pathophysiological conversation.
Collapse
Affiliation(s)
- Roberto Bravo-Sagua
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Pharmaceutical and Chemical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Laboratory of Obesity and Metabolism (OMEGA), Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile.,Interuniversity Center for Healthy Aging (CIES), Consortium of Universities of the State of Chile (CUECH), Santiago, Chile
| | - Camila Lopez-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Pharmaceutical and Chemical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Alfredo Criollo
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Pharmaceutical and Chemical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Cellular and Molecular Biology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, Universidad de Chile, Santiago, Chile
| | - Reiko Inagi
- Division of Chronic Kidney Disease Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Pharmaceutical and Chemical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
5
|
Xie J, Sun X, Li P, Zhou T, Jiang R, Wang X. The impact of ocean acidification on the eye, cuttlebone and behaviors of juvenile cuttlefish (Sepiella inermis). MARINE POLLUTION BULLETIN 2023; 190:114831. [PMID: 36944286 DOI: 10.1016/j.marpolbul.2023.114831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
The cuttlefish (Sepiella inermis) is an economically important species in the coastal seas of China. The impacts of ocean acidification on the ability of juvenile cuttlefish to select a suitable habitat, its hunting and swimming behavior, remains unknown. We examined behavior-related responses and the eye and cuttlebone structure of juvenile cuttlefish following short-term exposure to CO2-enriched seawater. The predation success rate decreased with the elevation in CO2 concentration. In the CO2 treatment groups, cuttlefish spent more time in the dark zone and the average swimming speed and total swimming distance significantly decreased. The structure of the retina and cuttlebone was affected by seawater acidification. Moreover, apoptotic cells were significantly increased in the eyes. In the wild, the impairment of the eye and cuttlebone may decrease the predation ability of juvenile cuttlefish and negatively affect their ability to select a suitable habitat, which would be detrimental to its population.
Collapse
Affiliation(s)
- Jinling Xie
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaohan Sun
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Pengfei Li
- Zhejiang Marine Fisheries Research Institute, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China
| | - Tangjian Zhou
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Rijin Jiang
- Zhejiang Marine Fisheries Research Institute, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China.
| | - Xiaojie Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
6
|
Tseng WC, Johnson Escauriza AJ, Tsai-Morris CH, Feldman B, Dale RK, Wassif CA, Porter FD. The role of Niemann-Pick type C2 in zebrafish embryonic development. Development 2021; 148:dev194258. [PMID: 33722902 PMCID: PMC8077516 DOI: 10.1242/dev.194258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/04/2021] [Indexed: 12/11/2022]
Abstract
Niemann-Pick disease type C (NPC) is a rare, fatal, neurodegenerative lysosomal disease caused by mutations of either NPC1 or NPC2. NPC2 is a soluble lysosomal protein that functions in coordination with NPC1 to efflux cholesterol from the lysosomal compartment. Mutations of either gene result in the accumulation of unesterified cholesterol and other lipids in the late endosome/lysosome, and reduction of cellular cholesterol bioavailability. Zygotic null npc2m/m zebrafish showed significant unesterified cholesterol accumulation at larval stages, a reduction in body size, and motor and balance defects in adulthood. However, the phenotype at embryonic stages was milder than expected, suggesting a possible role of maternal Npc2 in embryonic development. Maternal-zygotic npc2m/m zebrafish exhibited significant developmental defects, including defective otic vesicle development/absent otoliths, abnormal head/brain development, curved/twisted body axes and no circulating blood cells, and died by 72 hpf. RNA-seq analysis conducted on 30 hpf npc2+/m and MZnpc2m/m embryos revealed a significant reduction in the expression of notch3 and other downstream genes in the Notch signaling pathway, suggesting that impaired Notch3 signaling underlies aspects of the developmental defects observed in MZnpc2m/m zebrafish.
Collapse
Affiliation(s)
- Wei-Chia Tseng
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Ana J. Johnson Escauriza
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Chon-Hwa Tsai-Morris
- Zebrafish Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Benjamin Feldman
- Zebrafish Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Ryan K. Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Christopher A. Wassif
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Forbes D. Porter
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Zambon AA, Lemaigre A, Phadke R, Grunewald S, Sewry C, Sarkozy A, Clement E, Muntoni F. Persistently elevated CK and lysosomal storage myopathy associated with mucolipin 1 defects. Neuromuscul Disord 2021; 31:212-217. [PMID: 33454187 DOI: 10.1016/j.nmd.2020.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022]
Abstract
Mucolipidosis type IV is a rare autosomal recessive lysosomal storage disorder caused by bi-allelic pathogenic variants in the gene MCOLN1. This encodes for mucolipin-1 (ML1), an endo-lysosomal transmembrane Ca++ channel involved in vesicular trafficking. Although experimental models suggest that defects in mucolipin-1 can cause muscular dystrophy, putatively due to defective lysosomal-mediated sarcolemma repair, the role of mucolipin-1 in human muscle is still poorly deciphered. Elevation of creatine kinase (CK) had been reported in a few cases in the past but comprehensive descriptions of muscle pathology are lacking. Here we report a 7-year-old boy who underwent muscle biopsy due to persistently elevated CK levels (780-15,000 UI/L). Muscle pathology revealed features of a lysosomal storage myopathy with mild regenerative changes. Next generation sequencing confirmed homozygous nonsense variants in MCOLN1. This is a comprehensive pathological description of ML1-related myopathy, supporting the role of mucolipin-1 in muscle homoeostasis.
Collapse
Affiliation(s)
- Alberto A Zambon
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Alexandra Lemaigre
- Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Rahul Phadke
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Stephanie Grunewald
- Metabolic Department Great Ormond Street Hospital, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Caroline Sewry
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Anna Sarkozy
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Emma Clement
- Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, UK.
| | | |
Collapse
|
8
|
Leal AF, Espejo-Mojica AJ, Sánchez OF, Ramírez CM, Reyes LH, Cruz JC, Alméciga-Díaz CJ. Lysosomal storage diseases: current therapies and future alternatives. J Mol Med (Berl) 2020; 98:931-946. [PMID: 32529345 DOI: 10.1007/s00109-020-01935-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023]
Abstract
Lysosomal storage disorders (LSDs) are a group of monogenic diseases characterized by progressive accumulation of undegraded substrates into the lysosome, due to mutations in genes that encode for proteins involved in normal lysosomal function. In recent years, several approaches have been explored to find effective and successful therapies, including enzyme replacement therapy, substrate reduction therapy, pharmacological chaperones, hematopoietic stem cell transplantation, and gene therapy. In the case of gene therapy, genome editing technologies have opened new horizons to accelerate the development of novel treatment alternatives for LSD patients. In this review, we discuss the current therapies for this group of disorders and present a detailed description of major genome editing technologies, as well as the most recent advances in the treatment of LSDs. We will further highlight the challenges and current bioethical debates of genome editing.
Collapse
Affiliation(s)
- Andrés Felipe Leal
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Building 54, Room 305A, Bogotá D.C, 110231, Colombia
| | - Angela Johana Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Building 54, Room 305A, Bogotá D.C, 110231, Colombia
| | - Oscar F Sánchez
- Neurobiochemistry and Systems Physiology, Biochemistry and Nutrition Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Carlos Manuel Ramírez
- Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá D.C., Colombia
| | - Luis Humberto Reyes
- Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá D.C., Colombia
| | - Juan C Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá D.C., Colombia
| | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Building 54, Room 305A, Bogotá D.C, 110231, Colombia.
| |
Collapse
|
9
|
Zhang T, Peterson RT. Modeling Lysosomal Storage Diseases in the Zebrafish. Front Mol Biosci 2020; 7:82. [PMID: 32435656 PMCID: PMC7218095 DOI: 10.3389/fmolb.2020.00082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a family of 70 metabolic disorders characterized by mutations in lysosomal proteins that lead to storage material accumulation, multiple-organ pathologies that often involve neurodegeneration, and early mortality in a significant number of patients. Along with the necessity for more effective therapies, there exists an unmet need for further understanding of disease etiology, which could uncover novel pathways and drug targets. Over the past few decades, the growth in knowledge of disease-associated pathways has been facilitated by studies in model organisms, as advancements in mutagenesis techniques markedly improved the efficiency of model generation in mammalian and non-mammalian systems. In this review we highlight non-mammalian models of LSDs, focusing specifically on the zebrafish, a vertebrate model organism that shares remarkable genetic and metabolic similarities with mammals while also conferring unique advantages such as optical transparency and amenability toward high-throughput applications. We examine published zebrafish LSD models and their reported phenotypes, address organism-specific advantages and limitations, and discuss recent technological innovations that could provide potential solutions.
Collapse
Affiliation(s)
- T Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| | - R T Peterson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
10
|
Kuil LE, López Martí A, Carreras Mascaro A, van den Bosch JC, van den Berg P, van der Linde HC, Schoonderwoerd K, Ruijter GJG, van Ham TJ. Hexb enzyme deficiency leads to lysosomal abnormalities in radial glia and microglia in zebrafish brain development. Glia 2019; 67:1705-1718. [PMID: 31140649 PMCID: PMC6772114 DOI: 10.1002/glia.23641] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/12/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022]
Abstract
Sphingolipidoses are severe, mostly infantile lysosomal storage disorders (LSDs) caused by defective glycosphingolipid degradation. Two of these sphingolipidoses, Tay Sachs and Sandhoff diseases, are caused by β-Hexosaminidase (HEXB) enzyme deficiency, resulting in ganglioside (GM2) accumulation and neuronal loss. The precise sequence of cellular events preceding, and leading to, neuropathology remains unclear, but likely involves inflammation and lysosomal accumulation of GM2 in multiple cell types. We aimed to determine the consequences of Hexb activity loss for different brain cell types using zebrafish. Hexb deficient zebrafish (hexb-/- ) showed lysosomal abnormalities already early in development both in radial glia, which are the neuronal and glial progenitors, and in microglia. Additionally, at 5 days postfertilization, hexb-/- zebrafish showed reduced locomotor activity. Although specific oligosaccharides accumulate in the adult brain, hexb-/- ) zebrafish are viable and apparently resistant to Hexb deficiency. In all, we identified cellular consequences of loss of Hexb enzyme activity during embryonic brain development, showing early effects on glia, which possibly underlie the behavioral aberrations. Hereby, we identified clues into the contribution of non-neuronal lysosomal abnormalities in LSDs affecting the brain and provide a tool to further study what underlies the relative resistance to Hexb deficiency in vivo.
Collapse
Affiliation(s)
- Laura E. Kuil
- Department of Clinical Genetics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Anna López Martí
- Department of Clinical Genetics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Ana Carreras Mascaro
- Department of Clinical Genetics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Jeroen C. van den Bosch
- Department of Clinical Genetics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Paul van den Berg
- Department of Clinical Genetics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Herma C. van der Linde
- Department of Clinical Genetics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Kees Schoonderwoerd
- Department of Clinical Genetics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - George J. G. Ruijter
- Department of Clinical Genetics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Tjakko J. van Ham
- Department of Clinical Genetics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| |
Collapse
|
11
|
Jimenez J, Sakthivel M, Nischal KK, Fedorchak MV. Drug delivery systems and novel formulations to improve treatment of rare corneal disease. Drug Discov Today 2019; 24:1564-1574. [PMID: 30872110 DOI: 10.1016/j.drudis.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/17/2019] [Accepted: 03/05/2019] [Indexed: 02/07/2023]
Abstract
As the field of ocular drug delivery grows so does the potential for novel drug discovery or reformulation in lesser-known diseases of the eye. In particular, rare corneal diseases are an interesting area of research because drug delivery is limited to the outermost tissue of the eye. This review will highlight the opportunities and challenges of drug reformulation and alternative treatment approaches for rare corneal diseases. The barriers to effective drug delivery and proposed solutions in development will be discussed along with an overview of corneal rare disease resources, their current treatments and ophthalmic drug delivery systems that could benefit such cases. The regulatory considerations for effective translation of orphan-designated products will also be discussed.
Collapse
Affiliation(s)
- Jorge Jimenez
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Meera Sakthivel
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kanwal K Nischal
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Morgan V Fedorchak
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Liu K, Petree C, Requena T, Varshney P, Varshney GK. Expanding the CRISPR Toolbox in Zebrafish for Studying Development and Disease. Front Cell Dev Biol 2019; 7:13. [PMID: 30886848 PMCID: PMC6409501 DOI: 10.3389/fcell.2019.00013] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/24/2019] [Indexed: 12/13/2022] Open
Abstract
The study of model organisms has revolutionized our understanding of the mechanisms underlying normal development, adult homeostasis, and human disease. Much of what we know about gene function in model organisms (and its application to humans) has come from gene knockouts: the ability to show analogous phenotypes upon gene inactivation in animal models. The zebrafish (Danio rerio) has become a popular model organism for many reasons, including the fact that it is amenable to various forms of genetic manipulation. The RNA-guided CRISPR/Cas9-mediated targeted mutagenesis approaches have provided powerful tools to manipulate the genome toward developing new disease models and understanding the pathophysiology of human diseases. CRISPR-based approaches are being used for the generation of both knockout and knock-in alleles, and also for applications including transcriptional modulation, epigenome editing, live imaging of the genome, and lineage tracing. Currently, substantial effort is being made to improve the specificity of Cas9, and to expand the target coverage of the Cas9 enzymes. Novel types of naturally occurring CRISPR systems [Cas12a (Cpf1); engineered variants of Cas9, such as xCas9 and SpCas9-NG], are being studied and applied to genome editing. Since the majority of pathogenic mutations are single point mutations, development of base editors to convert C:G to T:A or A:T to G:C has further strengthened the CRISPR toolbox. In this review, we provide an overview of the increasing number of novel CRISPR-based tools and approaches, including lineage tracing and base editing.
Collapse
Affiliation(s)
| | | | | | | | - Gaurav K. Varshney
- Functional and Chemical Genomics Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| |
Collapse
|
13
|
Jin W, Dai Y, Li F, Zhu L, Huang Z, Liu W, Li J, Zhang M, Du J, Zhang W, Wen Z. Dysregulation of Microglial Function Contributes to Neuronal Impairment in Mcoln1a-Deficient Zebrafish. iScience 2019; 13:391-401. [PMID: 30897512 PMCID: PMC6426713 DOI: 10.1016/j.isci.2019.02.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/28/2018] [Accepted: 02/26/2019] [Indexed: 01/21/2023] Open
Abstract
Type IV mucolipidosis (ML-IV) is a neurodegenerative lysosome storage disorder caused by mutations in the MCOLN1 gene. However, the cellular and molecular bases underlying the neuronal phenotypes of ML-IV disease remain elusive. Using a forward genetic screening, we identified a zebrafish mutant, biluo, that harbors a hypomorphic mutation in mcoln1a, one of the two zebrafish homologs of mammalian MCOLN1. The mcoln1a-deficient mutants display phenotypes partially recapitulating the key features of ML-IV disorder, including the accumulation of enlarged late endosomes in microglia and aberrant neuronal activities in both spontaneous and visual-evoking conditions in optic tectal neurons. We further show that the accumulation of enlarged late endosomes in microglia is caused by the impairment of late endosome and lysosome fusion and the aberrant neuronal activities can be partially rescued by the reconstitution of Mcoln1a function in microglia. Our findings suggest that dysregulation of microglial function may contribute to the development and progression of ML-IV disease. mcoln1a-deficient fish display microglia impairment and aberrant neuronal activity The aberrant neuronal activity can be rescued by expressing WT mcoln1a in microglia Impairment of microglia-neuron contact contributes to the aberrant neuronal activity
Collapse
Affiliation(s)
- Wan Jin
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR. China
| | - Yimei Dai
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR. China
| | - Funing Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, PR. China
| | - Lu Zhu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR. China
| | - Zhibin Huang
- Department of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, PR. China
| | - Wei Liu
- Department of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, PR. China
| | - Jianchao Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR. China
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR. China
| | - Jiulin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, PR. China
| | - Wenqing Zhang
- Department of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, PR. China.
| | - Zilong Wen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR. China; Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, PR. China.
| |
Collapse
|
14
|
Si Y, Wen H, Du S. Genetic Mutations in jamb, jamc, and myomaker Revealed Different Roles on Myoblast Fusion and Muscle Growth. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:111-123. [PMID: 30467785 PMCID: PMC6467518 DOI: 10.1007/s10126-018-9865-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/15/2018] [Indexed: 05/08/2023]
Abstract
Myoblast fusion is a vital step for skeletal muscle development, growth, and regeneration. Loss of Jamb, Jamc, or Myomaker (Mymk) function impaired myoblast fusion in zebrafish embryos. In addition, mymk mutation hampered fish muscle growth. However, the effect of Jamb and Jamc deficiency on fish muscle growth is not clear. Moreover, whether jamb;jamc and jamb;mymk double mutations have stronger effects on myoblast fusion and muscle growth remains to be investigated. Here, we characterized the muscle development and growth in jamb, jamc, and mymk single and double mutants in zebrafish. We found that although myoblast fusion was compromised in jamb and jamc single or jamb;jamc double mutants, these mutant fish showed no defect in muscle cell fusion during muscle growth. The mutant fish were able to grow into adults that were indistinguishable from the wild-type sibling. In contrast, the jamb;mymk double mutants exhibited a stronger muscle phenotype compared to the jamb and jamc single and double mutants. The jamb;mymk double mutant showed reduced growth and partial lethality, similar to a mymk single mutant. Single fiber analysis of adult skeletal myofibers revealed that jamb, jamc, or jamb;jamc mutants contained mainly multinucleated myofibers, whereas jamb;mymk double mutants contained mostly mononucleated fibers. Significant intramuscular adipocyte infiltration was found in skeletal muscles of the jamb;mymk mutant. Collectively, these studies demonstrate that although Jamb, Jamc, and Mymk are all involved in myoblast fusion during early myogenesis, they have distinct roles in myoblast fusion during muscle growth. While Mymk is essential for myoblast fusion during both muscle development and growth, Jamb and Jamc are dispensable for myoblast fusion during muscle growth.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Cell Communication
- Cell Differentiation
- Cell Fusion
- Embryo, Nonmammalian
- Gene Expression Regulation, Developmental
- Junctional Adhesion Molecule B/deficiency
- Junctional Adhesion Molecule B/genetics
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Muscle Development/genetics
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- Muscle Proteins/deficiency
- Muscle Proteins/genetics
- Muscle, Skeletal/cytology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Mutation
- Myoblasts/cytology
- Myoblasts/metabolism
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Zebrafish/genetics
- Zebrafish/growth & development
- Zebrafish/metabolism
- Zebrafish Proteins/deficiency
- Zebrafish Proteins/genetics
Collapse
Affiliation(s)
- Yufeng Si
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, 701 East Pratt Street, Baltimore, MD, 21202, USA
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Haishen Wen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Shaojun Du
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, 701 East Pratt Street, Baltimore, MD, 21202, USA.
| |
Collapse
|
15
|
Guided genetic screen to identify genes essential in the regeneration of hair cells and other tissues. NPJ Regen Med 2018; 3:11. [PMID: 29872546 PMCID: PMC5986822 DOI: 10.1038/s41536-018-0050-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 04/18/2018] [Accepted: 05/08/2018] [Indexed: 02/06/2023] Open
Abstract
Regenerative medicine holds great promise for both degenerative diseases and traumatic tissue injury which represent significant challenges to the health care system. Hearing loss, which affects hundreds of millions of people worldwide, is caused primarily by a permanent loss of the mechanosensory receptors of the inner ear known as hair cells. This failure to regenerate hair cells after loss is limited to mammals, while all other non-mammalian vertebrates tested were able to completely regenerate these mechanosensory receptors after injury. To understand the mechanism of hair cell regeneration and its association with regeneration of other tissues, we performed a guided mutagenesis screen using zebrafish lateral line hair cells as a screening platform to identify genes that are essential for hair cell regeneration, and further investigated how genes essential for hair cell regeneration were involved in the regeneration of other tissues. We created genetic mutations either by retroviral insertion or CRISPR/Cas9 approaches, and developed a high-throughput screening pipeline for analyzing hair cell development and regeneration. We screened 254 gene mutations and identified 7 genes specifically affecting hair cell regeneration. These hair cell regeneration genes fell into distinct and somewhat surprising functional categories. By examining the regeneration of caudal fin and liver, we found these hair cell regeneration genes often also affected other types of tissue regeneration. Therefore, our results demonstrate guided screening is an effective approach to discover regeneration candidates, and hair cell regeneration is associated with other tissue regeneration. A study on zebrafish has genetically screened 254 genes and identified 7 genes implicated in the development and regeneration of hair cells and other tissues. Humans and other mammals cannot regrow hair cells—inner-ear sensory receptors that enable hearing—whereas non-mammalian vertebrates, including zebrafish, can regrow these following injury. Researchers from the United States, led by the National Institutes of Health’s Shawn Burgess, screened adult zebrafish for genes active during the regeneration of inner-ear epithelium. The researchers then produced zebrafish without these genes to study their functions. The studies tested 254 genes known to respond during regeneration, and identified seven specifically impacting regeneration. Most of these seven genes also functioned in liver and fin tissue regeneration. Understanding the mechanisms of these genes may enable future research into regenerative therapies in humans.
Collapse
|