1
|
Godelaine J, Chitale Y, De Moor B, Mathieu C, Ancheva L, Van Damme P, Claeys KG, Bossuyt X, Carpentier S, Poesen K. Peptides From the Variable Domain of Immunoglobulin G as Biomarkers in Chronic Inflammatory Demyelinating Polyradiculoneuropathy. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200162. [PMID: 37640545 PMCID: PMC10462053 DOI: 10.1212/nxi.0000000000200162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND AND OBJECTIVES Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a clinically heterogeneous immune-mediated disease. Diagnostic biomarkers for CIDP are currently lacking. Peptides derived from the variable domain of circulating immunoglobulin G (IgG) have earlier been shown to be shared among patients with the same immunologic disease. Because humoral immune factors are hypothesized to be involved in the pathogenesis of CIDP, we evaluated IgG variable domain-derived peptides as diagnostic biomarkers in CIDP (primary objective) and whether IgG-derived peptides could cluster objective clinical entities in CIDP (secondary objective). METHODS IgG-derived peptides were determined in prospectively collected sera of patients with CIDP and neurologic controls by means of mass spectrometry. Peptides of interest were selected through statistical analysis in a discovery cohort followed by sequence determination and confirmation. Diagnostic performance was evaluated for individual selected peptides and for a multipeptide model incorporating selected peptides, followed by performance reassessment in a validation cohort. Clustering of patients with CIDP based on IgG-derived peptides was evaluated through unsupervised sparse principal component analysis followed by k-means clustering. RESULTS Sixteen peptides originating from the IgG variable domain were selected as candidate biomarkers in a discovery cohort of 44 patients with CIDP and 29 neurologic controls. For all 16 peptides, univariate logistic regressions and ROC curve analysis demonstrated increasing peptide abundances to associate with increased odds for CIDP (area under the curves [AUCs] ranging from 64.6% to 79.6%). When including age and sex in the logistic regression models, this remained the case for 13/16 peptides. A model composed of 5/16 selected peptides showed strong discriminating performance between patients with CIDP and controls (AUC 91.5%; 95% CI 84.6%-98.4%; p < 0.001). In the validation cohort containing 45 patients and 43 controls, 2/16 peptides demonstrated increasing abundances to associate with increased odds for CIDP, while the five-peptide model demonstrated an AUC of 61.2% (95% CI 49.3%-73.2%; p = 0.064). Peptide-based patient clusters did not associate with clinical features. DISCUSSION IgG variable domain-derived peptides showed a valid source for diagnostic biomarkers in CIDP, albeit with challenges toward replication. Our proof-of-concept findings warrant further study of IgG-derived peptides as biomarkers in more homogeneous cohorts of patients with CIDP and controls. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that the pattern of serum IgG-derived peptide clusters may help differentiate between patients with CIDP and those with other peripheral neuropathies.
Collapse
Affiliation(s)
- Joris Godelaine
- From the Department of Neurosciences (J.G., K.P.), Laboratory for Molecular Neurobiomarker Research, Leuven Brain Institute, KU Leuven; Laboratory Medicine (J.G., X.B., K.P.), University Hospitals Leuven; STADIUS Center for Dynamical Systems, Signal Processing, and Data Analytics (Y.C., B.D.M.), Department of Electrical Engineering (ESAT), KU Leuven; Department of Endocrinology (C.M.), University Hospitals Leuven; Department of Chronic Diseases and Metabolism (C.M.), Clinical and Experimental Endocrinology; Department of Microbiology, Immunology and Transplantation (L.A., X.B.), Clinical and Diagnostic Immunology, KU Leuven; Department of Neurology (P.V.D., K.G.C.), University Hospitals Leuven; Department of Neurosciences, Experimental Neurology, (P.V.D.) Laboratory of Neurobiology, Leuven Brain Institute, VIB KU Leuven Center for Brain and Disease Research; Department of Neurosciences (K.G.C.), Laboratory for Muscle Diseases and Neuropathies, Leuven Brain Institute, KU Leuven; and Division of Crop Biotechnics, Tropical Crop Improvement Laboratory (S.C.), Department of Biosystems, KU Leuven, Belgium
| | - Yamini Chitale
- From the Department of Neurosciences (J.G., K.P.), Laboratory for Molecular Neurobiomarker Research, Leuven Brain Institute, KU Leuven; Laboratory Medicine (J.G., X.B., K.P.), University Hospitals Leuven; STADIUS Center for Dynamical Systems, Signal Processing, and Data Analytics (Y.C., B.D.M.), Department of Electrical Engineering (ESAT), KU Leuven; Department of Endocrinology (C.M.), University Hospitals Leuven; Department of Chronic Diseases and Metabolism (C.M.), Clinical and Experimental Endocrinology; Department of Microbiology, Immunology and Transplantation (L.A., X.B.), Clinical and Diagnostic Immunology, KU Leuven; Department of Neurology (P.V.D., K.G.C.), University Hospitals Leuven; Department of Neurosciences, Experimental Neurology, (P.V.D.) Laboratory of Neurobiology, Leuven Brain Institute, VIB KU Leuven Center for Brain and Disease Research; Department of Neurosciences (K.G.C.), Laboratory for Muscle Diseases and Neuropathies, Leuven Brain Institute, KU Leuven; and Division of Crop Biotechnics, Tropical Crop Improvement Laboratory (S.C.), Department of Biosystems, KU Leuven, Belgium
| | - Bart De Moor
- From the Department of Neurosciences (J.G., K.P.), Laboratory for Molecular Neurobiomarker Research, Leuven Brain Institute, KU Leuven; Laboratory Medicine (J.G., X.B., K.P.), University Hospitals Leuven; STADIUS Center for Dynamical Systems, Signal Processing, and Data Analytics (Y.C., B.D.M.), Department of Electrical Engineering (ESAT), KU Leuven; Department of Endocrinology (C.M.), University Hospitals Leuven; Department of Chronic Diseases and Metabolism (C.M.), Clinical and Experimental Endocrinology; Department of Microbiology, Immunology and Transplantation (L.A., X.B.), Clinical and Diagnostic Immunology, KU Leuven; Department of Neurology (P.V.D., K.G.C.), University Hospitals Leuven; Department of Neurosciences, Experimental Neurology, (P.V.D.) Laboratory of Neurobiology, Leuven Brain Institute, VIB KU Leuven Center for Brain and Disease Research; Department of Neurosciences (K.G.C.), Laboratory for Muscle Diseases and Neuropathies, Leuven Brain Institute, KU Leuven; and Division of Crop Biotechnics, Tropical Crop Improvement Laboratory (S.C.), Department of Biosystems, KU Leuven, Belgium
| | - Chantal Mathieu
- From the Department of Neurosciences (J.G., K.P.), Laboratory for Molecular Neurobiomarker Research, Leuven Brain Institute, KU Leuven; Laboratory Medicine (J.G., X.B., K.P.), University Hospitals Leuven; STADIUS Center for Dynamical Systems, Signal Processing, and Data Analytics (Y.C., B.D.M.), Department of Electrical Engineering (ESAT), KU Leuven; Department of Endocrinology (C.M.), University Hospitals Leuven; Department of Chronic Diseases and Metabolism (C.M.), Clinical and Experimental Endocrinology; Department of Microbiology, Immunology and Transplantation (L.A., X.B.), Clinical and Diagnostic Immunology, KU Leuven; Department of Neurology (P.V.D., K.G.C.), University Hospitals Leuven; Department of Neurosciences, Experimental Neurology, (P.V.D.) Laboratory of Neurobiology, Leuven Brain Institute, VIB KU Leuven Center for Brain and Disease Research; Department of Neurosciences (K.G.C.), Laboratory for Muscle Diseases and Neuropathies, Leuven Brain Institute, KU Leuven; and Division of Crop Biotechnics, Tropical Crop Improvement Laboratory (S.C.), Department of Biosystems, KU Leuven, Belgium
| | - Lina Ancheva
- From the Department of Neurosciences (J.G., K.P.), Laboratory for Molecular Neurobiomarker Research, Leuven Brain Institute, KU Leuven; Laboratory Medicine (J.G., X.B., K.P.), University Hospitals Leuven; STADIUS Center for Dynamical Systems, Signal Processing, and Data Analytics (Y.C., B.D.M.), Department of Electrical Engineering (ESAT), KU Leuven; Department of Endocrinology (C.M.), University Hospitals Leuven; Department of Chronic Diseases and Metabolism (C.M.), Clinical and Experimental Endocrinology; Department of Microbiology, Immunology and Transplantation (L.A., X.B.), Clinical and Diagnostic Immunology, KU Leuven; Department of Neurology (P.V.D., K.G.C.), University Hospitals Leuven; Department of Neurosciences, Experimental Neurology, (P.V.D.) Laboratory of Neurobiology, Leuven Brain Institute, VIB KU Leuven Center for Brain and Disease Research; Department of Neurosciences (K.G.C.), Laboratory for Muscle Diseases and Neuropathies, Leuven Brain Institute, KU Leuven; and Division of Crop Biotechnics, Tropical Crop Improvement Laboratory (S.C.), Department of Biosystems, KU Leuven, Belgium
| | - Philip Van Damme
- From the Department of Neurosciences (J.G., K.P.), Laboratory for Molecular Neurobiomarker Research, Leuven Brain Institute, KU Leuven; Laboratory Medicine (J.G., X.B., K.P.), University Hospitals Leuven; STADIUS Center for Dynamical Systems, Signal Processing, and Data Analytics (Y.C., B.D.M.), Department of Electrical Engineering (ESAT), KU Leuven; Department of Endocrinology (C.M.), University Hospitals Leuven; Department of Chronic Diseases and Metabolism (C.M.), Clinical and Experimental Endocrinology; Department of Microbiology, Immunology and Transplantation (L.A., X.B.), Clinical and Diagnostic Immunology, KU Leuven; Department of Neurology (P.V.D., K.G.C.), University Hospitals Leuven; Department of Neurosciences, Experimental Neurology, (P.V.D.) Laboratory of Neurobiology, Leuven Brain Institute, VIB KU Leuven Center for Brain and Disease Research; Department of Neurosciences (K.G.C.), Laboratory for Muscle Diseases and Neuropathies, Leuven Brain Institute, KU Leuven; and Division of Crop Biotechnics, Tropical Crop Improvement Laboratory (S.C.), Department of Biosystems, KU Leuven, Belgium
| | - Kristl G Claeys
- From the Department of Neurosciences (J.G., K.P.), Laboratory for Molecular Neurobiomarker Research, Leuven Brain Institute, KU Leuven; Laboratory Medicine (J.G., X.B., K.P.), University Hospitals Leuven; STADIUS Center for Dynamical Systems, Signal Processing, and Data Analytics (Y.C., B.D.M.), Department of Electrical Engineering (ESAT), KU Leuven; Department of Endocrinology (C.M.), University Hospitals Leuven; Department of Chronic Diseases and Metabolism (C.M.), Clinical and Experimental Endocrinology; Department of Microbiology, Immunology and Transplantation (L.A., X.B.), Clinical and Diagnostic Immunology, KU Leuven; Department of Neurology (P.V.D., K.G.C.), University Hospitals Leuven; Department of Neurosciences, Experimental Neurology, (P.V.D.) Laboratory of Neurobiology, Leuven Brain Institute, VIB KU Leuven Center for Brain and Disease Research; Department of Neurosciences (K.G.C.), Laboratory for Muscle Diseases and Neuropathies, Leuven Brain Institute, KU Leuven; and Division of Crop Biotechnics, Tropical Crop Improvement Laboratory (S.C.), Department of Biosystems, KU Leuven, Belgium
| | - Xavier Bossuyt
- From the Department of Neurosciences (J.G., K.P.), Laboratory for Molecular Neurobiomarker Research, Leuven Brain Institute, KU Leuven; Laboratory Medicine (J.G., X.B., K.P.), University Hospitals Leuven; STADIUS Center for Dynamical Systems, Signal Processing, and Data Analytics (Y.C., B.D.M.), Department of Electrical Engineering (ESAT), KU Leuven; Department of Endocrinology (C.M.), University Hospitals Leuven; Department of Chronic Diseases and Metabolism (C.M.), Clinical and Experimental Endocrinology; Department of Microbiology, Immunology and Transplantation (L.A., X.B.), Clinical and Diagnostic Immunology, KU Leuven; Department of Neurology (P.V.D., K.G.C.), University Hospitals Leuven; Department of Neurosciences, Experimental Neurology, (P.V.D.) Laboratory of Neurobiology, Leuven Brain Institute, VIB KU Leuven Center for Brain and Disease Research; Department of Neurosciences (K.G.C.), Laboratory for Muscle Diseases and Neuropathies, Leuven Brain Institute, KU Leuven; and Division of Crop Biotechnics, Tropical Crop Improvement Laboratory (S.C.), Department of Biosystems, KU Leuven, Belgium
| | - Sebastien Carpentier
- From the Department of Neurosciences (J.G., K.P.), Laboratory for Molecular Neurobiomarker Research, Leuven Brain Institute, KU Leuven; Laboratory Medicine (J.G., X.B., K.P.), University Hospitals Leuven; STADIUS Center for Dynamical Systems, Signal Processing, and Data Analytics (Y.C., B.D.M.), Department of Electrical Engineering (ESAT), KU Leuven; Department of Endocrinology (C.M.), University Hospitals Leuven; Department of Chronic Diseases and Metabolism (C.M.), Clinical and Experimental Endocrinology; Department of Microbiology, Immunology and Transplantation (L.A., X.B.), Clinical and Diagnostic Immunology, KU Leuven; Department of Neurology (P.V.D., K.G.C.), University Hospitals Leuven; Department of Neurosciences, Experimental Neurology, (P.V.D.) Laboratory of Neurobiology, Leuven Brain Institute, VIB KU Leuven Center for Brain and Disease Research; Department of Neurosciences (K.G.C.), Laboratory for Muscle Diseases and Neuropathies, Leuven Brain Institute, KU Leuven; and Division of Crop Biotechnics, Tropical Crop Improvement Laboratory (S.C.), Department of Biosystems, KU Leuven, Belgium
| | - Koen Poesen
- From the Department of Neurosciences (J.G., K.P.), Laboratory for Molecular Neurobiomarker Research, Leuven Brain Institute, KU Leuven; Laboratory Medicine (J.G., X.B., K.P.), University Hospitals Leuven; STADIUS Center for Dynamical Systems, Signal Processing, and Data Analytics (Y.C., B.D.M.), Department of Electrical Engineering (ESAT), KU Leuven; Department of Endocrinology (C.M.), University Hospitals Leuven; Department of Chronic Diseases and Metabolism (C.M.), Clinical and Experimental Endocrinology; Department of Microbiology, Immunology and Transplantation (L.A., X.B.), Clinical and Diagnostic Immunology, KU Leuven; Department of Neurology (P.V.D., K.G.C.), University Hospitals Leuven; Department of Neurosciences, Experimental Neurology, (P.V.D.) Laboratory of Neurobiology, Leuven Brain Institute, VIB KU Leuven Center for Brain and Disease Research; Department of Neurosciences (K.G.C.), Laboratory for Muscle Diseases and Neuropathies, Leuven Brain Institute, KU Leuven; and Division of Crop Biotechnics, Tropical Crop Improvement Laboratory (S.C.), Department of Biosystems, KU Leuven, Belgium.
| |
Collapse
|
2
|
Rodzik A, Railean V, Pomastowski P, Buszewski B, Szumski M. Immobilized enzyme microreactors for analysis of tryptic peptides in β-casein and β-lactoglobulin. Sci Rep 2023; 13:16551. [PMID: 37783762 PMCID: PMC10545664 DOI: 10.1038/s41598-023-43521-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
In this study, our primary objective was to develop an effective analytical method for studying trypsin-digested peptides of two proteins commonly found in cow's milk: β-casein (βCN) and β-lactoglobulin (βLG). To achieve this, we employed two distinct approaches: traditional in-gel protein digestion and protein digestion using immobilized enzyme microreactors (μ-IMER). Both methods utilized ZipTip pipette tips filled with C18 reverse phase media for sample concentration. The μ-IMER was fabricated through a multi-step process that included preconditioning the capillary, modifying its surface, synthesizing a monolithic support, and further surface modification. Its performance was evaluated under HPLC chromatography conditions using a small-molecule trypsin substrate (BAEE). Hydrolysates from both digestion methods were analyzed using MALDI-TOF MS. Our findings indicate that the μ-IMER method demonstrated superior sequence coverage for oxidized molecules in βCN (33 ± 1.5%) and βLG (65 ± 3%) compared to classical in-gel digestion (20 ± 2% for βCN; 49 ± 2% for βLG). The use of ZipTips further improved sequence coverage in both classical in-gel digestion (26 ± 1% for βCN; 60 ± 4% for βLG) and μ-IMER (41 ± 3% for βCN; 80 ± 5% for βLG). Additionally, phosphorylations were identified. For βCN, no phosphorylation was detected using classical digestion, but the use of ZipTips showed a value of 27 ± 4%. With μ-IMER and μ-IMER-ZipTip, the values increased to 30 ± 2% and 33 ± 1%, respectively. For βLG, the use of ZipTip enabled the detection of a higher percentage of modified peptides in both classical (79 ± 2%) and μ-IMER (79 ± 4%) digestions. By providing a comprehensive comparison of traditional in-gel digestion and μ-IMER methods, this study offers valuable insights into the advantages and limitations of each approach, particularly in the context of complex biological samples. The findings set a new benchmark in protein digestion and analysis, highlighting the potential of μ-IMER systems for enhanced sequence coverage and post-translational modification detection.
Collapse
Affiliation(s)
- Agnieszka Rodzik
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland.
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100, Toruń, Poland.
| | - Viorica Railean
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Toruń, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland
| | - Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100, Toruń, Poland
| | - Michał Szumski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland.
| |
Collapse
|
3
|
Schmelter C, Fomo KN, Brueck A, Perumal N, Markowitsch SD, Govind G, Speck T, Pfeiffer N, Grus FH. Glaucoma-Associated CDR1 Peptide Promotes RGC Survival in Retinal Explants through Molecular Interaction with Acidic Leucine Rich Nuclear Phosphoprotein 32A (ANP32A). Biomolecules 2023; 13:1161. [PMID: 37509196 PMCID: PMC10377047 DOI: 10.3390/biom13071161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Glaucoma is a complex, multifactorial optic neuropathy mainly characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons, resulting in a decline of visual function. The pathogenic molecular mechanism of glaucoma is still not well understood, and therapeutic strategies specifically addressing the neurodegenerative component of this ocular disease are urgently needed. Novel immunotherapeutics might overcome this problem by targeting specific molecular structures in the retina and providing direct neuroprotection via different modes of action. Within the scope of this research, the present study showed for the first time beneficial effects of the synthetic CDR1 peptide SCTGTSSDVGGYNYVSWYQ on the viability of RGCs ex vivo in a concentration-dependent manner compared to untreated control explants (CTRL, 50 µg/mL: p < 0.05 and 100 µg/mL: p < 0.001). Thereby, this specific peptide was identified first as a potential biomarker candidate in the serum of glaucoma patients and was significantly lower expressed in systemic IgG molecules compared to healthy control subjects. Furthermore, MS-based co-immunoprecipitation experiments confirmed the specific interaction of synthetic CDR1 with retinal acidic leucine-rich nuclear phosphoprotein 32A (ANP32A; p < 0.001 and log2 fold change > 3), which is a highly expressed protein in neurological tissues with multifactorial biological functions. In silico binding prediction analysis revealed the N-terminal leucine-rich repeat (LRR) domain of ANP32A as a significant binding site for synthetic CDR1, which was previously reported as an important docking site for protein-protein interactions (PPI). In accordance with these findings, quantitative proteomic analysis of the retinae ± CDR1 treatment resulted in the identification of 25 protein markers, which were significantly differentially distributed between both experimental groups (CTRL and CDR1, p < 0.05). Particularly, acetyl-CoA biosynthesis I-related enzymes (e.g., DLAT and PDHA1), as well as cytoskeleton-regulating proteins (e.g., MSN), were highly expressed by synthetic CDR1 treatment in the retina; on the contrary, direct ANP32A-interacting proteins (e.g., NME1 and PPP2R4), as well as neurodegenerative-related markers (e.g., CEND1), were identified with significant lower abundancy in the CDR1-treated retinae compared to CTRL. Furthermore, retinal protein phosphorylation and histone acetylation were also affected by synthetic CDR1, which are both partially controlled by ANP32A. In conclusion, the synthetic CDR1 peptide provides a great translational potential for the treatment of glaucoma in the future by eliciting its neuroprotective mechanism via specific interaction with ANP32A's N terminal LRR domain.
Collapse
Affiliation(s)
- Carsten Schmelter
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| | - Kristian Nzogang Fomo
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| | - Alina Brueck
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| | - Natarajan Perumal
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| | - Sascha D. Markowitsch
- Department of Urology and Pediatric Urology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Gokul Govind
- Institute of Physics, Johannes Gutenberg University, 55131 Mainz, Germany; (G.G.)
| | - Thomas Speck
- Institute of Physics, Johannes Gutenberg University, 55131 Mainz, Germany; (G.G.)
| | - Norbert Pfeiffer
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| | - Franz H. Grus
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| |
Collapse
|
4
|
Muttuvelu DV, Cehofski LJ, Muhammad MGF, Chen X, Utheim TP, Khan AM, Abduljabar AB, Kristensen K, Rasmussen MLR, Vorum H, Heegaard S, Honoré B. Anterior blepharitis is associated with elevated plectin levels consistent with a pronounced intracellular response. Ocul Surf 2023; 29:444-455. [PMID: 37348651 DOI: 10.1016/j.jtos.2023.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
PURPOSE Anterior blepharitis is a frequent ocular condition which may result in severe ocular surface disease. In this study, advanced proteome analysis was performed to elucidate biological mechanisms underlying anterior blepharitis. METHODS All patients underwent full ophthalmological examination including Ocular Surface Disease Index score (OSDI). Measurement of non-invasive break-up time (NBUT), Oxford score, and meibography were performed. Tear film samples from treatment naïve patients with anterior blepharitis (n = 15) and age-matched controls (n = 11) were collected with Schirmer filtration paper. The samples were analyzed with label-free quantification nano liquid chromatography - tandem mass spectrometry (LFQ nLC-MS/MS). Significantly regulated proteins were identified with a permutation-based calculation with a false discovery rate at 0.05. RESULTS Among the 927 proteins detected, a total of 162 proteins were significantly changed. Regulated proteins were involved in cytoplasmic translation, positive regulation of B cell activation, complement activation and phagocytosis. High levels of plakin proteins, a group of proteins involved in cytoskeleton organization, were observed in anterior blepharitis, including plectin, desmoplakin, envoplakin, epiplakin, periplakin, and vimentin. The upregulation of plectin was confirmed with single reaction monitoring. Patients with anterior blepharitis had lower levels of immunoglobulin chains, VEGF coregulated chemokine 1 (CXCL17), and platelet-derived growth factor C. CONCLUSIONS Anterior blepharitis was associated with a high level of plectin indicating a pronounced intracellular response with cytoskeletal reorganization. Our data suggest a lack of immunoglobulin chains and CXCL17 in anterior blepharitis with potential alterations in the ocular surface immune response.
Collapse
Affiliation(s)
| | - Lasse Jørgensen Cehofski
- Department of Ophthalmology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | - Xiangjun Chen
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | | | | | - Kasper Kristensen
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
| | | | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Steffen Heegaard
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bent Honoré
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
5
|
Fea AM, Ricardi F, Novarese C, Cimorosi F, Vallino V, Boscia G. Precision Medicine in Glaucoma: Artificial Intelligence, Biomarkers, Genetics and Redox State. Int J Mol Sci 2023; 24:2814. [PMID: 36769127 PMCID: PMC9917798 DOI: 10.3390/ijms24032814] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Glaucoma is a multifactorial neurodegenerative illness requiring early diagnosis and strict monitoring of the disease progression. Current exams for diagnosis and prognosis are based on clinical examination, intraocular pressure (IOP) measurements, visual field tests, and optical coherence tomography (OCT). In this scenario, there is a critical unmet demand for glaucoma-related biomarkers to enhance clinical testing for early diagnosis and tracking of the disease's development. The introduction of validated biomarkers would allow for prompt intervention in the clinic to help with prognosis prediction and treatment response monitoring. This review aims to report the latest acquisitions on biomarkers in glaucoma, from imaging analysis to genetics and metabolic markers.
Collapse
|
6
|
Fomo KN, Schmelter C, Atta J, Beutgen VM, Schwarz R, Perumal N, Govind G, Speck T, Pfeiffer N, Grus FH. Synthetic antibody-derived immunopeptide provides neuroprotection in glaucoma through molecular interaction with retinal protein histone H3.1. Front Med (Lausanne) 2022; 9:993351. [PMID: 36313990 PMCID: PMC9613933 DOI: 10.3389/fmed.2022.993351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Glaucoma is a group of optic neuropathies characterized by the progressive degeneration of retinal ganglion cells (RGCs) as well as their axons leading to irreversible loss of sight. Medical management of the intraocular pressure (IOP) still represents the gold standard in glaucoma therapy, which only manages a single risk factor and does not directly address the neurodegenerative component of this eye disease. Recently, our group showed that antibody-derived immunopeptides (encoding complementarity-determining regions, CDRs) provide attractive glaucoma medication candidates and directly interfere its pathogenic mechanisms by different modes of action. In accordance with these findings, the present study showed the synthetic complementary-determining region 2 (CDR2) peptide (INSDGSSTSYADSVK) significantly increased RGC viability in vitro in a concentration-dependent manner (p < 0.05 using a CDR2 concentration of 50 μg/mL). Employing state-of the-art immunoprecipitation experiments, we confirmed that synthetic CDR2 exhibited a high affinity toward the retinal target protein histone H3.1 (HIST1H3A) (p < 0.001 and log2-fold change > 3). Furthermore, molecular dynamics (MD) simulations along with virtual docking analyses predicted potential CDR2-specific binding regions of HIST1H3A, which might represent essential post-translational modification (PTM) sites for epigenetic regulations. Quantitative mass spectrometry (MS) analysis of retinas demonstrated 39 proteins significantly affected by CDR2 treatment (p < 0.05). An up-regulation of proteins involved in the energy production (e.g., ATP5F1B and MT-CO2) as well as the regulatory ubiquitin proteasome system (e.g., PSMC5) was induced by the synthetic CDR2 peptide. On the other hand, CDR2 reduced metabolic key enzymes (e.g., DDAH1 and MAOB) as well as ER stress-related proteins (e.g., SEC22B and VCP) and these data were partially confirmed by microarray technology. Our outcome measurements indicate that specific protein-peptide interactions influence the regulatory epigenetic function of HIST1H3A promoting the neuroprotective mechanism on RGCs in vitro. In addition to IOP management, such synthetic peptides as CDR2 might serve as a synergistic immunotherapy for glaucoma in the future.
Collapse
Affiliation(s)
- Kristian Nzogang Fomo
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Carsten Schmelter
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Joshua Atta
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Vanessa M. Beutgen
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Rebecca Schwarz
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Natarajan Perumal
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Gokul Govind
- Institute of Physics, Johannes Gutenberg University, Mainz, Germany
| | - Thomas Speck
- Institute of Physics, Johannes Gutenberg University, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Franz H. Grus
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany,*Correspondence: Franz H. Grus,
| |
Collapse
|
7
|
Hansen MS, Rasmussen M, Grauslund J, Subhi Y, Cehofski LJ. Proteomic analysis of vitreous humour of eyes with diabetic macular oedema: a systematic review. Acta Ophthalmol 2022; 100:e1043-e1051. [PMID: 35507578 DOI: 10.1111/aos.15168] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/19/2022] [Indexed: 01/10/2023]
Abstract
The pathophysiology of diabetic macular oedema (DME) remains poorly understood. Proteomic analysis of the vitreous using mass spectrometry (MS) can potentially identify proteins of pathophysiological importance. In this systematic review, we summarize the available evidence on protein changes in DME detected by MS. We systematically searched 13 literature databases on 19 September 2021. Eligible studies were defined as those using samples from human eyes with DME analysed with MS. Two authors assessed the studies for eligibility, extracted data and evaluated risk of bias independently. Six eligible studies were identified. All were designed in a cross-sectional fashion comparing results to either a non-diabetic control group or a control group without DME. A total of 62 eyes from 60 patients contributed as study group and 48 eyes from 48 patients served as control group. Proteomic analyses revealed significant differences in the vitreous protein levels in patients with DME when compared with controls. Three studies or more identified increased contents of apolipoprotein A-I, apolipoprotein A-II, apolipoprotein A-IV, apolipoprotein C-III, gelsolin, pigment epithelium-derived factor, serum albumin, transthyretin, vitamin D-binding protein in DME. Two studies found increased levels of complement factors B and C3. Protein changes reproduced across the studies suggested that DME was associated with retinal lipid accumulation, angiogenesis, retinal protective mechanisms, inflammation and complement activation. Proteome studies support the multifactorial pathogenesis of DME as proteins with highly different biological functions are regulated in DME. An important number of proteins differ, provide pathophysiological insight and suggest the direction for future research.
Collapse
Affiliation(s)
- Mathilde Schlippe Hansen
- Department of Ophthalmology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Maja Rasmussen
- Department of Ophthalmology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jakob Grauslund
- Department of Ophthalmology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Ophthalmology, Vestfold Hospital Trust, Tønsberg, Norway
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Yousif Subhi
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark
| | - Lasse Jørgensen Cehofski
- Department of Ophthalmology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
8
|
Player JK, Riordan SM, Duncan RS, Koulen P. Analysis of Glaucoma Associated Genes in Response to Inflammation, an Examination of a Public Data Set Derived from Peripheral Blood from Patients with Hepatitis C. Clin Ophthalmol 2022; 16:2093-2103. [PMID: 35770250 PMCID: PMC9236525 DOI: 10.2147/opth.s364739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/02/2022] [Indexed: 12/16/2022] Open
Abstract
Introduction Glaucoma is the second leading cause of blindness worldwide and despite its prevalence, there are still many unanswered questions related to its pathogenesis. There is evidence that oxidative stress and inflammation play a major role in disease progression. Glaucoma patients from several studies showed altered gene expression in leukocytes, revealing the possibility of using peripheral biomarkers to diagnose or stage glaucoma. The fact that glaucoma is associated with gene expression changes in tissues distant from the retina underscores the possible involvement of systemic oxidative stress and inflammation as potential contributing or compounding factors in glaucoma. Methods We assembled a list of oxidative stress and inflammatory markers related to glaucoma based on a review of the literature. In addition, we utilized publicly available data sets of gene expression values collected from peripheral blood mononuclear cells and macrophages from two patient groups: those chronically infected by the hepatitis C virus and those who have cleared it. Activation of the innate immune response can render cells or tissues more responsive to a second delayed proinflammatory stimulus. Additional gene expression data from these cells after subsequent polyinosinic:polycytidylic acid treatment, used to elicit an acute inflammatory response, allowed for the investigation of the acute inflammatory response in these groups. We used fold-change comparison values between the two patient groups to identify genes of interest. Results A comparison analysis identified 17 glaucoma biomarkers that were differentially expressed in response to HCV-mediated inflammation. Of these 17, six had significant p-values in the baseline vs treated values. Expression data of these genes were compared between patients who had cleared the Hepatitis C virus versus those who had not and identified three genes of interest for further study. Discussion These results support our hypothesis that inflammation secondary to Hepatitis C virus infection affects the expression of glaucoma biomarker genes related to the antioxidant response and inflammation. In addition, they provide several potential targets for further research into understanding the relationship between innate responses to viral infection and inflammatory aspects of glaucoma and for potential use as a predictive biomarker or pharmacological intervention in glaucoma.
Collapse
Affiliation(s)
- Jacob K Player
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri – Kansas City, Kansas City, MO, 64108, USA
| | - Sean M Riordan
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri – Kansas City, Kansas City, MO, 64108, USA
| | - R Scott Duncan
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri – Kansas City, Kansas City, MO, 64108, USA
| | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri – Kansas City, Kansas City, MO, 64108, USA
- Department of Biomedical Sciences, School of Medicine, University of Missouri – Kansas City, Kansas City, MO, 64108, USA
- Correspondence: Peter Koulen, Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri – Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA, Tel +1 816-235-6773, Email
| |
Collapse
|
9
|
de Graaf SC, Hoek M, Tamara S, Heck AJR. A perspective toward mass spectrometry-based de novo sequencing of endogenous antibodies. MAbs 2022; 14:2079449. [PMID: 35699511 PMCID: PMC9225641 DOI: 10.1080/19420862.2022.2079449] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A key step in therapeutic and endogenous humoral antibody characterization is identifying the amino acid sequence. So far, this task has been mainly tackled through sequencing of B-cell receptor (BCR) repertoires at the nucleotide level. Mass spectrometry (MS) has emerged as an alternative tool for obtaining sequence information directly at the – most relevant – protein level. Although several MS methods are now well established, analysis of recombinant and endogenous antibodies comes with a specific set of challenges, requiring approaches beyond the conventional proteomics workflows. Here, we review the challenges in MS-based sequencing of both recombinant as well as endogenous humoral antibodies and outline state-of-the-art methods attempting to overcome these obstacles. We highlight recent examples and discuss remaining challenges. We foresee a great future for these approaches making de novo antibody sequencing and discovery by MS-based techniques feasible, even for complex clinical samples from endogenous sources such as serum and other liquid biopsies.
Collapse
Affiliation(s)
- Sebastiaan C de Graaf
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| | - Max Hoek
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| | - Sem Tamara
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| |
Collapse
|
10
|
Fiedorowicz E, Cieślińska A, Kuklo P, Grzybowski A. Protein Biomarkers in Glaucoma: A Review. J Clin Med 2021; 10:5388. [PMID: 34830671 PMCID: PMC8624910 DOI: 10.3390/jcm10225388] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Glaucoma is a multifactorial disease. Early diagnosis of this disease can support treatment and reduce the effects of pathophysiological processes. A significant problem in the diagnosis of glaucoma is limited access to the tested material. Therefore, intensive research is underway to develop biomarkers for fast, noninvasive, and reliable testing. Biomarkers indicated in the formation of glaucoma include chemical compounds from different chemical groups, such as proteins, sugars, and lipids. This review summarizes our knowledge about protein and/or their protein-like derived biomarkers used for glaucoma diagnosis since 2000. The described possibilities resulting from a biomarker search may contribute to identifying a group of compounds strongly correlated with glaucoma development. Such a find would be of great importance in the diagnosis and treatment of this disorder, as current screening techniques have low sensitivity and are unable to diagnose early primary open-angle glaucoma.
Collapse
Affiliation(s)
- Ewa Fiedorowicz
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland; (E.F.); (A.C.)
| | - Anna Cieślińska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-719 Olsztyn, Poland; (E.F.); (A.C.)
| | - Patrycja Kuklo
- Department of Ophthalmology, University of Warmia and Mazury, 10-719 Olsztyn, Poland;
| | - Andrzej Grzybowski
- Department of Ophthalmology, University of Warmia and Mazury, 10-719 Olsztyn, Poland;
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, 61-553 Poznan, Poland
| |
Collapse
|
11
|
Beutgen VM, Schmelter C, Pfeiffer N, Grus FH. Contribution of the Commensal Microflora to the Immunological Homeostasis and the Importance of Immune-Related Drug Development for Clinical Applications. Int J Mol Sci 2021; 22:8896. [PMID: 34445599 PMCID: PMC8396286 DOI: 10.3390/ijms22168896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Not long ago, self-reactive immune activity was considered as pathological trait. A paradigm shift has now led to the recognition of autoimmune processes as part of natural maintenance of molecular homeostasis. The immune system is assigned further roles beneath the defense against pathogenic organisms. Regarding the humoral immune system, the investigation of natural autoantibodies that are frequently found in healthy individuals has led to further hypotheses involving natural autoimmunity in other processes as the clearing of cellular debris or decrease in inflammatory processes. However, their role and origin have not been entirely clarified, but accumulating evidence links their formation to immune reactions against the gut microbiome. Antibodies targeting highly conserved proteins of the commensal microflora are suggested to show self-reactive properties, following the paradigm of the molecular mimicry. Here, we discuss recent findings, which demonstrate potential links of the commensal microflora to the immunological homeostasis and highlight the possible implications for various diseases. Furthermore, specific components of the immune system, especially antibodies, have become a focus of attention for the medical management of various diseases and provide attractive treatment options in the future. Nevertheless, the development and optimization of such macromolecules still represents a very time-consuming task, shifting the need to more medical agents with simple structural properties and low manufacturing costs. Synthesizing only the biologically active sites of antibodies has become of great interest for the pharmaceutical industry and offers a wide range of therapeutic application areas as it will be discussed in the present review article.
Collapse
Affiliation(s)
| | | | | | - Franz H. Grus
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center, 55131 Mainz, Germany; (V.M.B.); (C.S.); (N.P.)
| |
Collapse
|
12
|
Schmelter C, Fomo KN, Perumal N, Pfeiffer N, Grus FH. Regulation of the HTRA2 Protease Activity by an Inhibitory Antibody-Derived Peptide Ligand and the Influence on HTRA2-Specific Protein Interaction Networks in Retinal Tissues. Biomedicines 2021; 9:biomedicines9081013. [PMID: 34440217 PMCID: PMC8427973 DOI: 10.3390/biomedicines9081013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial serine protease HTRA2 has many versatile biological functions ranging from being an important regulator of apoptosis to being an essential component for neuronal cell survival and mitochondrial homeostasis. Loss of HTRA2 protease function is known to cause neurodegeneration, whereas overactivation of its proteolytic function is associated with cell death and inflammation. In accordance with this, our group verified in a recent study that the synthetic peptide ASGYTFTNYGLSWVR, encoding the hypervariable sequence part of an antibody, showed a high affinity for the target protein HTRA2 and triggered neuroprotection in an in vitro organ culture model for glaucoma. To unravel this neuroprotective mechanism, the present study showed for the first time that the synthetic CDR1 peptide significantly (p < 0.01) inhibited the proteolytic activity of HTRA2 up to 50% using a specific protease function assay. Furthermore, using state-of-the-art co-immunoprecipitation technologies in combination with high-resolution MS, we identified 50 significant protein interaction partners of HTRA2 in the retina of house swine (p < 0.01; log2 fold change > 1.5). Interestingly, 72% of the HTRA2-specific interactions (23 of 31 binders) were inhibited by additional treatment with UCF-101 (HTRA2 protease inhibitor) or the synthetic CDR peptide. On the other hand, the remaining 19 binders of HTRA2 were exclusively identified in the UCF101 and/or CDR group. However, many of the interactors were involved in the ER to Golgi anterograde transport (e.g., AP3D1), aggrephagy (e.g., PSMC1), and the pyruvate metabolism/citric acid cycle (e.g., SHMT2), and illustrated the complex protein interaction networks of HTRA2 in neurological tissues. In conclusion, the present study provides, for the first time, a comprehensive protein catalogue of HTRA2-specific interaction partners in the retina, and will serve as reference map in the future for studies focusing on HTRA2-mediated neurodegeneration.
Collapse
|
13
|
Cehofski LJ, Kojima K, Terao N, Kitazawa K, Thineshkumar S, Grauslund J, Vorum H, Honoré B. Aqueous Fibronectin Correlates With Severity of Macular Edema and Visual Acuity in Patients With Branch Retinal Vein Occlusion: A Proteome Study. Invest Ophthalmol Vis Sci 2021; 61:6. [PMID: 33270842 PMCID: PMC7718822 DOI: 10.1167/iovs.61.14.6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose Large-scale protein analysis may bring important insights into molecular changes following branch retinal vein occlusion (BRVO). Using proteomic techniques this study compared aqueous humor samples from patients with BRVO to age-matched controls. Methods Aqueous humor samples from treatment naive patients with BRVO complicated by macular edema (n = 19) and age-matched controls (n = 18) were analyzed with label-free quantification nano liquid chromatography - tandem mass spectrometry (LFQ nLC-MS/MS). The severity of macular edema was measured as central retinal thickness (CRT) with optical coherence tomography. Control samples were obtained prior to cataract surgery. Proteins were filtered by requiring quantification in at least 50% of the samples in each group without imputation of missing values. Significantly changed proteins were identified with a permutation-based calculation with a false discovery rate at 0.05. Results In BRVO, 52 proteins were differentially expressed. Regulated proteins were involved in cell adhesion, coagulation, and acute-phase response. Apolipoprotein C-III, complement C3, complement C5, complement factor H, fibronectin, and fibrinogen chains were increased in BRVO and correlated with CRT. Fibronectin also correlated with best corrected visual acuity (BCVA) and vascular endothelial growth factor (VEGF). Monocyte differentiation antigen CD14 (CD14) and lipopolysaccharide-binding protein (LBP) were upregulated in BRVO. Contactin-1 and alpha-enolase were downregulated in BRVO and correlated negatively with CRT. Conclusions Multiple proteins, including complement factors, fibrinogen chains, and apolipoprotein C-III, correlated with CRT, indicating a multifactorial response. Fibronectin correlated with BCVA, CRT, and VEGF. Fibronectin may reflect the severity of BRVO. The proinflammatory proteins CD14 and LBP were upregulated in BRVO.
Collapse
Affiliation(s)
- Lasse Jørgensen Cehofski
- Department of Ophthalmology, Odense University Hospital, Odense, Denmark.,Department of Ophthalmology, Lillebaelt Hospital, Vejle, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kentaro Kojima
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Nobuhiro Terao
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koji Kitazawa
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Jakob Grauslund
- Department of Ophthalmology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Bent Honoré
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Bell K, Rosignol I, Sierra-Filardi E, Rodriguez-Muela N, Schmelter C, Cecconi F, Grus F, Boya P. Age related retinal Ganglion cell susceptibility in context of autophagy deficiency. Cell Death Discov 2020; 6:21. [PMID: 32337073 PMCID: PMC7165178 DOI: 10.1038/s41420-020-0257-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/25/2020] [Indexed: 12/26/2022] Open
Abstract
Glaucoma is a common age-related disease leading to progressive retinal ganglion cell (RGC) death, visual field defects and vision loss and is the second leading cause of blindness in the elderly worldwide. Mitochondrial dysfunction and impaired autophagy have been linked to glaucoma and induction of autophagy shows neuroprotective effects in glaucoma animal models. We have shown that autophagy decreases with aging in the retina and that autophagy can be neuroprotective for RGCs, but it is currently unknown how aging and autophagy deficiency impact RGCs susceptibility and survival. Using the optic nerve crush model in young and olWelcome@1234d Ambra1 +/gt (autophagy/beclin-1 regulator 1+/gt) mice we analysed the contribution of autophagy deficiency on retinal ganglion cell survival in an age dependent context. Interestingly, old Ambra1 +/gt mice showed decreased RGC survival after optic nerve crush in comparison to old Ambra1 +/+, an effect that was not observed in the young animals. Proteomics and mRNA expression data point towards altered oxidative stress response and mitochondrial alterations in old Ambra1 +/gt animals. This effect is intensified after RGC axonal damage, resulting in reduced oxidative stress response showing decreased levels of Nqo1, as well as failure of Nrf2 induction in the old Ambra1 +/gt. Old Ambra1 +/gt also failed to show increase in Bnip3l and Bnip3 expression after optic nerve crush, a response that is found in the Ambra1 +/+ controls. Primary RGCs derived from Ambra1 +/gt mice show decreased neurite projection and increased levels of apoptosis in comparison to Ambra1 +/+ animals. Our results lead to the conclusion that oxidative stress response pathways are altered in old Ambra1 +/gt mice leading to impaired damage responses upon additional external stress factors.
Collapse
Affiliation(s)
- Katharina Bell
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
- Experimental and Translational Ophthalmology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Ines Rosignol
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Elena Sierra-Filardi
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Natalia Rodriguez-Muela
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
- Deutsche Zentrum für Neurodegenerative Erkrankungen e.V, DZNE/German Center for Neurodegenerative Diseases, Dresden, Germany
| | - Carsten Schmelter
- Experimental and Translational Ophthalmology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Francesco Cecconi
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Franz Grus
- Experimental and Translational Ophthalmology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| |
Collapse
|
15
|
Beutgen VM, Schmelter C, Pfeiffer N, Grus FH. Autoantigens in the trabecular meshwork and glaucoma-specific alterations in the natural autoantibody repertoire. Clin Transl Immunology 2020; 9:e01101. [PMID: 32140226 PMCID: PMC7049230 DOI: 10.1002/cti2.1101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/18/2019] [Accepted: 12/07/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Primary open-angle glaucoma (POAG) is a neurodegenerative disorder leading to a gradual vision loss caused by progressive damage to the optic nerve. Immunological processes are proposed to be involved in POAG pathogenesis. Altered serological autoantibody levels have been frequently reported, but complete analyses of the natural autoantibodies with respect to disease-related alterations are scarce. Here, we provide an explorative analysis of pathways and biological processes that may involve naturally immunogenic proteins and highlight POAG-specific alterations. METHODS Mass spectrometry-based antibody-mediated identification of autoantigens (MS-AMIDA) was carried out in healthy and glaucomatous trabecular meshwork (TM) cell lines, using antibody pools purified from serum samples of 30 POAG patients and 30 non-glaucomatous subjects. Selected antigens were validated by protein microarray (n = 120). Bioinformatic assessment of identified autoantigens, including Gene Ontology (GO) enrichment analysis and protein-protein interaction networks, was applied. RESULTS Overall, we identified 106 potential autoantigens [false discovery rate (FDR) < 0.01], from which we considered 66 as physiological targets of natural autoantibodies. Twenty-one autoantigens appeared to be related to POAG. Bioinformatic analysis revealed that the platelet-derived growth factor receptor beta (PDGFRB) pathway involved in TM fibrosis was particularly rich in POAG-related antigens. Antibodies to threonine-tRNA ligase (TARS), component 1 Q subcomponent-binding protein (C1QBP) and paraneoplastic antigen Ma2 (PNMA2) showed significantly (P < 0.05) higher levels in POAG patients as validated by protein microarray. CONCLUSION This study provides new insights into autoimmunity in health and glaucoma. Bioinformatic analysis of POAG-related autoantigens showed a strong association with the PDGFRB pathway and also increased levels of PNMA2, TARS, and C1QBP autoantibodies in the serum of POAG patients as potential glaucoma biomarkers.
Collapse
Affiliation(s)
- Vanessa M Beutgen
- Experimental and Translational OphthalmologyDepartment of OphthalmologyUniversity Medical Center of the Johannes Gutenberg ‐ UniversityMainzGermany
| | - Carsten Schmelter
- Experimental and Translational OphthalmologyDepartment of OphthalmologyUniversity Medical Center of the Johannes Gutenberg ‐ UniversityMainzGermany
| | - Norbert Pfeiffer
- Experimental and Translational OphthalmologyDepartment of OphthalmologyUniversity Medical Center of the Johannes Gutenberg ‐ UniversityMainzGermany
| | - Franz H Grus
- Experimental and Translational OphthalmologyDepartment of OphthalmologyUniversity Medical Center of the Johannes Gutenberg ‐ UniversityMainzGermany
| |
Collapse
|
16
|
Liu Y, Wang Y, Chen Y, Fang X, Wen T, Xiao M, Chen S, Zhang X. Discovery and Validation of Circulating Hsa-miR-210-3p as a Potential Biomarker for Primary Open-Angle Glaucoma. Invest Ophthalmol Vis Sci 2019; 60:2925-2934. [PMID: 31284309 DOI: 10.1167/iovs.19-26663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Blood-based examination tools for glaucoma diagnosis in clinical practice, which can be useful for screening patients when traditional ophthalmic examinations cannot be utilized, are not available thus far. This study aimed to identify circulating microRNAs (miRNAs) associated with primary open-angle glaucoma (POAG) and explore their utility as diagnostic markers. Methods A total of 136 POAG patients and controls were enrolled. Next-generation RNA sequencing was used to explore the expression profile of circulating miRNAs in the sequencing set, and potential miRNAs from independent samples in both the screening and validation sets were validated by quantitative real-time polymerase chain reaction (qRT-PCR). Receiver operating characteristic (ROC) analysis was used to evaluate the ability of certain miRNAs to distinguish POAG patients from control subjects. Results Using sequencing and qRT-PCR, hsa-miR-210-3p was found to be elevated in POAG patients in all sets. ROC analysis of the screening and validation sets revealed that hsa-miR-210-3p differentiated between POAG patients and matched controls with an area under the curve (AUC) of 0.846 (sensitivity: 84.6%; specificity: 80.8%) and 0.813 (sensitivity: 84.8%; specificity: 69.7%), respectively. In case of all nonsequencing participants, analysis revealed that hsa-miR-210-3p differentiated between severe POAG patients and controls with an AUC of 0.880 (sensitivity: 85.4%; specificity: 85.7%). In addition, the expression of hsa-miR-210-3p was associated with visual field defects of |mean deviation| (β = 0.237; P = 0.022) and average retinal nerve fiber layer thickness (β = -5.792; P = 0.014). Conclusions Circulating hsa-miR-210-3p may serve as a potential diagnostic marker for POAG (especially for severe POAG patients).
Collapse
Affiliation(s)
- Yaoming Liu
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yayi Wang
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yang Chen
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiuli Fang
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Tao Wen
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Mianli Xiao
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shida Chen
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiulan Zhang
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
17
|
Youngblood H, Hauser MA, Liu Y. Update on the genetics of primary open-angle glaucoma. Exp Eye Res 2019; 188:107795. [PMID: 31525344 PMCID: PMC6901111 DOI: 10.1016/j.exer.2019.107795] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/03/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022]
Abstract
Affecting nearly 80 million individuals, glaucoma is the number one cause of irreversible blindness in the world. This ocular disease describes a set of optic neuropathies of which primary open angle glaucoma (POAG) is the most common. POAG is associated with progressive visual field deterioration resulting from damage to the optic nerve and loss of retinal ganglion cells. Risk factors for POAG include elevated intraocular pressure, aging, African and Hispanic ancestry, and a positive family history of POAG. Multiple genes have been found to contribute to POAG. Much of POAG genetics and pathology has yet to be explained. Recent genome-wide association studies have identified a large number of novel loci associated with POAG and its endophenotypes. Genomic and proteomic profiling of biofluids has contributed to our knowledge of differential gene expression in POAG. Functional studies both in cell culture and animal models have confirmed the effects of variants and differential gene expression on ocular physiology while in silico analyses have increased our understanding of disease risk and progression so that we might better diagnose and treat this complex genetic illness.
Collapse
Affiliation(s)
- Hannah Youngblood
- Department of Cellular Biology and Anatomy, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA, 30912, United States.
| | - Michael A Hauser
- Departments of Medicine and Ophthalmology, Duke University Medical Center, Durham, NC, USA; Duke Molecular Physiology Institute, 300 N Duke Street, Durham, NC, 27701, United States.
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA, 30912, United States; Center for Biotechnology and Genomic Medicine, Augusta University, 1120 15th Street, Augusta, GA, 30912, United States; James and Jean Culver Vision Discovery Institute, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA, 30912, United States.
| |
Collapse
|
18
|
Comparative Quantitative Analysis of Porcine Optic Nerve Head and Retina Subproteomes. Int J Mol Sci 2019; 20:ijms20174229. [PMID: 31470587 PMCID: PMC6747248 DOI: 10.3390/ijms20174229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/16/2019] [Accepted: 08/27/2019] [Indexed: 11/17/2022] Open
Abstract
Optic nerve head (ONH) and retina (RET) are the main sites of damage in neurodegenerative optic neuropathies including glaucoma. Up to date, little is known about the molecular interplay between these two adjoining ocular components in terms of proteomics. To close this gap, we investigated ONH and RET protein extracts derived from porcine eyes (n = 12) (Sus scrofa domestica Linnaeus 1758) using semi-quantitative mass spectrometry (MS)-based proteomics comprising bottom-up LC–ESI MS/MS and targeted SPE-MALDI-TOF MS analysis. In summary, more than 1600 proteins could be identified from the ONH/RET tissue complex. Moreover, ONH and RET displayed tissue-specific characteristics regarding their qualitative and semi-quantitative protein compositions. Gene ontology (GO)-based functional and protein–protein interaction analyses supported a close functional connection between the metabolic-related RET and the structural-associated ONH subproteomes, which could be affected under disease conditions. Inferred from the MS findings, stress-associated proteins including clusterin, ceruloplasmin, and endoplasmin can be proposed as extracellular mediators of the ONH/ RET proteome interface. In conclusion, ONH and RET show obvious proteomic differences reflecting characteristic functional features which have to be considered for future protein biomarker profiling studies.
Collapse
|
19
|
Schmelter C, Fomo KN, Perumal N, Manicam C, Bell K, Pfeiffer N, Grus FH. Synthetic Polyclonal-Derived CDR Peptides as an Innovative Strategy in Glaucoma Therapy. J Clin Med 2019; 8:jcm8081222. [PMID: 31443184 PMCID: PMC6723090 DOI: 10.3390/jcm8081222] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/30/2019] [Accepted: 08/12/2019] [Indexed: 12/16/2022] Open
Abstract
The pathogenesis of glaucoma is strongly associated with the occurrence of autoimmune-mediated loss of retinal ganglion cells (RGCs) and additionally, recent evidence shows that specific antibody-derived signature peptides are significantly differentially expressed in sera of primary-open angle glaucoma patients (POAG) compared to healthy controls. Synthetically antibody-derived peptides can modulate various effector functions of the immune system and act as antimicrobial or antiviral molecules. In an ex vivo adolescent glaucoma model, this study, for the first time, demonstrates that polyclonal-derived complementarity-determining regions (CDRs) can significantly increase the survival rate of RGCs (p = 0.013). We subsequently performed affinity capture experiments that verified the mitochondrial serine protease HTRA2 (gene name: HTRA2) as a high-affinity retinal epitope target of CDR1 sequence motif ASGYTFTNYGLSWVR. Quantitative proteomic analysis of the CDR-treated retinal explants revealed increased expression of various anti-apoptotic and anti-oxidative proteins (e.g., VDAC2 and TXN) compared to untreated controls (p < 0.05) as well as decreased expression levels of cellular stress response markers (e.g., HSPE1 and HSP90AA1). Mitochondrial dysfunction, the protein ubiquitination pathway and oxidative phosphorylation were annotated as the most significantly affected signaling pathways and possibly can be traced back to the CDR-induced inhibition or modulation of the master regulator HTRA2. These findings emphasize the great potential of synthetic polyclonal-derived CDR peptides as therapeutic agents in future glaucoma therapy and provide an excellent basis for affinity-based biomarker discovery purposes.
Collapse
Affiliation(s)
- Carsten Schmelter
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Kristian Nzogang Fomo
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Natarajan Perumal
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Caroline Manicam
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Katharina Bell
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Norbert Pfeiffer
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Franz H Grus
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| |
Collapse
|
20
|
Abstract
In addition to the clinically most relevant risk factor for glaucoma, i.e., elevated intraocular pressure (IOP), there are other factors with high relevance for the disease. Changes in the autoimmune component of the immune system are of particular importance. Clinical studies have demonstrated alterations in different autoantibodies in glaucoma patients compared to healthy controls, some of which increase in abundance/have a raised titer, but also some which have a reduced titer. These changes have a distinct potential-not only as a tool for early glaucoma detection, but also as a therapeutic option due to the documented neuroprotective effects of some of these antibodies. Several antibodies displaying lower abundance in glaucoma patients, e.g., antibodies against 14-3-3 proteins, γ‑/α-synuclein, or also against glial fibrillary acidic protein (GFAP), show neuroprotective effects on retinal ganglion cells in vivo and in vitro. To assess the relevance of changes detected in the immune system of glaucoma patients, "‑omics-based" analyses of different ocular tissues are of particular importance alongside cell culture studies. In this manner, not only samples derived from experimental studies but also samples derived from glaucoma patients in even very small amounts (e. g., tears, aqueous humor, serum, or post-mortem retina) can be analyzed in detail in terms of protein and, in particular, antibody changes. Modern mass spectrometric proteomic characterization of relevant samples will deliver valuable information concerning the understanding of molecular disease mechanisms in the coming years, thus also improving diagnosis and treatment of glaucoma.
Collapse
Affiliation(s)
- K Bell
- Experimentelle Ophthalmologie, Augenklinik der Universitätsmedizin Mainz, Langenbeckstraße 1, 55131, Mainz, Deutschland.
| | - S Funke
- Experimentelle Ophthalmologie, Augenklinik der Universitätsmedizin Mainz, Langenbeckstraße 1, 55131, Mainz, Deutschland
| | - F H Grus
- Experimentelle Ophthalmologie, Augenklinik der Universitätsmedizin Mainz, Langenbeckstraße 1, 55131, Mainz, Deutschland
| |
Collapse
|
21
|
Chang YT, Chang MC, Tsai YJ, Ferng C, Shih HC, Kuo YP, Chen CH, Tsai IL. Method development of immunoglobulin G purification from micro-volumes of human serum for untargeted and targeted proteomics-based antibody repertoire studies. J Food Drug Anal 2019; 27:475-482. [PMID: 30987718 PMCID: PMC9296204 DOI: 10.1016/j.jfda.2018.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 11/20/2022] Open
Abstract
Immunoglobulins (Igs) are major serum proteins which play important roles in immunity. Both untargeted and targeted proteomic workflows can be applied to investigate antigen-binding sites and the glycosylation profiles of Igs. For a more-comprehensive picture of IgG from human serum, we developed an IgG purification process and coupled the standardized method to untargeted and targeted proteomic workflows for IgG investigations. Parameters such as the type of purification beads, volume of the bead slurry, incubation conditions, and binding capacities were evaluated in this study. Only 2 μL of human serum was required for each sample. The performance of coupling the purification process to untargeted proteomics in the IgG analysis was evaluated by comparing normalized abundances of IgG subclass-specific peptides with quantification results from an ELISA. Pearson’s correlation values were all >0.82. Targeted proteomic workflow was applied to serum samples from patients with autoimmune pancreatitis and from healthy controls, and the results corresponded to clinical findings that IgG4-related peptides/glycopeptides showed higher abundances in the diseased group. The developed IgG purification process is simple and requires small sample volume, and it can be coupled to targeted and untargeted proteomic workflows for clinical investigations in the future.
Collapse
Affiliation(s)
- Yu-Ting Chang
- Department of Internal Medicine, National Taiwan University Hospital,
Taiwan
- Department of Internal Medicine, College of Medicine, National Taiwan University,
Taiwan
| | - Ming-Chu Chang
- Department of Internal Medicine, National Taiwan University Hospital,
Taiwan
- Department of Internal Medicine, College of Medicine, National Taiwan University,
Taiwan
| | - Yun-Jung Tsai
- School of Pharmacy, Taipei Medical University,
Taiwan
| | | | | | - Ya-Po Kuo
- Genomics Research Center, Academia Sinica,
Taiwan
| | | | - I-Lin Tsai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University,
Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University,
Taiwan
- Corresponding author. Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan., E-mail address: (I.-L. Tsai)
| |
Collapse
|
22
|
Wey S, Amanullah S, Spaeth GL, Ustaoglu M, Rahmatnejad K, Katz LJ. Is primary open-angle glaucoma an ocular manifestation of systemic disease? Graefes Arch Clin Exp Ophthalmol 2019; 257:665-673. [PMID: 30643967 DOI: 10.1007/s00417-019-04239-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/26/2018] [Accepted: 01/07/2019] [Indexed: 01/05/2023] Open
Abstract
Primary open-angle glaucoma is currently characterized by a pattern of progressive retinal ganglion cell loss that stems from a complex underlying pathophysiology that remains poorly elucidated. The roles of blood flow and intraocular pressure (IOP) in glaucoma pathogenesis have been extensively studied. Further, it has been established that lowering IOP can slow the progression of glaucoma. In addition, a number of influential factors have emerged and gained momentum over the years. Increasing evidence implicates the contributions of low cerebrospinal fluid pressure, autoimmunity, neurodegeneration, and impaired autoregulation towards glaucoma pathophysiology. We aggregate and explore these different camps of thought that have garnered attention over the last few decades, and, in doing so, aim to challenge the long-standing view of glaucoma as a primary disease of the eye. A shift in our perspective towards understanding glaucoma as an ocular manifestation of systemic dysregulation may lead ultimately to better clinical management of the disease.
Collapse
Affiliation(s)
- Stephanie Wey
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sarah Amanullah
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - George L Spaeth
- Glaucoma Research Center, Wills Eye Hospital, 840 Walnut Street, Suite 1140, Philadelphia, PA, 19107, USA
| | - Melih Ustaoglu
- Glaucoma Research Center, Wills Eye Hospital, 840 Walnut Street, Suite 1140, Philadelphia, PA, 19107, USA
| | - Kamran Rahmatnejad
- Glaucoma Research Center, Wills Eye Hospital, 840 Walnut Street, Suite 1140, Philadelphia, PA, 19107, USA
| | - L Jay Katz
- Glaucoma Research Center, Wills Eye Hospital, 840 Walnut Street, Suite 1140, Philadelphia, PA, 19107, USA.
| |
Collapse
|
23
|
Schmelter C, Funke S, Treml J, Beschnitt A, Perumal N, Manicam C, Pfeiffer N, Grus FH. Comparison of Two Solid-Phase Extraction (SPE) Methods for the Identification and Quantification of Porcine Retinal Protein Markers by LC-MS/MS. Int J Mol Sci 2018; 19:E3847. [PMID: 30513899 PMCID: PMC6321002 DOI: 10.3390/ijms19123847] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/18/2018] [Accepted: 11/27/2018] [Indexed: 01/08/2023] Open
Abstract
Proper sample preparation protocols represent a critical step for liquid chromatography-mass spectrometry (LC-MS)-based proteomic study designs and influence the speed, performance and automation of high-throughput data acquisition. The main objective of this study was to compare two commercial solid-phase extraction (SPE)-based sample preparation protocols (comprising SOLAµTM HRP SPE spin plates from Thermo Fisher Scientific and ZIPTIP® C18 pipette tips from Merck Millipore) for analytical performance, reproducibility, and analysis speed. The house swine represents a promising animal model for studying human eye diseases including glaucoma and provides excellent requirements for the qualitative and quantitative MS-based comparison in terms of ocular proteomics. In total six technical replicates of two protein fractions [extracted with 0.1% dodecyl-ß-maltoside (DDM) or 1% trifluoroacetic acid (TFA)] of porcine retinal tissues were subjected to in-gel trypsin digestion and purified with both SPE-based workflows (N = 3) prior to LC-MS analysis. On average, 550 ± 70 proteins (1512 ± 199 peptides) and 305 ± 48 proteins (806 ± 144 peptides) were identified from DDM and TFA protein fractions, respectively, after ZIPTIP® C18 purification, and SOLAµTM workflow resulted in the detection of 513 ± 55 proteins (1347 ± 180 peptides) and 300 ± 33 proteins (722 ± 87 peptides), respectively (FDR < 1%). Venn diagram analysis revealed an average overlap of 65 ± 2% (DDM fraction) and 69 ± 4% (TFA fraction) in protein identifications between both SPE-based methods. Quantitative analysis of 25 glaucoma-related protein markers also showed no significant differences (P > 0.05) regarding protein recovery between both SPE methods. However, only glaucoma-associated marker MECP2 showed a significant (P = 0.02) higher abundance in ZIPTIP®-purified replicates in comparison to SOLAµTM-treated study samples. Nevertheless, this result was not confirmed in the verification experiment using in-gel trypsin digestion of recombinant MECP2 (P = 0.24). In conclusion, both SPE-based purification methods worked equally well in terms of analytical performance and reproducibility, whereas the analysis speed and the semi-automation of the SOLAµTM spin plates workflow is much more convenient in comparison to the ZIPTIP® C18 method.
Collapse
Affiliation(s)
- Carsten Schmelter
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| | - Sebastian Funke
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| | - Jana Treml
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| | - Anja Beschnitt
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| | - Natarajan Perumal
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| | - Caroline Manicam
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| | - Norbert Pfeiffer
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| | - Franz H Grus
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| |
Collapse
|