1
|
Ginete C, Delgadinho M, Santos B, Miranda A, Silva C, Guerreiro P, Chimusa ER, Brito M. Genetic Modifiers of Sickle Cell Anemia Phenotype in a Cohort of Angolan Children. Genes (Basel) 2024; 15:469. [PMID: 38674403 PMCID: PMC11049512 DOI: 10.3390/genes15040469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was to identify genetic markers in the HBB Cluster; HBS1L-MYB intergenic region; and BCL11A, KLF1, FOX3, and ZBTB7A genes associated with the heterogeneous phenotypes of Sickle Cell Anemia (SCA) using next-generation sequencing, as well as to assess their influence and prevalence in an Angolan population. Hematological, biochemical, and clinical data were considered to determine patients' severity phenotypes. Samples from 192 patients were sequenced, and 5,019,378 variants of high quality were registered. A catalog of candidate modifier genes that clustered in pathophysiological pathways important for SCA was generated, and candidate genes associated with increasing vaso-occlusive crises (VOC) and with lower fetal hemoglobin (HbF) were identified. These data support the polygenic view of the genetic architecture of SCA phenotypic variability. Two single nucleotide polymorphisms in the intronic region of 2q16.1, harboring the BCL11A gene, are genome-wide and significantly associated with decreasing HbF. A set of variants was identified to nominally be associated with increasing VOC and are potential genetic modifiers harboring phenotypic variation among patients. To the best of our knowledge, this is the first investigation of clinical variation in SCA in Angola using a well-customized and targeted sequencing approach.
Collapse
Affiliation(s)
- Catarina Ginete
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (C.G.); (M.D.); (C.S.); (P.G.)
| | - Mariana Delgadinho
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (C.G.); (M.D.); (C.S.); (P.G.)
| | - Brígida Santos
- Centro de Investigação em Saúde de Angola (CISA), Bengo 9999, Angola;
- Hospital Pediátrico David Bernardino (HPDB), Luanda 3067, Angola
| | - Armandina Miranda
- Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), 1649-016 Lisbon, Portugal;
| | - Carina Silva
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (C.G.); (M.D.); (C.S.); (P.G.)
- Centro de Estatística e Aplicações, Universidade de Lisboa, 1649-013 Lisbon, Portugal
| | - Paulo Guerreiro
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (C.G.); (M.D.); (C.S.); (P.G.)
| | - Emile R. Chimusa
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK;
| | - Miguel Brito
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (C.G.); (M.D.); (C.S.); (P.G.)
- Centro de Investigação em Saúde de Angola (CISA), Bengo 9999, Angola;
| |
Collapse
|
2
|
Li P, Fleischhauer L, Nicolae C, Prein C, Farkas Z, Saller MM, Prall WC, Wagener R, Heilig J, Niehoff A, Clausen-Schaumann H, Alberton P, Aszodi A. Mice Lacking the Matrilin Family of Extracellular Matrix Proteins Develop Mild Skeletal Abnormalities and Are Susceptible to Age-Associated Osteoarthritis. Int J Mol Sci 2020; 21:ijms21020666. [PMID: 31963938 PMCID: PMC7013758 DOI: 10.3390/ijms21020666] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 12/14/2022] Open
Abstract
Matrilins (MATN1, MATN2, MATN3 and MATN4) are adaptor proteins of the cartilage extracellular matrix (ECM), which bridge the collagen II and proteoglycan networks. In humans, dominant-negative mutations in MATN3 lead to various forms of mild chondrodysplasias. However, single or double matrilin knockout mice generated previously in our laboratory do not show an overt skeletal phenotype, suggesting compensation among the matrilin family members. The aim of our study was to establish a mouse line, which lacks all four matrilins and analyze the consequence of matrilin deficiency on endochondral bone formation and cartilage function. Matn1-4−/− mice were viable and fertile, and showed a lumbosacral transition phenotype characterized by the sacralization of the sixth lumbar vertebra. The development of the appendicular skeleton, the structure of the growth plate, chondrocyte differentiation, proliferation, and survival were normal in mutant mice. Biochemical analysis of knee cartilage demonstrated moderate alterations in the extractability of the binding partners of matrilins in Matn1-4−/− mice. Atomic force microscopy (AFM) revealed comparable compressive stiffness but higher collagen fiber diameters in the growth plate cartilage of quadruple mutant compared to wild-type mice. Importantly, Matn1-4−/− mice developed more severe spontaneous osteoarthritis at the age of 18 months, which was accompanied by changes in the biomechanical properties of the articular cartilage. Interestingly, Matn4−/− mice also developed age-associated osteoarthritis suggesting a crucial role of MATN4 in maintaining the stability of the articular cartilage. Collectively, our data provide evidence that matrilins are important to protect articular cartilage from deterioration and are involved in the specification of the vertebral column.
Collapse
Affiliation(s)
- Ping Li
- Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Ludwig-Maximilians-University, 80336 Munich, Germany; (P.L.); (L.F.); (C.P.); (Z.F.); (M.M.S.); (W.C.P.); (P.A.)
| | - Lutz Fleischhauer
- Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Ludwig-Maximilians-University, 80336 Munich, Germany; (P.L.); (L.F.); (C.P.); (Z.F.); (M.M.S.); (W.C.P.); (P.A.)
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, 80533 Munich, Germany;
- Center for NanoScience, Ludwig-Maximilians University Munich, 80799 Munich, Germany
| | - Claudia Nicolae
- Department of Molecular Medicine, Max Planck Institute for Biochemistry, 82152 Martinsried, Germany;
| | - Carina Prein
- Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Ludwig-Maximilians-University, 80336 Munich, Germany; (P.L.); (L.F.); (C.P.); (Z.F.); (M.M.S.); (W.C.P.); (P.A.)
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, 80533 Munich, Germany;
| | - Zsuzsanna Farkas
- Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Ludwig-Maximilians-University, 80336 Munich, Germany; (P.L.); (L.F.); (C.P.); (Z.F.); (M.M.S.); (W.C.P.); (P.A.)
| | - Maximilian Michael Saller
- Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Ludwig-Maximilians-University, 80336 Munich, Germany; (P.L.); (L.F.); (C.P.); (Z.F.); (M.M.S.); (W.C.P.); (P.A.)
| | - Wolf Christian Prall
- Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Ludwig-Maximilians-University, 80336 Munich, Germany; (P.L.); (L.F.); (C.P.); (Z.F.); (M.M.S.); (W.C.P.); (P.A.)
| | - Raimund Wagener
- Center for Molecular Medicine, University of Cologne, 50923 Cologne, Germany;
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany;
| | - Juliane Heilig
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany;
- Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital of Cologne, 50931 Cologne, Germany;
| | - Anja Niehoff
- Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital of Cologne, 50931 Cologne, Germany;
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, 50933 Cologne, Germany
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, 80533 Munich, Germany;
- Center for NanoScience, Ludwig-Maximilians University Munich, 80799 Munich, Germany
| | - Paolo Alberton
- Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Ludwig-Maximilians-University, 80336 Munich, Germany; (P.L.); (L.F.); (C.P.); (Z.F.); (M.M.S.); (W.C.P.); (P.A.)
| | - Attila Aszodi
- Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Ludwig-Maximilians-University, 80336 Munich, Germany; (P.L.); (L.F.); (C.P.); (Z.F.); (M.M.S.); (W.C.P.); (P.A.)
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, 80533 Munich, Germany;
- Correspondence: ; Tel.: +49-89-4400-55481
| |
Collapse
|