1
|
Chen CP, Chen CY, Wu FT, Wu PS, Pan YT, Lee CC, Chen WL, Wang W. Prenatal diagnosis of a 14-Mb 11p11.2-p13 deletion by chromosome microarray analysis in a pregnancy with fetal recombinant chromosome 11 syndrome of rec(11)del(11)(p11.2p13)ins(11)(q21p11.2p13) and maternal intrachromosomal insertion of ins(11)(q21p11.2p13). Taiwan J Obstet Gynecol 2024; 63:913-917. [PMID: 39482003 DOI: 10.1016/j.tjog.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVE We present prenatal diagnosis of a 14-Mb 11p11.2-p13 deletion by chromosome microarray analysis (CMA) in a pregnancy with fetal recombinant chromosome 11 syndrome of rec(11)del(11) (p11.2p13)ins(11) (q21p11.2p13) and maternal intrachromosomal insertion of ins(11) (q21p11.2p13). CASE REPORT A 25-year-old, primigravid woman underwent amniocentesis at 17 weeks of gestation because of a family history of psychiatric disorders in her two brothers and one maternal uncle. Array comparative genomic hybridization (aCGH) analysis of amniocentesis revealed a 14-Mb 11p13p11.2 deletion. The pregnancy was terminated at 19 weeks of gestation, and a 252-g fetus was delivered. Cytogenetic analysis of the parental bloods and cord blood revealed a karyotype of 46,XX,ins(11) (q21p11.2p13) in the mother, 46,XY in the father and 46,XY,rec(11)del(11) (p11.2p13)ins(11) (q21p11.2p13) in the fetus. aCGH analysis on the DNA extracted from cord blood revealed the result of arr 11p13q11.2 (32,697,424-46,712,173) × 1.0 [GRCh37] with a 14-Mb deletion of 11p13-p11.2 encompassing 54 OMIM genes including PHF21A, ALX4, EXT2 and SLC1A2. Polymorphic DNA marker analysis showed a maternal origin of the 11p deletion. The present case had an 11p13-p11.2 deletion encompassing 11p12-p11.3 which is associated with Potocki-Shaffer syndrome (PSS) or chromosome 11p11.2 deletion syndrome. CONCLUSION CMA is useful for prenatal detection of fetal genomic imbalance in case of familial intrachromosomal insertion.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical & Health Science, Asia University, Taichung, Taiwan.
| | - Chen-Yu Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Fang-Tzu Wu
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | | | - Yen-Ting Pan
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chen-Chi Lee
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wen-Lin Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wayseen Wang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
2
|
Fujii Y, Uno A, Takitani S, Iwasaki R, Yoshikawa R, Okajima M, Makino Y, Ito N, Mori T. A frameshift variant in the EXT1 gene in a feline leukemia virus-negative cat with osteochondromatosis. Anim Genet 2022; 53:696-699. [PMID: 35719100 DOI: 10.1111/age.13232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/15/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022]
Abstract
Osteochondromatosis is a benign proliferative disorder characterized by cartilage-capped bony protuberances. In humans and most mammals, variants in the EXT1 or EXT2 gene are strongly correlated with the etiology of osteochondromatosis. However, in cats, osteochondromatosis has only been associated with feline leukemia virus infection. In this study, to explore other factors involved in the etiology of feline osteochondromatosis, we examined the EXT1 and EXT2 genes in a feline leukemia virus-negative cat with osteochondromatosis. Genetic analysis revealed a heterozygous single base pair duplication in exon 6 of the EXT1 gene (XM_023248762.2:c.1468dupC), leading to a premature stop codon in the EXT1 protein. Notably, this frameshift variant is recognized as one of the most common pathogenic variants in human osteochondromatosis. Our data suggest for the first time that genetic variants can have etiologic roles in osteochondromatosis in cats, as in humans and other animals.
Collapse
Affiliation(s)
- Yuji Fujii
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Gifu, Japan.,Animal Medical Center, Gifu University, Gifu, Gifu, Japan
| | - Akihiro Uno
- Animal Medical Center, Gifu University, Gifu, Gifu, Japan
| | | | - Ryota Iwasaki
- Animal Medical Center, Gifu University, Gifu, Gifu, Japan
| | | | - Misuzu Okajima
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Gifu, Japan
| | | | - Naoto Ito
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Gifu, Japan
| | - Takashi Mori
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Gifu, Japan.,Animal Medical Center, Gifu University, Gifu, Gifu, Japan
| |
Collapse
|
3
|
Wilson LFL, Dendooven T, Hardwick SW, Echevarría-Poza A, Tryfona T, Krogh KBRM, Chirgadze DY, Luisi BF, Logan DT, Mani K, Dupree P. The structure of EXTL3 helps to explain the different roles of bi-domain exostosins in heparan sulfate synthesis. Nat Commun 2022; 13:3314. [PMID: 35676258 PMCID: PMC9178029 DOI: 10.1038/s41467-022-31048-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/31/2022] [Indexed: 11/08/2022] Open
Abstract
Heparan sulfate is a highly modified O-linked glycan that performs diverse physiological roles in animal tissues. Though quickly modified, it is initially synthesised as a polysaccharide of alternating β-D-glucuronosyl and N-acetyl-α-D-glucosaminyl residues by exostosins. These enzymes generally possess two glycosyltransferase domains (GT47 and GT64)-each thought to add one type of monosaccharide unit to the backbone. Although previous structures of murine exostosin-like 2 (EXTL2) provide insight into the GT64 domain, the rest of the bi-domain architecture is yet to be characterised; hence, how the two domains co-operate is unknown. Here, we report the structure of human exostosin-like 3 (EXTL3) in apo and UDP-bound forms. We explain the ineffectiveness of EXTL3's GT47 domain to transfer β-D-glucuronosyl units, and we observe that, in general, the bi-domain architecture would preclude a processive mechanism of backbone extension. We therefore propose that heparan sulfate backbone polymerisation occurs by a simple dissociative mechanism.
Collapse
Affiliation(s)
- L F L Wilson
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22903, USA
| | - T Dendooven
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - S W Hardwick
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - A Echevarría-Poza
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - T Tryfona
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - K B R M Krogh
- Department of Protein Biochemistry and Stability, Novozymes A/S, Krogshøjvej 36, 2880, Bagsværd, Denmark
| | - D Y Chirgadze
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - B F Luisi
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - D T Logan
- Biochemistry and Structural Biology, Centre for Molecular Protein Science, Department of Chemistry, Lund University, SE-221 00, Lund, Sweden
| | - K Mani
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, SE-221 00, Lund, Sweden.
| | - P Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.
| |
Collapse
|
4
|
Bukowska-Olech E, Trzebiatowska W, Czech W, Drzymała O, Frąk P, Klarowski F, Kłusek P, Szwajkowska A, Jamsheer A. Hereditary Multiple Exostoses-A Review of the Molecular Background, Diagnostics, and Potential Therapeutic Strategies. Front Genet 2021; 12:759129. [PMID: 34956317 PMCID: PMC8704583 DOI: 10.3389/fgene.2021.759129] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Hereditary multiple exostoses (HMEs) syndrome, also known as multiple osteochondromas, represents a rare and severe human skeletal disorder. The disease is characterized by multiple benign cartilage-capped bony outgrowths, termed exostoses or osteochondromas, that locate most commonly in the juxta-epiphyseal portions of long bones. Affected individuals usually complain of persistent pain caused by the pressure on neighboring tissues, disturbance of blood circulation, or rarely by spinal cord compression. However, the most severe complication of this condition is malignant transformation into chondrosarcoma, occurring in up to 3.9% of HMEs patients. The disease results mainly from heterozygous loss-of-function alterations in the EXT1 or EXT2 genes, encoding Golgi-associated glycosyltransferases, responsible for heparan sulfate biosynthesis. Some of the patients with HMEs do not carry pathogenic variants in those genes, hence the presence of somatic mutations, deep intronic variants, or another genes/loci is suggested. This review presents the systematic analysis of current cellular and molecular concepts of HMEs along with clinical characteristics, clinical and molecular diagnostic methods, differential diagnosis, and potential treatment options.
Collapse
Affiliation(s)
| | | | - Wiktor Czech
- Medical Student, Poznan University of Medical Sciences, Poznan, Poland
| | - Olga Drzymała
- Medical Student, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr Frąk
- Medical Student, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Piotr Kłusek
- Medical Student, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Szwajkowska
- Medical Student, Poznan University of Medical Sciences, Poznan, Poland
| | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland.,Centers for Medical Genetics GENESIS, Poznan, Poland
| |
Collapse
|
5
|
Yang M, Xie H, Xu B, Xiang Q, Wang H, Hu T, Liu S. Identification of a novel EXT2 frameshift mutation in a family with hereditary multiple exostoses by whole-exome sequencing. J Clin Lab Anal 2021; 35:e23968. [PMID: 34403521 PMCID: PMC8418499 DOI: 10.1002/jcla.23968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hereditary multiple exostoses (HME), also referred to as multiple osteochondromas, is an autosomal dominant skeletal disease characterized by the development of multiple overgrown benign bony tumors capped by cartilage and is associated with bone deformity, joint limitation, and short stature. Mutations in exostosin glycosyltransferase (EXT)1 and EXT2 genes, which are located on chromosomes 8q24.1 and 11p13, contribute to the pathogenesis of HME. METHODS In the present study, a genetic analysis of a four-generation Chinese family with HME was conducted using whole-exome sequencing (WES), followed by validation using Sanger sequencing. RESULTS A novel heterozygous frameshift mutation in exon 5 of EXT2 (c.944dupT, p.Leu316fs) was identified in all affected individuals but was not detected in any unaffected individuals. This mutation results in a frameshift that introduces a premature termination codon at position 318 (p.Leu316fs) with the ability to produce a truncated EXT2 protein that lacks the last 433 amino acids at its C-terminal to indicate a defective exostosin domain and the absence of the glycosyltransferase family 64 domain, or to lead to the degradation of mRNAs by nonsense-mediated mRNA decay, which is critical for the function of EXT2. CONCLUSION Our results indicate that WES is effective in extending the EXT mutational spectra and is advantageous for genetic counseling and the subsequent prenatal diagnosis.
Collapse
Affiliation(s)
- Mei Yang
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Hanbing Xie
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Bocheng Xu
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Qinqin Xiang
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - He Wang
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Ting Hu
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Shanling Liu
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Mohaidat Z, Bodoor K, Almomani R, Alorjani M, Awwad MA, Bany-Khalaf A, Al-Batayneh K. Hereditary multiple osteochondromas in Jordanian patients: Mutational and immunohistochemical analysis of EXT1 and EXT2 genes. Oncol Lett 2020; 21:151. [PMID: 33552269 PMCID: PMC7798038 DOI: 10.3892/ol.2020.12412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/26/2020] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the molecular characteristics of hereditary multiple osteochondromas (HMO) in a subset of Jordanian patients with a focus on the genetic variants of exostosin (EXT1)/(EXT2) and their protein expression. Patients with HMO and their family members were included. Recorded clinical characteristics included age, sex, tumors number and location, joint deformities and associated functional limitations. Mutational analysis of EXT1 and EXT2 exonic regions was performed. Immunohistochemical staining for EXT1 and EXT2 was performed manually using two different commercially available rabbit anti-human EXT1 and EXT2 antibodies. A total of 16 patients with HMO from nine unrelated families were included, with a mean age of 13.9 years. A total of 75% (12/16) of the patients were male and (69%) (11/16) had a mild disease (class I). EXT mutation analysis revealed only EXT1 gene mutations in 13 patients. Seven variants were detected, among which three were novel: c.1019G>A, p. (Arg340His), c.962+1G>A and c.1469del, p. (Leu490Argfs*9). Of the 16 patients, 3 did not harbor any mutations for either EXT1 or EXT2. Immunohistochemical examination revealed decreased expression of EXT1 protein in all patients with EXT1 mutation. Surprisingly, EXT2 protein was not detected in these patients, although none had EXT2 mutations. The majority of Jordanian patients with HMO, who may represent an ethnic group that is infrequently investigated, were males and had a mild clinical disease course; whereas most patients with EXT1 gene mutations were not necessarily associated with a severe clinical disease course. The role of EXT2 gene remains a subject of debate, since patients with EXT1 mutations alone did not express the non-mutated EXT2 gene.
Collapse
Affiliation(s)
- Ziyad Mohaidat
- Orthopedic Division, Special Surgery Department, Faculty of Medicine, Jordan University of Science and Technology, King Abdullah University Hospital, Irbid 22110, Jordan
| | - Khaldon Bodoor
- Department of Applied Biology, Faculty of Science, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Rowida Almomani
- Department of Laboratory Medical Sciences, Faculty of Science, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mohammed Alorjani
- Department of Pathology, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mohammad-Akram Awwad
- Department of Clinical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21110, Jordan
| | - Audai Bany-Khalaf
- Orthopedic Division, Special Surgery Department, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Khalid Al-Batayneh
- Department of Biology, Faculty of Sciences, Yarmouk University, Irbid 21110, Jordan
| |
Collapse
|
7
|
Wang Y, Zhong L, Xu Y, Ding L, Ji Y, Schutz S, Férec C, Cooper DN, Xu C, Chen JM, Luo Y. EXT1 and EXT2 Variants in 22 Chinese Families With Multiple Osteochondromas: Seven New Variants and Potentiation of Preimplantation Genetic Testing and Prenatal Diagnosis. Front Genet 2020; 11:607838. [PMID: 33414810 PMCID: PMC7783290 DOI: 10.3389/fgene.2020.607838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
Multiple osteochondromas (MO), the most common type of benign bone tumor, is an autosomal dominant skeletal disorder characterized by multiple cartilage-capped bony protuberances. In most cases, EXT1 and EXT2, which encode glycosyltransferases involved in the biosynthesis of heparan sulfate, are the genes responsible. Here we describe the clinical, phenotypic and genetic characterization of MO in 22 unrelated Chinese families involving a total of 60 patients. Variant detection was performed by means of a battery of different techniques including Sanger sequencing and whole-exome sequencing (WES). The pathogenicity of the missense and splicing variants was explored by means of in silico prediction algorithms. Sixteen unique pathogenic variants, including 10 in the EXT1 gene and 6 in the EXT2 gene, were identified in 18 (82%) of the 22 families. Fourteen (88%) of the 16 variants were predicted to give rise to truncated proteins whereas the remaining two were missense. Seven variants were newly described here, further expanding the spectrum of MO-causing variants in the EXT1 and EXT2 genes. More importantly, the identification of causative variants allowed us to provide genetic counseling to 8 MO patients in terms either of preimplantation genetic testing (PGT) or prenatal diagnosis, thereby preventing the reoccurrence of MO in the corresponding families. This study is the first to report the successful implementation of PGT in MO families and describes the largest number of subjects undergoing prenatal diagnosis to date.
Collapse
Affiliation(s)
- Ye Wang
- Fetal Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liangying Zhong
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Xu
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Lei Ding
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuanjun Ji
- Fetal Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sacha Schutz
- Inserm, Univ Brest, EFS, UMR 1078, GGB, Brest, France
- CHRU Brest, Brest, France
| | - Claude Férec
- Inserm, Univ Brest, EFS, UMR 1078, GGB, Brest, France
- CHRU Brest, Brest, France
| | - David N. Cooper
- School of Medicine, Institute of Medical Genetics, Cardiff University, Cardiff, United Kingdom
| | - Caixia Xu
- Research Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian-Min Chen
- Inserm, Univ Brest, EFS, UMR 1078, GGB, Brest, France
| | - Yanmin Luo
- Fetal Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|