1
|
Ye Q, Liu FY, Xia XJ, Chen XY, Zou L, Wu HM, Li DD, Xia CN, Huang T, Cui Y, Zou Y. Whole exome sequencing identifies a novel mutation in Annexin A4 that is associated with recurrent spontaneous abortion. Front Med (Lausanne) 2024; 11:1462649. [PMID: 39399103 PMCID: PMC11466819 DOI: 10.3389/fmed.2024.1462649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024] Open
Abstract
Background Recurrent spontaneous abortion (RSA) is a multifactorial disease, the exact causes of which are still unknown. Environmental, maternal, and genetic factors have been shown to contribute to this condition. The aim of this study was to investigate the presence of mutations in the ANXA4 gene in patients with RSA. Methods Genomic DNA was extracted from 325 patients with RSA and 941 control women with a normal reproductive history for whole-exome sequencing (WES). The detected variants were annotated and filtered, and the pathogenicity of the variants was predicted through the SIFT online tool, functional enrichment analyses, Sanger sequencing validation, prediction of changes in protein structure, and evolutionary conservation analysis. Furthermore, plasmid construction, Western blotting, RT-qPCR, and cell migration, invasion and adhesion assays were used to detect the effects of ANXA4 mutations on protein function. Results An ANXA4 mutation (p.G8D) in 1 of the 325 samples from patients with RSA (RSA-219) was identified through WES. This mutation was not detected in 941 controls or included in public databases. Evolutionary conservation analysis revealed that the amino acid residue affected by the mutation (p.G8D) was highly conserved among 13 vertebrate species, and the SIFT program and structural modeling analysis predicted that this mutation was harmful. Furthermore, functional assays revealed that this mutation could inhibit cell migration, invasion and adhesion. Conclusion Our study suggests that an unreported novel ANXA4 mutation (p.G8D) plays an important role in the pathogenesis of RSA and may contribute to the genetic diagnosis of RSA.
Collapse
Affiliation(s)
- Qian Ye
- Department of Traditional Chinese Medicine, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Key Research Unit of Female Reproduction with Integrated Chinese and Western Medicine of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Fa-Ying Liu
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Key Research Unit of Female Reproduction with Integrated Chinese and Western Medicine of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Central Laboratory, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Xiao-Jian Xia
- Department of Traditional Chinese Medicine, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Key Research Unit of Female Reproduction with Integrated Chinese and Western Medicine of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Xiao-Yong Chen
- Department of Traditional Chinese Medicine, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Key Research Unit of Female Reproduction with Integrated Chinese and Western Medicine of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Li Zou
- Quality Control Office, Ganzhou People's Hospital, Ganzhou, China
| | - Hui-Min Wu
- Graduate School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Dan-Dan Li
- Graduate School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Chen-Nian Xia
- Graduate School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ting Huang
- Graduate School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ying Cui
- Department of Traditional Chinese Medicine, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Key Research Unit of Female Reproduction with Integrated Chinese and Western Medicine of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Yang Zou
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Key Research Unit of Female Reproduction with Integrated Chinese and Western Medicine of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- Central Laboratory, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| |
Collapse
|
2
|
Chen R, Yang H, Dai J, Zhang M, Lu G, Zhang M, Yu H, Zheng M, He Q. The biological functions of maternal-derived extracellular vesicles during pregnancy and lactation and its impact on offspring health. Clin Nutr 2023; 42:493-504. [PMID: 36857958 DOI: 10.1016/j.clnu.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
During pregnancy and lactation, mothers provide not only nutrients, but also many bioactive components for their offspring through placenta and breast milk, which are essential for offspring development. Extracellular vesicles (EVs) are nanovesicles containing a variety of biologically active molecules and participate in the intercellular communication. In the past decade, an increasing number of studies have reported that maternal-derived EVs play a crucial role in offspring growth, development, and immune system establishment. Hereby, we summarized the characteristics of EVs; biological functions of maternal-derived EVs during pregnancy, including implantation, decidualization, placentation, embryo development and birth of offspring; biological function of breast milk-derived EVs (BMEs) on infant oral and intestinal diseases, immune system, neurodevelopment, and metabolism. In summary, emerging studies have revealed that maternal-derived EVs play a pivotal role in offspring health. As such, maternal-derived EVs may be used as promising biomarkers in offspring disease diagnosis and treatment. However, existing research on maternal-derived EVs and offspring health is largely limited to animal and cellular studies. Evidence from human studies is needed.
Collapse
Affiliation(s)
- Rui Chen
- School of Public Health, Wuhan University, Wuhan, China
| | | | - Jie Dai
- School of Public Health, Wuhan University, Wuhan, China
| | - Minzhe Zhang
- School of Public Health, Wuhan University, Wuhan, China
| | - Gaolei Lu
- School of Public Health, Wuhan University, Wuhan, China
| | - Minjie Zhang
- School of Public Health, Wuhan University, Wuhan, China
| | - Hongjie Yu
- School of Public Health, Wuhan University, Wuhan, China
| | - Miaobing Zheng
- School of Nutrition and Exercise, Deakin University, Melbourne, Australia
| | - Qiqiang He
- School of Public Health, Wuhan University, Wuhan, China; Wuhan University Shenzhen Research Institute, Shenzhen, China; Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Designing Effective Multi-Target Drugs and Identifying Biomarkers in Recurrent Pregnancy Loss (RPL) Using In Vivo, In Vitro, and In Silico Approaches. Biomedicines 2023; 11:biomedicines11030879. [PMID: 36979858 PMCID: PMC10045586 DOI: 10.3390/biomedicines11030879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
Recurrent pregnancy loss (RPL) occurs in approximately 5% of women. Despite an abundance of evidence, the molecular mechanism of RPL’s pathology remains unclear. Here, we report the protective role of polo-like kinase 1 (PLK1) during RPL. We aimed to construct an RPL network utilizing GEO datasets and identified hub high-traffic genes. We also investigated whether the expressions of PLK1 were altered in the chorionic villi collected from women with RPL compared to those from healthy early pregnant women. Gene expression differences were evaluated using both pathway and gene ontology (GO) analyses. The identified genes were validated using in vivo and in vitro models. Mice with PLK1-overexpression and PLK1-knockdown in vitro models were produced by transfecting certain plasmids and si-RNA, respectively. The apoptosis in the chorionic villi, mitochondrial function, and NF-κB signaling activity was evaluated. To suppress the activation of PLK1, the PLK1 inhibitor BI2536 was administered. The HTR-8/SVneo and JEG-3 cell lines were chosen to establish an RPL model in vitro. The NF-κB signaling, Foxo signaling, PI3K/AKT, and endometrial cancer signaling pathways were identified via the RPL regulatory network. The following genes were identified: PLK1 as hub high-traffic gene and MMP2, MMP9, BAX, MFN1, MFN2, FOXO1, OPA1, COX15, BCL2, DRP1, FIS1, TRAF2, and TOP2A. Clinical samples were examined, and the results demonstrated that RPL patients had tissues with decreased PLK1 expression in comparison to women with normal pregnancies (p < 0.01). In vitro, PLK1 knockdown induced the NF-κB signaling pathway and apoptosis activation while decreasing cell invasion, migration, and proliferation (p < 0.05). Furthermore, the in vivo model proved that cell mitochondrial function and chorionic villi development are both hampered by PLK1 suppression. Our findings revealed that the PLK1/TRAF2/NF-κB axis plays a crucial role in RPL-induced chorionic villi dysfunction by regulating mitochondrial dynamics and apoptosis and might be a potential therapeutic target in the clinic.
Collapse
|
4
|
Zhuang J, Luo Q, Xie M, Chen Y, Jiang Y, Zeng S, Wang Y, Xie Y, Chen C. Etiological identification of recurrent male fatality due to a novel NSDHL gene mutation using trio whole-exome sequencing: A rare case report and literature review. Mol Genet Genomic Med 2023; 11:e2121. [PMID: 36504312 PMCID: PMC10009909 DOI: 10.1002/mgg3.2121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Congenital hemidysplasia with ichthyosiform nevus and limb defects (CHILD) syndrome is a rare X-linked dominant, lethal male disorder caused by mutations to the NSDHL (NAD(P)H steroid dehydrogenase-like protein) gene. It primarily exhibits strictly unilateral congenital hemidysplasia with ichthyosiform erythroderma and ipsilateral limb defects in female individuals. METHODS A Chinese couple suffering from recurrent spontaneous abortion in male fetuses was enrolled in this study. Chromosomal microarray analysis and whole-exome sequencing were performed for genetic etiological diagnosis. RESULTS A 33-year-old pregnant woman with recurrent spontaneous abortion was experiencing her third pregnancy with a male embryo. In this pregnancy, a miscarriage occurred at a gestational age of 10+6 weeks with no copy number variants. However, a novel mutation c.790-6C>T in the NSDHL gene was observed in the fetus through whole-exome sequencing (WES). Parental verification indicated that the NSDHL gene variant was inherited from the mother. Additionally, the variant in the NSDHL gene was absent in her subsequent pregnancy with a female fetus. CONCLUSION In this study, we detected c.790-6C>T, a novel variant in the NSDHL gene that results in recurrent miscarriage in males. Our study may broaden the scope of research on the NSDHL gene in CHILD syndrome and strengthens the application value of WES for the genetic etiological identification of recurrent miscarriage.
Collapse
Affiliation(s)
- Jianlong Zhuang
- Center for Prenatal Diagnosis, Quanzhou Women's and Children's Hospital, Quanzhou, Fujian Province, China
| | - Qi Luo
- Department of Public Health for Women and Children, Quanzhou Women's and Children's Hospital, Quanzhou, Fujian, China
| | - Meihua Xie
- Prenatal Diagnosis Center, Yueyang Central Hospital, Yueyang, China
| | - Yu'e Chen
- Ultrasonography, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Yuying Jiang
- Center for Prenatal Diagnosis, Quanzhou Women's and Children's Hospital, Quanzhou, Fujian Province, China
| | - Shuhong Zeng
- Center for Prenatal Diagnosis, Quanzhou Women's and Children's Hospital, Quanzhou, Fujian Province, China
| | - Yuanbai Wang
- Center for Prenatal Diagnosis, Quanzhou Women's and Children's Hospital, Quanzhou, Fujian Province, China
| | - Yingjun Xie
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Chunnuan Chen
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, PR China
| |
Collapse
|
5
|
Cao C, Bai S, Zhang J, Sun X, Meng A, Chen H. Understanding recurrent pregnancy loss: recent advances on its etiology, clinical diagnosis, and management. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:570-589. [PMID: 37724255 PMCID: PMC10471095 DOI: 10.1515/mr-2022-0030] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/14/2022] [Indexed: 09/20/2023]
Abstract
Recurrent pregnancy loss (RPL) has become an important reproductive health issue worldwide. RPL affects about 2%-3% of reproductive-aged women, and makes serious threats to women's physical and mental health. However, the etiology of approximately 50% of RPL cases remains unknown (unexplained RPL), which poses a big challenge for clinical management of these patients. RPL has been widely regarded as a complex disease where its etiology has been attributed to numerous factors. Heretofore, various risk factors for RPL have been identified, such as maternal ages, genetic factors, anatomical structural abnormalities, endocrine dysfunction, prethrombotic state, immunological factors, and infection. More importantly, development and applications of next generation sequencing technology have significantly expanded opportunities to discover chromosomal aberrations and single gene variants responsible for RPL, which provides new insight into its pathogenic mechanisms. Furthermore, based upon patients' diagnostic evaluation and etiologic diagnosis, specific therapeutic recommendations have been established. This review will highlight current understanding and recent advances on RPL, with a special focus on the immunological and genetic etiologies, clinical diagnosis and therapeutic management.
Collapse
Affiliation(s)
- Chunwei Cao
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangdong Province, China
- Guangzhou laboratory, Guangzhou, Guangdong Province, China
- Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Shiyu Bai
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jing Zhang
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangdong Province, China
- Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Xiaoyue Sun
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangdong Province, China
- Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Anming Meng
- Guangzhou laboratory, Guangzhou, Guangdong Province, China
| | - Hui Chen
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
6
|
Zhuang J, Wang J, Luo Q, Zeng S, Chen Y, Jiang Y, Chen X, Wang Y, Xie Y, Wang G, Chen C. Case Report: Novel compound heterozygous variants in CHRNA1 gene leading to lethal multiple pterygium syndrome: A case report. Front Genet 2022; 13:964098. [PMID: 36092864 PMCID: PMC9459375 DOI: 10.3389/fgene.2022.964098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/02/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Lethal multiple pterygium syndrome (LMPS) is a rare autosomal recessive inherited disorder typically characterized by intrauterine growth retardation, multiple pterygia, and flexion contractures. Case presentation: We herein report a Chinese case with a history of three adverse pregnancies demonstrating the same ultrasonic phenotypes, including increased nuchal translucency, edema, fetal neck cystoma, reduced movement, joint contractures, and other congenital features. Whole-exome sequencing (WES) revealed novel compound heterozygous variants in the CHRNA1 gene NM_000079.4: c.[1128delG (p.Pro377LeufsTer10)]; [505T>C (p.Trp169Arg)] in the recruited individual, and subsequent familial segregation showed that both parents transmitted their respective mutation. Conclusion: For the first time, we identified an association between the CHRNA1 gene and the recurrent lethal multiple pterygium syndrome (LMPS) in a Chinese family. This finding may also enrich the mutation spectrum of the CHRNA1 gene and promote the applications of WES technology in etiologic diagnosis of ultrasound anomalies in prenatal examination.
Collapse
Affiliation(s)
- Jianlong Zhuang
- Prenatal Diagnosis Center, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Junyu Wang
- Prenatal Diagnosis Center, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Qi Luo
- Department of Public Health for Women and Children, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Shuhong Zeng
- Prenatal Diagnosis Center, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Yu’e Chen
- Ultrasonography, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Yuying Jiang
- Prenatal Diagnosis Center, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Xinying Chen
- Prenatal Diagnosis Center, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Yuanbai Wang
- Prenatal Diagnosis Center, Quanzhou Women’s and Children’s Hospital, Quanzhou, China
| | - Yingjun Xie
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Chunnuan Chen, ; Gaoxiong Wang, ; Yingjun Xie,
| | - Gaoxiong Wang
- Quanzhou Women’s and Children’s Hospital, Quanzhou, China
- *Correspondence: Chunnuan Chen, ; Gaoxiong Wang, ; Yingjun Xie,
| | - Chunnuan Chen
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- *Correspondence: Chunnuan Chen, ; Gaoxiong Wang, ; Yingjun Xie,
| |
Collapse
|
7
|
Xiang H, Wang C, Pan H, Hu Q, Wang R, Xu Z, Li T, Su Y, Ma X, Cao Y, Wang B. Exome-Sequencing Identifies Novel Genes Associated with Recurrent Pregnancy Loss in a Chinese Cohort. Front Genet 2021; 12:746082. [PMID: 34925444 PMCID: PMC8674582 DOI: 10.3389/fgene.2021.746082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Recurrent pregnancy loss (RPL) is a common reproductive problem affecting around 5% of couples worldwide. At present, about half of RPL cases remained unexplained. Previous studies have suggested an important role for genetic determinants in the etiology of RPL. Here, we performed whole-exome sequencing (WES) analysis on 100 unrelated Han Chinese women with a history of two or more spontaneous abortions. We identified 6736 rare deleterious nonsynonymous variants across all patients. To focus on possible candidate genes, we generated a list of 95 highly relevant genes that were functionally associated with miscarriage according to human and mouse model studies, and found 35 heterozygous variants of 28 RPL-associated genes in 32 patients. Four genes (FOXA2, FGA, F13A1, and KHDC3L) were identified as being strong candidates. The FOXA2 nonsense variant was for the first time reported here in women with RPL. FOXA2 knockdown in HEK-293T cells significantly diminished the mRNA and protein expression levels of LIF, a pivotal factor for maternal receptivity and blastocyst implantation. The other genes, with 29 variants, were involved in angiogenesis, the immune response and inflammation, cell growth and proliferation, which are functionally important processes for implantation and pregnancy. Our study identified several potential causal genetic variants in women with RPL by WES, highlighting the important role of genes controlling coagulation, confirming the pathogenic role of KHDC3L and identifying FOXA2 as a newly identified causal gene in women with RPL.
Collapse
Affiliation(s)
- Huifen Xiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
| | - Chunyan Wang
- Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Center for Genetics, National Research Institute for Family Planning, Beijing, China
| | - Hong Pan
- Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Center for Genetics, National Research Institute for Family Planning, Beijing, China
| | - Qian Hu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
| | - Ruyi Wang
- Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Center for Genetics, National Research Institute for Family Planning, Beijing, China
| | - Zuying Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
| | - Tengyan Li
- Center for Genetics, National Research Institute for Family Planning, Beijing, China
| | - Yezhou Su
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
| | - Xu Ma
- Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Center for Genetics, National Research Institute for Family Planning, Beijing, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
| | - Binbin Wang
- Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Center for Genetics, National Research Institute for Family Planning, Beijing, China
| |
Collapse
|
8
|
Identification of candidate genes on the basis of SNP by time-lagged heat stress interactions for milk production traits in German Holstein cattle. PLoS One 2021; 16:e0258216. [PMID: 34648531 PMCID: PMC8516222 DOI: 10.1371/journal.pone.0258216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/21/2021] [Indexed: 01/22/2023] Open
Abstract
The aim of this study was to estimate genotype by time-lagged heat stress (HS) variance components as well as main and interaction SNP-marker effects for maternal HS during the last eight weeks of cow pregnancy, considering milk production traits recorded in the offspring generation. The HS indicator was the temperature humidity index (THI) for each week. A dummy variable with the code = 1 for the respective week for THI ≥ 60 indicated HS, otherwise, for no HS, the code = 0 was assigned. The dataset included test-day and lactation production traits from 14,188 genotyped first parity Holstein cows. After genotype quality control, 41,139 SNP markers remained for the genomic analyses. Genomic animal models without (model VC_nHS) and with in-utero HS effects (model VC_wHS) were applied to estimate variance components. Accordingly, for genome-wide associations, models GWA_nHS and GWA_wHS, respectively, were applied to estimate main and interaction SNP effects. Common genomic and residual variances for the same traits were very similar from models VC_nHS and VC_wHS. Genotype by HS interaction variances varied, depending on the week with in-utero HS. Among all traits, lactation milk yield with HS from week 5 displayed the largest proportion for interaction variances (0.07). For main effects from model GWA_wHS, 380 SNPs were suggestively associated with all production traits. For the SNP interaction effects from model GWA_wHS, we identified 31 suggestive SNPs, which were located in close distance to 62 potential candidate genes. The inferred candidate genes have various biological functions, including mechanisms of immune response, growth processes and disease resistance. Two biological processes excessively represented in the overrepresentation tests addressed lymphocyte and monocyte chemotaxis, ultimately affecting immune response. The modelling approach considering time-lagged genotype by HS interactions for production traits inferred physiological mechanisms being associated with health and immunity, enabling improvements in selection of robust animals.
Collapse
|
9
|
Zhao H, Gu W, Pan W, Zhang H, Shuai L, Diao R, Wang L. [miR-483-5p aggravates cisplatin-induced premature ovarian insufficiency in rats by targeting FKBP4]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:801-810. [PMID: 34238731 DOI: 10.12122/j.issn.1673-4254.2021.06.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To investigate the role of FKBP4 protein in cisplatin-induced premature ovarian insufficiency (POI). OBJECTIVE We performed ITRAQ assay of the ovarian tissues from 4 mice with cisplatin-induced POI and 4 control mice, and identified FKBP4 as a significantly down-regulated protein in the oocytes and granulosa cells following cisplatin treatment. TargetScan software was used for target analysis of FKBP4, and qRT-PCR and Western blotting were used to verify the expression levels of miR-483-5p and FKBP4 in the mouse models. Serum samples were collected from patients with POI and healthy women for detecting miR-483-5p level with qRT-PCR. Cell transfection and dual-luciferase assay were performed to determine the relationship between miR-483-5p and FKBP4. In primary granulosa cells and KGN cells, we examined the effect of miR-483-5p alone, miR-483-5p and cisplatin, and miR-483-5p combined with both cisplatin and FKBP4 on cell apoptosis. We also assessed ovarian function in a transgenic mouse model with ovarian miR-483-5p overexpression in comparison wigh wildtype mice using immunofluorescence assay, in situ hybridization and ELISA. OBJECTIVE Ovarian FKBP4 expression was significantly decreased in mice with cisplatin-induced POI. Analysis using TargetScan software indicated that FKBP4 was the potential target of miR-483-5p, which was highly expressed in the ovaries and serum of POI mice and in the serum of patients with POI. In vitro experiments further confirmed that FKBP4 was the target of miR-483-5p. In KGN and primary granulosa cells, FKBP4 overexpression significantly reduced cell apoptosis induced by both cisplatin and miR-483-5p overexpression (P= 0.0045 and 0.0177, respectively). In the transgenic mice with miR-483-5p overexpression in the oocytes, cisplatin induced more severe ovarian damages as compared with those in the wild-type mice. OBJECTIVE miR-483-5p/FKBP4 is a new and important pathway in cisplatin-induced POI, in which cisplatin increases ovarian miR- 483-5p expression to result in targeted downregulation of FKBP4. Up-regulation of miR-483-5p may increase ovarian sensitivity to cisplatin and cause severe ovarian dysfunction. Detection of serum miR-483-5p level may help to predict the occurrence and development of POI.
Collapse
Affiliation(s)
- H Zhao
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - W Gu
- Department of Biobank, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - W Pan
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - H Zhang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - L Shuai
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - R Diao
- Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - L Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Shenzhen Second People's Hospital, Shenzhen 518035, China
| |
Collapse
|
10
|
Yahaya TO, Liman UU, Abdullahi H, Koko YS, Ribah SS, Adamu Z, Abubakar S. Genes predisposing to syndromic and nonsyndromic infertility: a narrative review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00088-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Abstract
Background
Advanced biological techniques have helped produce more insightful findings on the genetic etiology of infertility that may lead to better management of the condition. This review provides an update on genes predisposing to syndromic and nonsyndromic infertility.
Main body
The review identified 65 genes linked with infertility and infertility-related disorders. These genes regulate fertility. However, mutational loss of the functions of the genes predisposes to infertility. Twenty-three (23) genes representing 35% were linked with syndromic infertility, while 42 genes (65%) cause nonsyndromic infertility. Of the 42 nonsyndromic genes, 26 predispose to spermatogenic failure and sperm morphological abnormalities, 11 cause ovarian failures, and 5 cause sex reversal and puberty delay. Overall, 31 genes (48%) predispose to male infertility, 15 genes (23%) cause female infertility, and 19 genes (29%) predispose to both. The common feature of male infertility was spermatogenic failure and sperm morphology abnormalities, while ovarian failure has been the most frequently reported among infertile females. The mechanisms leading to these pathologies are gene-specific, which, if targeted in the affected, may lead to improved treatment.
Conclusions
Mutational loss of the functions of some genes involved in the development and maintenance of fertility may predispose to syndromic or nonsyndromic infertility via gene-specific mechanisms. A treatment procedure that targets the affected gene(s) in individuals expressing infertility may lead to improved treatment.
Collapse
|
11
|
Rodríguez-Alonso B, Maillo V, Acuña OS, López-Úbeda R, Torrecillas A, Simintiras CA, Sturmey R, Avilés M, Lonergan P, Rizos D. Spatial and Pregnancy-Related Changes in the Protein, Amino Acid, and Carbohydrate Composition of Bovine Oviduct Fluid. Int J Mol Sci 2020; 21:E1681. [PMID: 32121434 PMCID: PMC7084926 DOI: 10.3390/ijms21051681] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Knowledge of how the biochemical composition of the bovine oviduct is altered due to the oviduct anatomy or the presence of an embryo is lacking. Thus, the aim of this study was to assess the effect of (І) oviduct anatomy and (ІІ) embryo presence on oviductal fluid (OF) protein, amino acid, and carbohydrate composition. Cross-bred beef heifers (n = 19) were synchronized and those in standing estrus were randomly allocated to a cyclic (non-bred) or pregnant (artificially inseminated) group. All heifers were slaughtered on Day 3 after estrus. The oviducts ipsilateral to the corpus luteum from each animal were isolated, straightened and cut, separating ampulla and isthmus. Each portion was flushed with 500 µl of PBS enabling recovery of the oocyte/embryo. Recovered unfertilized oocytes (cyclic group) and embryos (8-cell embryos; pregnant group) were located in the isthmus of the oviduct. Samples of flushing medium from the isthmus and ampulla were used for proteomic (n = 2 per group), amino acid (n = 5), and carbohydrate (n = 5) analysis. For proteomic analysis, total protein from cyclic and pregnant samples were labelled with different cyanine fluorescent probes and separated according to the isoelectric point using immobilized pH gradient strips (pH 3-10, 17 cm, Protean® IEF cell system, Bio Rad). Second dimension was performed in a polyacrylamide gel (12%) in the presence of SDS using a Protean II XL system (Bio Rad). Images were obtained with a Typhoon 9410 scanner and analyzed with Progenesis SameSpots software v 4.0. Amino acid content in the OF was determined by high performance liquid chromatography (HPLC). Glucose, lactate, and pyruvate were quantified using microfluorometric enzyme-linked assays. For the proteomic assessment, the results of the image analysis were compared by ANOVA. For both amino acid and carbohydrate analyses, statistical analysis was carried out by 2-way ANOVA with the Holm-Sidak nonparametric post hoc analysis. On Day 3 post-estrus, OF composition varied based on (І) anatomical region, where isthmic metabolites were present in lower (i.e., lactate, glycine, and alanine) or higher (i.e., arginine) concentrations compared to the ampulla; and (ІІ) embryo presence, which was correlated with greater, arginine, phosphoglycerate kinase 1, serum albumin, α-1-antiproteinase and IGL@ protein concentrations. In conclusion, data indicate that the composition of bovine OF is anatomically dynamic and influenced by the presence of an early embryo.
Collapse
Affiliation(s)
- Beatriz Rodríguez-Alonso
- Department of Animal Reproduction, National Institute for Agricultural and Food Research and Technology (INIA), Ctra. de la Coruña KM 5.9, 28040 Madrid, Spain; (B.R.-A.); (V.M.)
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; (C.A.S.); (P.L.)
| | - Veronica Maillo
- Department of Animal Reproduction, National Institute for Agricultural and Food Research and Technology (INIA), Ctra. de la Coruña KM 5.9, 28040 Madrid, Spain; (B.R.-A.); (V.M.)
| | - Omar Salvador Acuña
- Department of Cell Biology and Histology, Faculty of Medicine, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), University of Murcia, 30100 Murcia, Spain; (O.S.A.); (R.L.-Ú.); (M.A.)
- Faculty of Veterinary and Zootechnics, Autonomous University of Sinaloa, Culiacan 80246, Mexico
- Department of Research, Animal Reproduction Biotechnology (ARBiotech), Culiacan 80015, Mexico
| | - Rebeca López-Úbeda
- Department of Cell Biology and Histology, Faculty of Medicine, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), University of Murcia, 30100 Murcia, Spain; (O.S.A.); (R.L.-Ú.); (M.A.)
| | | | - Constantine A. Simintiras
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; (C.A.S.); (P.L.)
- Center for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU3 2JZ, UK;
| | - Roger Sturmey
- Center for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU3 2JZ, UK;
| | - Manuel Avilés
- Department of Cell Biology and Histology, Faculty of Medicine, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), University of Murcia, 30100 Murcia, Spain; (O.S.A.); (R.L.-Ú.); (M.A.)
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; (C.A.S.); (P.L.)
| | - Dimitrios Rizos
- Department of Animal Reproduction, National Institute for Agricultural and Food Research and Technology (INIA), Ctra. de la Coruña KM 5.9, 28040 Madrid, Spain; (B.R.-A.); (V.M.)
| |
Collapse
|