1
|
Bonzano S, Dallorto E, Bovetti S, Studer M, De Marchis S. Mitochondrial regulation of adult hippocampal neurogenesis: Insights into neurological function and neurodevelopmental disorders. Neurobiol Dis 2024; 199:106604. [PMID: 39002810 DOI: 10.1016/j.nbd.2024.106604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024] Open
Abstract
Mitochondria are essential regulators of cellular energy metabolism and play a crucial role in the maintenance and function of neuronal cells. Studies in the last decade have highlighted the importance of mitochondrial dynamics and bioenergetics in adult neurogenesis, a process that significantly influences cognitive function and brain plasticity. In this review, we examine the mechanisms by which mitochondria regulate adult neurogenesis, focusing on the impact of mitochondrial function on the behavior of neural stem/progenitor cells and the maturation and plasticity of newborn neurons in the adult mouse hippocampus. In addition, we explore the link between mitochondrial dysfunction, adult hippocampal neurogenesis and genes associated with cognitive deficits in neurodevelopmental disorders. In particular, we provide insights into how alterations in the transcriptional regulator NR2F1 affect mitochondrial dynamics and may contribute to the pathophysiology of the emerging neurodevelopmental disorder Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS). Understanding how genes involved in embryonic and adult neurogenesis affect mitochondrial function in neurological diseases might open new directions for therapeutic interventions aimed at boosting mitochondrial function during postnatal life.
Collapse
Affiliation(s)
- Sara Bonzano
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy
| | - Eleonora Dallorto
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy; Institute de Biologie Valrose (iBV), Université Cote d'Azur (UCA), CNRS 7277, Inserm 1091, Avenue Valrose 28, Nice 06108, France
| | - Serena Bovetti
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy
| | - Michèle Studer
- Institute de Biologie Valrose (iBV), Université Cote d'Azur (UCA), CNRS 7277, Inserm 1091, Avenue Valrose 28, Nice 06108, France
| | - Silvia De Marchis
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy.
| |
Collapse
|
2
|
Deloulme JC, Leclercq M, Deschaux O, Flore G, Capellano L, Tocco C, Braz BY, Studer M, Lahrech H. Structural interhemispheric connectivity defects in mouse models of BBSOAS: Insights from high spatial resolution 3D white matter tractography. Neurobiol Dis 2024; 193:106455. [PMID: 38408685 DOI: 10.1016/j.nbd.2024.106455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024] Open
Abstract
White matter (WM) tract formation and axonal pathfinding are major processes in brain development allowing to establish precise connections between targeted structures. Disruptions in axon pathfinding and connectivity impairments will lead to neural circuitry abnormalities, often associated with various neurodevelopmental disorders (NDDs). Among several neuroimaging methodologies, Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging (MRI) technique that has the advantage of visualizing in 3D the WM tractography of the whole brain non-invasively. DTI is particularly valuable in unpinning structural tract connectivity defects of neural networks in NDDs. In this study, we used 3D DTI to unveil brain-specific tract defects in two mouse models lacking the Nr2f1 gene, which mutations in patients have been proven to cause an emerging NDD, called Bosch-Boonstra-Schaaf Optic Atrophy (BBSOAS). We aimed to investigate the impact of the lack of cortical Nr2f1 function on WM morphometry and tract microstructure quantifications. We found in both mutant mice partial loss of fibers and severe misrouting of the two major cortical commissural tracts, the corpus callosum, and the anterior commissure, as well as the two major hippocampal efferent tracts, the post-commissural fornix, and the ventral hippocampal commissure. DTI tract malformations were supported by 2D histology, 3D fluorescent imaging, and behavioral analyses. We propose that these interhemispheric connectivity impairments are consistent in explaining some cognitive defects described in BBSOAS patients, particularly altered information processing between the two brain hemispheres. Finally, our results highlight 3DDTI as a relevant neuroimaging modality that can provide appropriate morphometric biomarkers for further diagnosis of BBSOAS patients.
Collapse
Affiliation(s)
| | | | - Olivier Deschaux
- University Côte d'Azur (UCA), CNRS, Inserm, Institute of Biology Valrose (iBV), Nice, France
| | - Gemma Flore
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR, Napoli, Italy
| | - Laetitia Capellano
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences, 38000 Grenoble, France
| | - Chiara Tocco
- University Côte d'Azur (UCA), CNRS, Inserm, Institute of Biology Valrose (iBV), Nice, France
| | - Barbara Yael Braz
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences, 38000 Grenoble, France
| | - Michèle Studer
- University Côte d'Azur (UCA), CNRS, Inserm, Institute of Biology Valrose (iBV), Nice, France.
| | | |
Collapse
|
3
|
Wang N, Wan R, Tang K. Transcriptional regulation in the development and dysfunction of neocortical projection neurons. Neural Regen Res 2024; 19:246-254. [PMID: 37488873 PMCID: PMC10503610 DOI: 10.4103/1673-5374.379039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/10/2023] [Accepted: 05/17/2023] [Indexed: 07/26/2023] Open
Abstract
Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas, and between the neocortex and other regions of the brain and spinal cord. Appropriate development of cortical projection neurons is regulated by certain essential events such as neural fate determination, proliferation, specification, differentiation, migration, survival, axonogenesis, and synaptogenesis. These processes are precisely regulated in a tempo-spatial manner by intrinsic factors, extrinsic signals, and neural activities. The generation of correct subtypes and precise connections of projection neurons is imperative not only to support the basic cortical functions (such as sensory information integration, motor coordination, and cognition) but also to prevent the onset and progression of neurodevelopmental disorders (such as intellectual disability, autism spectrum disorders, anxiety, and depression). This review mainly focuses on the recent progress of transcriptional regulations on the development and diversity of neocortical projection neurons and the clinical relevance of the failure of transcriptional modulations.
Collapse
Affiliation(s)
- Ningxin Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| | - Rong Wan
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| | - Ke Tang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| |
Collapse
|
4
|
Bonzano S, Dallorto E, Molineris I, Michelon F, Crisci I, Gambarotta G, Neri F, Oliviero S, Beckervordersandforth R, Lie DC, Peretto P, Bovetti S, Studer M, Marchis SD. NR2F1 shapes mitochondria in the mouse brain, providing new insights into Bosch-Boonstra-Schaaf optic atrophy syndrome. Dis Model Mech 2023; 16:dmm049854. [PMID: 37260288 PMCID: PMC10309583 DOI: 10.1242/dmm.049854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 05/09/2023] [Indexed: 06/02/2023] Open
Abstract
The nuclear receptor NR2F1 acts as a strong transcriptional regulator in embryonic and postnatal neural cells. In humans, mutations in the NR2F1 gene cause Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS), a rare neurodevelopmental disorder characterized by multiple clinical features including vision impairment, intellectual disability and autistic traits. In this study, we identified, by genome-wide and in silico analyses, a set of nuclear-encoded mitochondrial genes as potential genomic targets under direct NR2F1 transcriptional control in neurons. By combining mouse genetic, neuroanatomical and imaging approaches, we demonstrated that conditional NR2F1 loss of function within the adult mouse hippocampal neurogenic niche results in a reduced mitochondrial mass associated with mitochondrial fragmentation and downregulation of key mitochondrial proteins in newborn neurons, the genesis, survival and functional integration of which are impaired. Importantly, we also found dysregulation of several nuclear-encoded mitochondrial genes and downregulation of key mitochondrial proteins in the brain of Nr2f1-heterozygous mice, a validated BBSOAS model. Our data point to an active role for NR2F1 in the mitochondrial gene expression regulatory network in neurons and support the involvement of mitochondrial dysfunction in BBSOAS pathogenesis.
Collapse
Affiliation(s)
- Sara Bonzano
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy
| | - Eleonora Dallorto
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy
| | - Ivan Molineris
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy
- IIGM Foundation-Italian Institute for Genomic Medicine, Sp142 Km 3.95, Candiolo 10060, Italy
| | - Filippo Michelon
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy
| | - Isabella Crisci
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy
| | - Giovanna Gambarotta
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy
- Department of Clinical and Biological Sciences (DSCB), Regione Gonzole 10, Orbassano 10043, Italy
| | - Francesco Neri
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy
- IIGM Foundation-Italian Institute for Genomic Medicine, Sp142 Km 3.95, Candiolo 10060, Italy
| | - Salvatore Oliviero
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy
- IIGM Foundation-Italian Institute for Genomic Medicine, Sp142 Km 3.95, Candiolo 10060, Italy
| | - Ruth Beckervordersandforth
- Institut für Biochemie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Fahrstrasse 17, Erlangen 91054, Germany
| | - Dieter Chichung Lie
- Institut für Biochemie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Fahrstrasse 17, Erlangen 91054, Germany
| | - Paolo Peretto
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy
| | - Serena Bovetti
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy
| | - Michèle Studer
- Institute de Biologie Valrose (iBV), Université Côte d'Azur (UCA), CNRS 7277, Inserm 1091, Avenue Valrose 28, Nice 06108, France
| | - Silvia De Marchis
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy
| |
Collapse
|
5
|
Desai NK, Kralik SF, Edmond JC, Shah V, Huisman TAGM, Rech M, Schaaf CP. Common Neuroimaging Findings in Bosch-Boonstra-Schaaf Optic Atrophy Syndrome. AJNR Am J Neuroradiol 2023; 44:212-217. [PMID: 36702506 PMCID: PMC9891320 DOI: 10.3174/ajnr.a7758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/06/2022] [Indexed: 01/27/2023]
Abstract
Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS) is a rare autosomal dominant syndrome secondary to mutations in NR2F1 (COUP-TF1), characterized by visual impairment secondary to optic nerve hypoplasia and/or atrophy, developmental and cognitive delay, and seizures. This study reports common neuroimaging findings in a cohort of 21 individuals with BBSOAS that collectively suggest the diagnosis. These include mesial temporal dysgyria, perisylvian dysgyria, posterior predominant white matter volume loss, callosal abnormalities, lacrimal gland abnormalities, and optic nerve volume loss.
Collapse
Affiliation(s)
- N K Desai
- From the Department of Radiology (N.K.D., S.F.K., T.A.G.M.H.), Texas Children's Hospital Baylor College of Medicine Houston, Texas
| | - S F Kralik
- From the Department of Radiology (N.K.D., S.F.K., T.A.G.M.H.), Texas Children's Hospital Baylor College of Medicine Houston, Texas
| | - J C Edmond
- Department of Ophthalmology (J.C.E.), Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - V Shah
- Department of Ophthalmology (V.S.), Cincinnati Children's Hospital, Cincinnati, Ohio
| | - T A G M Huisman
- From the Department of Radiology (N.K.D., S.F.K., T.A.G.M.H.), Texas Children's Hospital Baylor College of Medicine Houston, Texas
| | - M Rech
- Sleep and Anxiety Center of Houston (M.R.), Department of Psychology, University of Houston, Houston, Texas
| | - C P Schaaf
- Institute of Human Genetics, Heidelberg University (C.P.S.), Heidelberg, Germany
| |
Collapse
|
6
|
Wang M, Yang Y, Xu Y. Brain nuclear receptors and cardiovascular function. Cell Biosci 2023; 13:14. [PMID: 36670468 PMCID: PMC9854230 DOI: 10.1186/s13578-023-00962-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023] Open
Abstract
Brain-heart interaction has raised up increasing attentions. Nuclear receptors (NRs) are abundantly expressed in the brain, and emerging evidence indicates that a number of these brain NRs regulate multiple aspects of cardiovascular diseases (CVDs), including hypertension, heart failure, atherosclerosis, etc. In this review, we will elaborate recent findings that have established the physiological relevance of brain NRs in the context of cardiovascular function. In addition, we will discuss the currently available evidence regarding the distinct neuronal populations that respond to brain NRs in the cardiovascular control. These findings suggest connections between cardiac control and brain dynamics through NR signaling, which may lead to novel tools for the treatment of pathological changes in the CVDs.
Collapse
Affiliation(s)
- Mengjie Wang
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX USA
| | - Yongjie Yang
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX USA
| | - Yong Xu
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
7
|
Pathophysiological Heterogeneity of the BBSOA Neurodevelopmental Syndrome. Cells 2022; 11:cells11081260. [PMID: 35455940 PMCID: PMC9024734 DOI: 10.3390/cells11081260] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
The formation and maturation of the human brain is regulated by highly coordinated developmental events, such as neural cell proliferation, migration and differentiation. Any impairment of these interconnected multi-factorial processes can affect brain structure and function and lead to distinctive neurodevelopmental disorders. Here, we review the pathophysiology of the Bosch–Boonstra–Schaaf Optic Atrophy Syndrome (BBSOAS; OMIM 615722; ORPHA 401777), a recently described monogenic neurodevelopmental syndrome caused by the haploinsufficiency of NR2F1 gene, a key transcriptional regulator of brain development. Although intellectual disability, developmental delay and visual impairment are arguably the most common symptoms affecting BBSOAS patients, multiple additional features are often reported, including epilepsy, autistic traits and hypotonia. The presence of specific symptoms and their variable level of severity might depend on still poorly characterized genotype–phenotype correlations. We begin with an overview of the several mutations of NR2F1 identified to date, then further focuses on the main pathological features of BBSOAS patients, providing evidence—whenever possible—for the existing genotype–phenotype correlations. On the clinical side, we lay out an up-to-date list of clinical examinations and therapeutic interventions recommended for children with BBSOAS. On the experimental side, we describe state-of-the-art in vivo and in vitro studies aiming at deciphering the role of mouse Nr2f1, in physiological conditions and in pathological contexts, underlying the BBSOAS features. Furthermore, by modeling distinct NR2F1 genetic alterations in terms of dimer formation and nuclear receptor binding efficiencies, we attempt to estimate the total amounts of functional NR2F1 acting in developing brain cells in normal and pathological conditions. Finally, using the NR2F1 gene and BBSOAS as a paradigm of monogenic rare neurodevelopmental disorder, we aim to set the path for future explorations of causative links between impaired brain development and the appearance of symptoms in human neurological syndromes.
Collapse
|
8
|
Asano H, Moriya S, Hatakeyama T, Kobayashi S, Akimoto T, Ohta R, Kawaguchi M. Possible effects of voluntary exercise intensity on anxiety-like behavior and its underlying molecular mechanisms in the hippocampus: Results from a study in Hatano rats. Behav Brain Res 2022; 427:113854. [DOI: 10.1016/j.bbr.2022.113854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 11/02/2022]
|
9
|
Tocco C, Bertacchi M, Studer M. Structural and Functional Aspects of the Neurodevelopmental Gene NR2F1: From Animal Models to Human Pathology. Front Mol Neurosci 2022; 14:767965. [PMID: 34975398 PMCID: PMC8715095 DOI: 10.3389/fnmol.2021.767965] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/25/2021] [Indexed: 01/28/2023] Open
Abstract
The assembly and maturation of the mammalian brain result from an intricate cascade of highly coordinated developmental events, such as cell proliferation, migration, and differentiation. Any impairment of this delicate multi-factorial process can lead to complex neurodevelopmental diseases, sharing common pathogenic mechanisms and molecular pathways resulting in multiple clinical signs. A recently described monogenic neurodevelopmental syndrome named Bosch-Boonstra-Schaaf Optic Atrophy Syndrome (BBSOAS) is caused by NR2F1 haploinsufficiency. The NR2F1 gene, coding for a transcriptional regulator belonging to the steroid/thyroid hormone receptor superfamily, is known to play key roles in several brain developmental processes, from proliferation and differentiation of neural progenitors to migration and identity acquisition of neocortical neurons. In a clinical context, the disruption of these cellular processes could underlie the pathogenesis of several symptoms affecting BBSOAS patients, such as intellectual disability, visual impairment, epilepsy, and autistic traits. In this review, we will introduce NR2F1 protein structure, molecular functioning, and expression profile in the developing mouse brain. Then, we will focus on Nr2f1 several functions during cortical development, from neocortical area and cell-type specification to maturation of network activity, hippocampal development governing learning behaviors, assembly of the visual system, and finally establishment of cortico-spinal descending tracts regulating motor execution. Whenever possible, we will link experimental findings in animal or cellular models to corresponding features of the human pathology. Finally, we will highlight some of the unresolved questions on the diverse functions played by Nr2f1 during brain development, in order to propose future research directions. All in all, we believe that understanding BBSOAS mechanisms will contribute to further unveiling pathophysiological mechanisms shared by several neurodevelopmental disorders and eventually lead to effective treatments.
Collapse
Affiliation(s)
- Chiara Tocco
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | | |
Collapse
|
10
|
Jurkute N, Bertacchi M, Arno G, Tocco C, Kim US, Kruszewski AM, Avery RA, Bedoukian EC, Han J, Ahn SJ, Pontikos N, Acheson J, Davagnanam I, Bowman R, Kaliakatsos M, Gardham A, Wakeling E, Oluonye N, Reddy MA, Clark E, Rosser E, Amati-Bonneau P, Charif M, Lenaers G, Meunier I, Defoort S, Vincent-Delorme C, Robson AG, Holder GE, Jeanjean L, Martinez-Monseny A, Vidal-Santacana M, Dominici C, Gaggioli C, Giordano N, Caleo M, Liu GT, Webster AR, Studer M, Yu-Wai-Man P. Pathogenic NR2F1 variants cause a developmental ocular phenotype recapitulated in a mutant mouse model. Brain Commun 2021; 3:fcab162. [PMID: 34466801 PMCID: PMC8397830 DOI: 10.1093/braincomms/fcab162] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 11/28/2022] Open
Abstract
Pathogenic NR2F1 variants cause a rare autosomal dominant neurodevelopmental disorder referred to as the Bosch-Boonstra-Schaaf Optic Atrophy Syndrome. Although visual loss is a prominent feature seen in affected individuals, the molecular and cellular mechanisms contributing to visual impairment are still poorly characterized. We conducted a deep phenotyping study on a cohort of 22 individuals carrying pathogenic NR2F1 variants to document the neurodevelopmental and ophthalmological manifestations, in particular the structural and functional changes within the retina and the optic nerve, which have not been detailed previously. The visual impairment became apparent in early childhood with small and/or tilted hypoplastic optic nerves observed in 10 cases. High-resolution optical coherence tomography imaging confirmed significant loss of retinal ganglion cells with thinning of the ganglion cell layer, consistent with electrophysiological evidence of retinal ganglion cells dysfunction. Interestingly, for those individuals with available longitudinal ophthalmological data, there was no significant deterioration in visual function during the period of follow-up. Diffusion tensor imaging tractography studies showed defective connections and disorganization of the extracortical visual pathways. To further investigate how pathogenic NR2F1 variants impact on retinal and optic nerve development, we took advantage of an Nr2f1 mutant mouse disease model. Abnormal retinogenesis in early stages of development was observed in Nr2f1 mutant mice with decreased retinal ganglion cell density and disruption of retinal ganglion cell axonal guidance from the neural retina into the optic stalk, accounting for the development of optic nerve hypoplasia. The mutant mice showed significantly reduced visual acuity based on electrophysiological parameters with marked conduction delay and decreased amplitude of the recordings in the superficial layers of the visual cortex. The clinical observations in our study cohort, supported by the mouse data, suggest an early neurodevelopmental origin for the retinal and optic nerve head defects caused by NR2F1 pathogenic variants, resulting in congenital vision loss that seems to be non-progressive. We propose NR2F1 as a major gene that orchestrates early retinal and optic nerve head development, playing a key role in the maturation of the visual system.
Collapse
Affiliation(s)
- Neringa Jurkute
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | | | - Gavin Arno
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Chiara Tocco
- Université Côte d’Azur, CNRS, Inserm, iBV, Nice, France
| | - Ungsoo Samuel Kim
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Kim's Eye Hospital, Seoul, South Korea
| | - Adam M Kruszewski
- Department of Neurology, Hospital of the University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Robert A Avery
- Division of Ophthalmology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Ophthalmology, Perelman School of Medicine, Philadelphia, PA, USA
| | - Emma C Bedoukian
- Roberts Individualized Medical Genetics Center, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jinu Han
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jun Ahn
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Nikolas Pontikos
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - James Acheson
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
| | - Indran Davagnanam
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Department of Brain Repair & Rehabilitation, UCL Queen Square Institute of Neurology, London, UK
| | - Richard Bowman
- Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Marios Kaliakatsos
- Paediatric Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Alice Gardham
- North West Thames Regional Genetics Service, Northwick Park Hospital, Harrow, UK
| | - Emma Wakeling
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Ngozi Oluonye
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Wolfson Neurodisability Service, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Maddy Ashwin Reddy
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Elaine Clark
- Department of Neuroscience, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Elisabeth Rosser
- Department of Clinical Genetics, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Patrizia Amati-Bonneau
- MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France
- Department of Biochemistry and Genetics, University Hospital Angers, Angers, France
- Genetics and Immuno-cell Therapy Team, Mohammed First University, Oujda, Morocco
| | - Majida Charif
- MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France
- National Center for Rare Diseases, Inherited Sensory Disorders, Gui de Chauliac Hospital, Montpellier, France
| | - Guy Lenaers
- MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France
| | - Isabelle Meunier
- Institut des Neurosciences de Montpellier, INSERM INSERM U1051, Université de Montpellier, Montpellier, France
| | - Sabine Defoort
- Service d'exploration de la vision et neuro-ophtalmologie, CHRU de Lille, Lille, France
| | | | - Anthony G Robson
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Graham E Holder
- Institute of Ophthalmology, University College London, London, UK
- Yong Loo Lin School of Medicine, Department of Ophthalmology, National University of Singapore, Singapore, Singapore
| | - Luc Jeanjean
- Department of Ophthalmology, University Hospital of Nimes, Nimes, France
| | | | | | - Chloé Dominici
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice, France
| | - Cedric Gaggioli
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice, France
| | | | | | - Grant T Liu
- Division of Ophthalmology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Ophthalmology, Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Andrew R Webster
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | | | - Patrick Yu-Wai-Man
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
- Cambridge Eye Unit, Addenbrooke’s Hospital, Cambridge University Hospitals, Cambridge, UK
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Rech ME, McCarthy JM, Chen CA, Edmond JC, Shah VS, Bosch DGM, Berry GT, Williams L, Madan-Khetarpal S, Niyazov D, Shaw-Smith C, Kovar EM, Lupo PJ, Schaaf CP. Phenotypic expansion of Bosch-Boonstra-Schaaf optic atrophy syndrome and further evidence for genotype-phenotype correlations. Am J Med Genet A 2020; 182:1426-1437. [PMID: 32275123 DOI: 10.1002/ajmg.a.61580] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 12/17/2022]
Abstract
Bosch-Boonstra-Schaaf Optic Atrophy Syndrome (BBSOAS) is an autosomal dominant neurodevelopmental disorder caused by loss-of-function variants in NR2F1 and characterized by visual impairment, developmental delay, and intellectual disability. Here we report 18 new cases, provide additional clinical information for 9 previously reported individuals, and review an additional 27 published cases to present a total of 54 patients. Among these are 22 individuals with point mutations or in-frame deletions in the DNA-binding domain (DBD), and 32 individuals with other types of variants including whole-gene deletions, nonsense and frameshift variants, and point mutations outside the DBD. We corroborate previously described clinical characteristics including developmental delay, intellectual disability, autism spectrum disorder diagnoses/features thereof, cognitive/behavioral anomalies, hypotonia, feeding difficulties, abnormal brain MRI findings, and seizures. We also confirm a vision phenotype that includes optic nerve hypoplasia, optic atrophy, and cortical visual impairment. Additionally, we expand the vision phenotype to include alacrima and manifest latent nystagmus (fusional maldevelopment), and we broaden the behavioral phenotypic spectrum to include a love of music, an unusually good long-term memory, sleep difficulties, a high pain tolerance, and touch sensitivity. Furthermore, we provide additional evidence for genotype-phenotype correlations, specifically supporting a more severe phenotype associated with DBD variants.
Collapse
Affiliation(s)
- Megan E Rech
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - John M McCarthy
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Chun-An Chen
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jane C Edmond
- Department of Ophthalmology, Dell Medical School, University of Texas at Austin, Austin, Texas, USA.,Division of Ophthalmology, Texas Children's Hospital, Houston, Texas, USA.,Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA
| | - Veeral S Shah
- Division of Ophthalmology, Texas Children's Hospital, Houston, Texas, USA.,Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA
| | - Daniëlle G M Bosch
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gerard T Berry
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Linford Williams
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | | | - Dmitriy Niyazov
- Department of Pediatrics, Ochsner Health System and University of Queensland, New Orleans, Louisiana, USA
| | - Charles Shaw-Smith
- Department of Clinical Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Erin M Kovar
- Section of Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Philip J Lupo
- Section of Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Christian P Schaaf
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Heidelberg University, Institute of Human Genetics, Heidelberg, Germany
| |
Collapse
|