1
|
Han F, Zhang X, Liu Y, Liu Y, Zhao H, Li Z. One-step creation of CMS lines using a BoCENH3-based haploid induction system in Brassica crop. NATURE PLANTS 2024; 10:581-586. [PMID: 38499776 PMCID: PMC11035129 DOI: 10.1038/s41477-024-01643-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/04/2024] [Indexed: 03/20/2024]
Abstract
Heterosis utilization in a large proportion of crops depends on the use of cytoplasmic male sterility (CMS) tools, requiring the development of homozygous fertile lines and CMS lines1. Although doubled haploid (DH) technology has been developed for several crops to rapidly generate fertile lines2,3, CMS lines are generally created by multiple rounds of backcrossing, which is time consuming and expensive4. Here we describe a method for generating both homozygous fertile and CMS lines through in vivo paternal haploid induction (HI). We generated in-frame deletion and restored frameshift mutants of BoCENH3 in Brassica oleracea using the CRISPR/Cas9 system. The mutants induced paternal haploids by outcrossing. We subsequently generated HI lines with CMS cytoplasm, which enabled the generation of homozygous CMS lines in one step. The BoCENH3-based HI system provides a new DH technology to accelerate breeding in Brassica and other crops.
Collapse
Affiliation(s)
- Fengqing Han
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoli Zhang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Yuxiang Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Yumei Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hong Zhao
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing, China
| | - Zhansheng Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
2
|
Zhang X, Han F, Li Z, Wen Z, Cheng W, Shan X, Sun D, Liu Y. Map-based cloning and functional analysis of a major quantitative trait locus, BolC.Pb9.1, controlling clubroot resistance in a wild Brassica relative (Brassica macrocarpa). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:41. [PMID: 38305900 DOI: 10.1007/s00122-024-04543-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024]
Abstract
KEY MESSAGE A causal gene BoUGT76C2, conferring clubroot resistance in wild Brassica oleracea, was identified and functionally characterized. Clubroot is a devastating soil-borne disease caused by the obligate biotrophic pathogen Plasmodiophora brassica (P. brassicae), which poses a great threat to Brassica oleracea (B. oleracea) production. Although several QTLs associated with clubroot resistance (CR) have been mapped in cultivated B. oleracea, none have been cloned in B. oleracea. Previously, we found that the wild B. oleracea B2013 showed high resistance to clubroot. In this study, we constructed populations using B2013 and broccoli line 90196. CR in B2013 is quantitatively inherited, and a major QTL, BolC.Pb9.1, was identified on C09 using QTL-seq and linkage analysis. The BolC.Pb9.1 was finely mapped to a 56 kb genomic region using F2:3 populations. From the target region, the candidate BoUGT76C2 showed nucleotide variations between the parents, and was inducible in response to P. brassicae infection. We generated BoUGT76C2 overexpression lines in the 90196 background, which showed significantly enhanced resistance to P. brassicae compared to the WT line, suggesting that BoUGT76C2 corresponds to the resistance gene BolC.Pb.9.1. This is the first report on the CR gene map-based cloning and functional analysis from wild relatives, which provides a theoretical basis to the understanding of the molecular mechanism of CR, and lays a foundation to improve the CR of cultivated B. oleracea.
Collapse
Affiliation(s)
- Xiaoli Zhang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China.
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100181, China.
| | - Fengqing Han
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100181, China
| | - Zhansheng Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100181, China
| | - Zhenghua Wen
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Wenjuan Cheng
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Xiaozheng Shan
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Deling Sun
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Yumei Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100181, China.
| |
Collapse
|