1
|
Hu M, Fang S, Wei B, Hu Q, Cai M, Zeng T, Gu L, Wang H, Du X, Zhu B, Ou J. Characteristics and Cytological Analysis of Several Novel Allopolyploids and Aneuploids between Brassica oleracea and Raphanus sativus. Int J Mol Sci 2024; 25:8368. [PMID: 39125948 PMCID: PMC11313488 DOI: 10.3390/ijms25158368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Polyploids are essential in plant evolution and species formation, providing a rich genetic reservoir and increasing species diversity. Complex polyploids with higher ploidy levels often have a dosage effect on the phenotype, which can be highly detrimental to gametes, making them rare. In this study, offspring plants resulting from an autoallotetraploid (RRRC) derived from the interspecific hybridization between allotetraploid Raphanobrassica (RRCC, 2n = 36) and diploid radish (RR, 2n = 18) were obtained. Fluorescence in situ hybridization (FISH) using C-genome-specific repeats as probes revealed two main genome configurations in these offspring plants: RRRCC (2n = 43, 44, 45) and RRRRCC (2n = 54, 55), showing more complex genome configurations and higher ploidy levels compared to the parental plants. These offspring plants exhibited extensive variation in phenotypic characteristics, including leaf type and flower type and color, as well as seed and pollen fertility. Analysis of chromosome behavior showed that homoeologous chromosome pairing events are widely observed at the diakinesis stage in the pollen mother cells (PMCs) of these allopolyploids, with a range of 58.73% to 78.33%. Moreover, the unreduced C subgenome at meiosis anaphase II in PMCs was observed, which provides compelling evidence for the formation of complex allopolyploid offspring. These complex allopolyploids serve as valuable genetic resources for further analysis and contribute to our understanding of the mechanisms underlying the formation of complex allopolyploids.
Collapse
Affiliation(s)
- Mingyang Hu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (M.H.); (S.F.); (B.W.); (Q.H.); (M.C.); (T.Z.); (L.G.); (H.W.); (X.D.)
| | - Shiting Fang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (M.H.); (S.F.); (B.W.); (Q.H.); (M.C.); (T.Z.); (L.G.); (H.W.); (X.D.)
| | - Bo Wei
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (M.H.); (S.F.); (B.W.); (Q.H.); (M.C.); (T.Z.); (L.G.); (H.W.); (X.D.)
| | - Qi Hu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (M.H.); (S.F.); (B.W.); (Q.H.); (M.C.); (T.Z.); (L.G.); (H.W.); (X.D.)
| | - Mengxian Cai
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (M.H.); (S.F.); (B.W.); (Q.H.); (M.C.); (T.Z.); (L.G.); (H.W.); (X.D.)
| | - Tuo Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (M.H.); (S.F.); (B.W.); (Q.H.); (M.C.); (T.Z.); (L.G.); (H.W.); (X.D.)
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (M.H.); (S.F.); (B.W.); (Q.H.); (M.C.); (T.Z.); (L.G.); (H.W.); (X.D.)
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (M.H.); (S.F.); (B.W.); (Q.H.); (M.C.); (T.Z.); (L.G.); (H.W.); (X.D.)
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (M.H.); (S.F.); (B.W.); (Q.H.); (M.C.); (T.Z.); (L.G.); (H.W.); (X.D.)
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (M.H.); (S.F.); (B.W.); (Q.H.); (M.C.); (T.Z.); (L.G.); (H.W.); (X.D.)
| | - Jing Ou
- College of Forestry, Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Zhao K, Dong J, Xu J, Bai Y, Yin Y, Long C, Wu L, Lin T, Fan L, Wang Y, Edger PP, Xiong Z. Downregulation of the expression of subgenomic chromosome A7 genes promotes plant height in resynthesized allopolyploid Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 137:11. [PMID: 38110525 DOI: 10.1007/s00122-023-04510-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/18/2023] [Indexed: 12/20/2023]
Abstract
KEY MESSAGE Homoeolog expression bias and the gene dosage effect induce downregulation of genes on chromosome A7, causing a significant increase in the plant height of resynthesized allopolyploid Brassica napus. Gene expression levels in allopolyploid plants are not equivalent to the simple average of the expression levels in the parents and are associated with several non-additive expression phenomena, including homoeolog expression bias. However, hardly any information is available on the effect of homoeolog expression bias on traits. Here, we studied the effects of gene expression-related characteristics on agronomic traits using six isogenic resynthesized Brassica napus lines across the first ten generations. We found a group of genes located on chromosome A7 whose expression levels were significantly negatively correlated with plant height. They were expressed at significantly lower levels than their homoeologous genes, owing to allopolyploidy rather than inheritance from parents. Homoeolog expression bias resulted in resynthesized allopolyploids with a plant height similar to their female Brassica oleracea parent, but significantly higher than that of the male Brassica rapa parent. Notably, aneuploid lines carrying monosomic and trisomic chromosome A7 had the highest and lowest plant heights, respectively, due to changes in the expression bias of homoeologous genes because of alterations in the gene dosage. These findings suggest that the downregulation of the expression of homoeologous genes on a single chromosome can result in the partial improvement of traits to a significant extent in the nascent allopolyploid B. napus.
Collapse
Affiliation(s)
- Kanglu Zhao
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Jing Dong
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Junxiong Xu
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yanbo Bai
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yuhe Yin
- Institute of Ulanqab Agricultural and Forestry Sciences, Ulanqab, 012000, Inner Mongolia, China
| | - Chunshen Long
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Lei Wu
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Tuanrong Lin
- Institute of Ulanqab Agricultural and Forestry Sciences, Ulanqab, 012000, Inner Mongolia, China
| | - Longqiu Fan
- Institute of Ulanqab Agricultural and Forestry Sciences, Ulanqab, 012000, Inner Mongolia, China
| | - Yufeng Wang
- Institute of Ulanqab Agricultural and Forestry Sciences, Ulanqab, 012000, Inner Mongolia, China
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI, 48824, USA.
| | - Zhiyong Xiong
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
3
|
Guo T, Yang Z, Bao R, Fu X, Wang N, Liu C, Ma F. The m 6A reader MhYTP2 regulates the stability of its target mRNAs contributing to low nitrogen tolerance in apple ( Malus domestica). HORTICULTURE RESEARCH 2023; 10:uhad094. [PMID: 37350799 PMCID: PMC10282597 DOI: 10.1093/hr/uhad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/26/2023] [Indexed: 06/24/2023]
Abstract
Studies have shown that the m6A reader primarily affects genes expression by participating in the regulation of mRNA localization, splicing, degradation, translation, and other metabolic processes. Previously, we discovered that the apple (Malus domestica) m6A reader MhYTP2 bound with and destabilized m6A-modified MdMLO19 mRNA. In addition, it enhanced the translation efficiency of m6A-modified mRNA of MdGDH1L, encoding a glutamate dehydrogenase, which confers resistance to powdery mildew. In this study, we report the function of MhYTP2 in the regulation of resistance to low nitrogen (N). The overexpression of MhYTP2 enhances the resistance of apple to low N. We show that MhYTP2 binds with and stabilizes the mRNAs of MdALN, which participates in the allantoin catabolic process and cellular response to N starvation in apple; MdPIDL, which participates in root hair elongation; MdTTG1, which is involved in the differentiation process of trichomes; and MdATG8A, which is a core participant in the regulation of autophagy. In addition, MhYTP2 accelerates the degradation of MdRHD3 mRNA, which regulates root development. RNA immunoprecipitation-seq and electrophoretic mobility shift assays show that the mRNAs of MdALN, MdATG8A, MdPIDL, MdTTG1, and MdRHD3 are the direct targets of MhYTP2. Overexpressing or knocking down the above genes in MhYTP2 overexpressing plants dismisses the function of MhYTP2 under low N, suggesting the role of MhYTP2 is dependent on those genes. Together, these results demonstrate that MhYTP2 enhances the resistance of apple to N deficiency by affecting the stability of the bound mRNAs.
Collapse
Affiliation(s)
- Tianli Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zehua Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ru Bao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaomin Fu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | |
Collapse
|