1
|
Ahmadi H, Sheikh-Assadi M, Fatahi R, Zamani Z, Shokrpour M. Optimizing an efficient ensemble approach for high-quality de novo transcriptome assembly of Thymus daenensis. Sci Rep 2023; 13:12415. [PMID: 37524806 PMCID: PMC10390528 DOI: 10.1038/s41598-023-39620-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023] Open
Abstract
Non-erroneous and well-optimized transcriptome assembly is a crucial prerequisite for authentic downstream analyses. Each de novo assembler has its own algorithm-dependent pros and cons to handle the assembly issues and should be specifically tested for each dataset. Here, we examined efficiency of seven state-of-art assemblers on ~ 30 Gb data obtained from mRNA-sequencing of Thymus daenensis. In an ensemble workflow, combining the outputs of different assemblers associated with an additional redundancy-reducing step could generate an optimized outcome in terms of completeness, annotatability, and ORF richness. Based on the normalized scores of 16 benchmarking metrics, EvidentialGene, BinPacker, Trinity, rnaSPAdes, CAP3, IDBA-trans, and Velvet-Oases performed better, respectively. EvidentialGene, as the best assembler, totally produced 316,786 transcripts, of which 235,730 (74%) were predicted to have a unique protein hit (on uniref100), and also half of its transcripts contained an ORF. The total number of unique BLAST hits for EvidentialGene was approximately three times greater than that of the worst assembler (Velvet-Oases). EvidentialGene could even capture 17% and 7% more average BLAST hits than BinPacker and Trinity. Although BinPacker and CAP3 produced longer transcripts, the EvidentialGene showed a higher collinearity between transcript size and ORF length. Compared with the other programs, EvidentialGene yielded a higher number of optimal transcript sets, further full-length transcripts, and lower possible misassemblies. Our finding corroborates that in non-model species, relying on a single assembler may not give an entirely satisfactory result. Therefore, this study proposes an ensemble approach of accompanying EvidentialGene pipelines to acquire a superior assembly for T. daenensis.
Collapse
Affiliation(s)
- Hosein Ahmadi
- Department of Horticulture Science, Faculty of Agriculture and Natural Sciences, University of Tehran, Karaj, Iran
| | - Morteza Sheikh-Assadi
- Department of Horticulture Science, Faculty of Agriculture and Natural Sciences, University of Tehran, Karaj, Iran
| | - Reza Fatahi
- Department of Horticulture Science, Faculty of Agriculture and Natural Sciences, University of Tehran, Karaj, Iran.
| | - Zabihollah Zamani
- Department of Horticulture Science, Faculty of Agriculture and Natural Sciences, University of Tehran, Karaj, Iran
| | - Majid Shokrpour
- Department of Horticulture Science, Faculty of Agriculture and Natural Sciences, University of Tehran, Karaj, Iran
| |
Collapse
|
2
|
Yang R, Dong Y, Gao F, Li J, Stevanovic ZD, Li H, Shi L. Comprehensive Analysis of Secondary Metabolites of Four Medicinal Thyme Species Used in Folk Medicine and Their Antioxidant Activities In Vitro. Molecules 2023; 28:molecules28062582. [PMID: 36985554 PMCID: PMC10052123 DOI: 10.3390/molecules28062582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Thyme is a colloquial term for number of aromatic species belonging to the genus Thymus L., known for their expressed biological activities and therefore used worldwide for seasoning and in folk medicine. In the present paper, the content of the total polyphenols (TP), total flavonoids (TF), and antioxidant capacity were assessed in the extracts of four traditionally used thyme species. Moreover, a comprehensive metabolomic study of thyme bioactive compounds was performed, and the obtained data were processed using multivariate statistical tests. The results clearly demonstrated the positive correlation between the content of the TP, TF, and antioxidant activity, and TF was more significant than TP. The findings revealed that four selected thyme species contained 528 secondary metabolites, including 289 flavonoids and 146 phenolic acids. Thymus marschallianus had a higher concentration of active ingredients, which improve its antioxidant capacity. Differentially accumulated metabolites were formed by complex pathways such as flavonoid, flavone, flavonol, isoflavonoid, and anthocyanin biosynthesis. Correlation analysis showed that 59 metabolites (including 28 flavonoids, 18 phenolic acids, and 7 terpenoid compounds) were significantly correlated with obtained values of the antioxidant capacity. The results suggested that selected thyme species exhibit a great diversity in antioxidant-related components, whereas flavonoids may be responsible for the high antioxidant capacity of all studied thyme species. The present study greatly expands our understanding of the complex phytochemical profiles and related applications of selected medicinal plants.
Collapse
Affiliation(s)
- Rui Yang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (R.Y.); (Y.D.); (F.G.); (J.L.)
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanmei Dong
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (R.Y.); (Y.D.); (F.G.); (J.L.)
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Gao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (R.Y.); (Y.D.); (F.G.); (J.L.)
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyi Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (R.Y.); (Y.D.); (F.G.); (J.L.)
| | - Zora Dajic Stevanovic
- Department of Agrobotany, University of Belgrade Faculty of Agriculture, Nemanjina 6, 11080 Zemun, Serbia;
| | - Hui Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (R.Y.); (Y.D.); (F.G.); (J.L.)
- China National Botanical Garden, Beijing 100093, China
- Correspondence: (H.L.); (L.S.)
| | - Lei Shi
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (R.Y.); (Y.D.); (F.G.); (J.L.)
- China National Botanical Garden, Beijing 100093, China
- Correspondence: (H.L.); (L.S.)
| |
Collapse
|