1
|
Zhao D, Cheng Z, Qian Y, Hu Z, Tang Y, Huang X, Tao J. PlWRKY47 Coordinates With Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenase 2 Gene to Improve Thermotolerance Through Inhibiting Reactive Oxygen Species Generation in Herbaceous Peony. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39254178 DOI: 10.1111/pce.15143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024]
Abstract
Although WRKY transcription factors play crucial roles in plant responses to high-temperature stress, little is known about Group IIb WRKY family members. Here, we identified the WRKY-IIb protein PlWRKY47 from herbaceous peony (Paeonia lactiflora Pall.), which functioned as a nuclear-localized transcriptional activator. The expression level of PlWRKY47 was positively correlated with high-temperature tolerance. Silencing of PlWRKY47 in P. lactiflora resulted in the decreased tolerance to high-temperature stress by accumulating reactive oxygen species (ROS). Overexpression of PlWRKY47 improved plant high-temperature tolerance through decreasing ROS accumulation. Moreover, PlWRKY47 directly bound to the promoter of cytosolic glyceraldehyde-3-phosphate dehydrogenase 2 (PlGAPC2) gene and activated its transcription. PlGAPC2 was also positively regulated high-temperature tolerance in P. lactiflora by increasing NAD+ content to inhibit ROS generation. Additionally, PlWRKY47 physically interacted with itself to form a homodimer, and PlWRKY47 could also interact with one Group IIb WRKY family member PlWRKY72 to form a heterodimer, they all promoted PlWRKY47 to bind to and activate PlGAPC2. These data support that the PlWRKY47-PlWRKY47 homodimer and PlWRKY72-PlWRKY47 heterodimer can directly activate PlGAPC2 expression to improve high-temperature tolerance by inhibiting ROS generation in P. lactiflora. These results will provide important insights into the plant high-temperature stress response by WRKY-IIb transcription factors.
Collapse
Affiliation(s)
- Daqiu Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Zhuoya Cheng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Yi Qian
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Ziao Hu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Yuhan Tang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Xingqi Huang
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Jun Tao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Mu Y, Dong Y, Li X, Gong A, Yu H, Wang C, Liu J, Liang Q, Yang K, Fang H. JrPHL8-JrWRKY4-JrSTH2L module regulates resistance to Colletotrichum gloeosporioides in walnut. HORTICULTURE RESEARCH 2024; 11:uhae148. [PMID: 38988616 PMCID: PMC11233879 DOI: 10.1093/hr/uhae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/21/2024] [Indexed: 07/12/2024]
Abstract
Walnut anthracnose (Colletotrichum gloeosporioides) reduces walnut yield and quality and seriously threatens the healthy development of the walnut industry. WRKY transcription factors (TFs) are crucial regulatory factors involved in plant-pathogen interactions. Our previous transcriptome analysis results indicate that JrWRKY4 responds to infection by C. gloeosporioides, but its specific regulatory network and disease resistance mechanism are still unclear. Herein, the characteristics of JrWRKY4 as a transcription activator located in the nucleus were first identified. Gain-of-function and loss-of-function analyses showed that JrWRKY4 could enhance walnut resistance against C. gloeosporioides. A series of molecular experiments showed that JrWRKY4 directly interacted with the promoter region of JrSTH2L and positively regulated its expression. In addition, JrWRKY4 interacted with JrVQ4 to form the protein complex, which inhibited JrWRKY4 for the activation of JrSTH2L. Notably, a MYB TF JrPHL8 interacting with the JrWRKY4 promoter has also been identified, which directly bound to the MBS element in the promoter of JrWRKY4 and induced its activity. Our study elucidated a novel mechanism of the JrPHL8-JrWRKY4-JrSTH2L in regulating walnut resistance to anthracnose. This mechanism improves our understanding of the molecular mechanism of WRKY TF mediated resistance to anthracnose in walnut, which provides new insights for molecular breeding of disease-resistant walnuts in the future.
Collapse
Affiliation(s)
- Yutian Mu
- College of Forestry, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yuhui Dong
- College of Forestry, Shandong Agricultural University, Taian 271018, Shandong, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Taian 271018, Shandong, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian 271018, Shandong, China
| | - Xichen Li
- College of Forestry, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Andi Gong
- College of Forestry, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Haiyi Yu
- College of Forestry, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Changxi Wang
- College of Forestry, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Jianning Liu
- College of Forestry, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Qiang Liang
- College of Forestry, Shandong Agricultural University, Taian 271018, Shandong, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Taian 271018, Shandong, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian 271018, Shandong, China
| | - Keqiang Yang
- College of Forestry, Shandong Agricultural University, Taian 271018, Shandong, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Taian 271018, Shandong, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian 271018, Shandong, China
| | - Hongcheng Fang
- College of Forestry, Shandong Agricultural University, Taian 271018, Shandong, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Shandong Agricultural University, Taian 271018, Shandong, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian 271018, Shandong, China
| |
Collapse
|
3
|
Shui D, Sun J, Xiong Z, Zhang S, Shi J. Comparative identification of WRKY transcription factors and transcriptional response to Ralstonia solanacearum in tomato. Gene 2024; 912:148384. [PMID: 38493971 DOI: 10.1016/j.gene.2024.148384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
In order to study the responses of tomato (Solanum lycopersicum) WRKY TFs to bacterial wilt caused by Ralstonia solanacearum, the most up-to-date genomes and transcriptional profiles were used to identify WRKY TFs in control and infected inbred lines. In total, 85 tomato WRKY TFs were identified and categorized into groups I, IIa + b, IIc, IId + e, and III. These WRKYs, especially those from group IIe, were mainly distributed at chromosome ends and in clusters. More than 45 % and 70 % of tomato WRKYs exhibited intraspecific and interspecific synteny, respectively. Nearly 60 % of tomato WRKYs (mainly in groups I and IIc) formed 73 pairs of orthologs with WRKYs in Arabidopsis and pepper, with Ka/Ks less than 1. Sixteen tomato WRKYs (mainly in groups IIa + b and IIc) responded strongly to biotic stress, and 12 differentially expressed WRKYs (mainly in groups III and IIb) were identified. RT-qPCR revealed that tomato WRKYs could respond to bacterial wilt through positive (predominant) or negative regulation. In particular, the interaction between Solyc03g095770.3 (group III) and Solyc09g014990.4 (group I) may play an important role. In brief, WRKY TFs were comprehensively identified in tomato and several bacterial wilt responsive genes were screened.
Collapse
Affiliation(s)
- Deju Shui
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China
| | - Ji Sun
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China
| | - Zili Xiong
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China
| | - Shengmei Zhang
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China
| | - Jianlei Shi
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China.
| |
Collapse
|
4
|
Shang C, Liu X, Chen G, Li G, Hu S, Zheng H, Ge L, Long Y, Wang Q, Hu X. SlWRKY81 regulates Spd synthesis and Na +/K + homeostasis through interaction with SlJAZ1 mediated JA pathway to improve tomato saline-alkali resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1774-1792. [PMID: 38468425 DOI: 10.1111/tpj.16709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 03/13/2024]
Abstract
Saline-alkali stress is an important abiotic stress factor affecting tomato (Solanum lycopersicum L.) plant growth. Although the involvement of the tomato SlWRKY gene family in responses to saline-alkali stress has been well established, the mechanism underlying resistance to saline-alkali stress remains unclear. In this study, we investigated the role of SlWRKY81 in conferring saline-alkali stress resistance by using overexpression and knockout tomato seedlings obtained via genetic modification. We demonstrated that SlWRKY81 improves the ability of tomato to withstand saline-alkali stress by enhancing antioxidant capacity, root activity, and proline content while reducing malondialdehyde levels. Saline-alkali stress induces an increase in jasmonic acid (JA) content in tomato seedlings, and the SlWRKY81 promoter responds to JA signaling, leading to an increase in SlWRKY81 expression. Furthermore, the interaction between SlJAZ1 and SlWRKY81 represses the expression of SlWRKY81. SlWRKY81 binds to W-box motifs in the promoter regions of SlSPDS2 and SlNHX4, thereby positively regulating their expression. This regulation results in increased spermidine (Spd) content and enhanced potassium (K+) absorption and sodium (Na+) efflux, which contribute to the resistance of tomato to saline-alkali stress. However, JA and SlJAZ1 exhibit antagonistic effects. Elevated JA content reduces the inhibitory effect of SlJAZ1 on SlWRKY81, leading to the release of additional SlWRKY81 protein and further augmenting the resistance of tomato to saline-alkali stress. In summary, the modulation of Spd synthesis and Na+/K+ homeostasis mediated by the interaction between SlWRKY81 and SlJAZ1 represents a novel pathway underlying tomato response to saline-alkali stress.
Collapse
Affiliation(s)
- Chunyu Shang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoyan Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guo Chen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guobin Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Songshen Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Hao Zheng
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lei Ge
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanghao Long
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qiaomei Wang
- State Agricultural Ministry Laboratory of Horticultural Crop Growth and Development, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| |
Collapse
|
5
|
Cheng W, Wang N, Li Y, Zhou X, Bai X, Liu L, Ma X, Wang S, Li X, Gong B, Jiang Y, Azeem M, Zhu L, Chen L, Wang H, Chu M. CaWRKY01-10 and CaWRKY08-4 Confer Pepper's Resistance to Phytophthora capsici Infection by Directly Activating a Cluster of Defense-Related Genes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11682-11693. [PMID: 38739764 DOI: 10.1021/acs.jafc.4c01024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Phytophthora blight of pepper, which is caused by the notorious oomycete pathogen Phytophthora capsici, is a serious disease in global pepper production regions. Our previous study had identified two WRKY transcription factors (TFs), CaWRKY01-10 and CaWRKY08-4, which are prominent modulators in the resistant pepper line CM334 against P. capsici infection. However, their functional mechanisms and underlying signaling networks remain unknown. Herein, we determined that CaWRKY01-10 and CaWRKY08-4 are localized in plant nuclei. Transient overexpression assays indicated that both CaWRKY01-10 and CaWRKY08-4 act as positive regulators in pepper resistance to P. capsici. Besides, the stable overexpression of CaWRKY01-10 and CaWRKY08-4 in transgenic Nicotiana benthamiana plants also significantly enhanced the resistance to P. capsici. Using comprehensive approaches including RNA-seq, CUT&RUN-qPCR, and dual-luciferase reporter assays, we revealed that overexpression of CaWRKY01-10 and CaWRKY08-4 can activate the expressions of the same four Capsicum annuum defense-related genes (one PR1, two PR4, and one pathogen-related gene) by directly binding to their promoters. However, we did not observe protein-protein interactions and transcriptional amplification/inhibition effects of their shared target genes when coexpressing these two WRKY TFs. In conclusion, these data suggest that both of the resistant line specific upregulated WRKY TFs (CaWRKY01-10 and CaWRKY08-4) can confer pepper's resistance to P. capsici infection by directly activating a cluster of defense-related genes and are potentially useful for genetic improvement against Phytophthora blight of pepper and other crops.
Collapse
Affiliation(s)
- Wei Cheng
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Normal University, Wuhu 241000, China
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, Anhui Normal University, Wuhu 241000, China
| | - Nan Wang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yuan Li
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Xianjun Zhou
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Xueyi Bai
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Li Liu
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Xinqiao Ma
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Shuai Wang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Xueqi Li
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Beibei Gong
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yan Jiang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Muhammad Azeem
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Liyun Zhu
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Lin Chen
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Hui Wang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Moli Chu
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
6
|
Cheng X, Wan M, Song Y, Liu Q, Hu X, Chen X, Zhang X, Zhang Y, Wu R, Lu Q, Huang Y, Lv J, Cai W, Guan D, Yang S, He S. CaSTH2 disables CaWRKY40 from activating pepper thermotolerance and immunity against Ralstonia solanacearum via physical interaction. HORTICULTURE RESEARCH 2024; 11:uhae066. [PMID: 38725461 PMCID: PMC11079491 DOI: 10.1093/hr/uhae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/21/2024] [Indexed: 05/12/2024]
Abstract
CaWRKY40 coordinately activates pepper immunity against Ralstonia solanacearum infection (RSI) and high temperature stress (HTS), forms positive feedback loops with other positive regulators and is promoted by CaWRKY27b/CaWRKY28 through physical interactions; however, whether and how it is regulated by negative regulators to function appropriately remain unclear. Herein, we provide evidence that CaWRKY40 is repressed by a SALT TOLERANCE HOMOLOG2 in pepper (CaSTH2). Our data from gene silencing and transient overexpression in pepper and epoptic overexpression in Nicotiana benthamiana plants showed that CaSTH2 acted as negative regulator in immunity against RSI and thermotolerance. Our data from BiFC, CoIP, pull down, and MST indicate that CaSTH2 interacted with CaWRKY40, by which CaWRKY40 was prevented from activating immunity or thermotolerance-related genes. It was also found that CaSTH2 repressed CaWRKY40 at least partially through blocking interaction of CaWRKY40 with CaWRKY27b/CaWRKY28, but not through directly repressing binding of CaWRKY40 to its target genes. The results of study provide new insight into the mechanisms underlying the coordination of pepper immunity and thermotolerance.
Collapse
Affiliation(s)
- Xingge Cheng
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Meiyun Wan
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuqiu Song
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qian Liu
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaohui Hu
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiufang Chen
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xujing Zhang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yapeng Zhang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ruijie Wu
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qiaoling Lu
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yu Huang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jingang Lv
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - WeiWei Cai
- College of of Horticultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, 350002, China
| | - Deyi Guan
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Sheng Yang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shuilin He
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
7
|
Zhang H, Liu Z, Geng R, Ren M, Cheng L, Liu D, Jiang C, Wen L, Xiao Z, Yang A. Genome-wide identification of the TIFY gene family in tobacco and expression analysis in response to Ralstonia solanacearum infection. Genomics 2024; 116:110823. [PMID: 38492820 DOI: 10.1016/j.ygeno.2024.110823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
The TIFY gene family plays an essential role in plant development and abiotic and biotic stress responses. In this study, genome-wide identification of TIFY members in tobacco and their expression pattern analysis in response to Ralstonia solanacearum infection were performed. A total of 33 TIFY genes were identified, including the TIFY, PPD, ZIM&ZML and JAZ subfamilies. Promoter analysis results indicated that a quantity of light-response, drought-response, SA-response and JA-response cis-elements exist in promoter regions. The TIFY gene family exhibited expansion and possessed gene redundancy resulting from tobacco ploidy change. In addition, most NtTIFYs equivalently expressed in roots, stems and leaves, while NtTIFY1, NtTIFY4, NtTIFY18 and NtTIFY30 preferentially expressed in roots. The JAZ III clade showed significant expression changes after inoculation with R. solanacearum, and the expression of NtTIFY7 in resistant varieties, compared with susceptible varieties, was more stably induced. Furthermore, NtTIFY7-silenced plants, compared with the control plants, were more susceptible to bacterial wilt. These results lay a foundation for exploring the evolutionary history of TIFY gene family and revealing gene function of NtTIFYs in tobacco bacterial wilt resistance.
Collapse
Affiliation(s)
- Huifen Zhang
- The Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhengwen Liu
- The Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Ruimei Geng
- The Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Min Ren
- The Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Lirui Cheng
- The Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Dan Liu
- The Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Caihong Jiang
- The Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Liuying Wen
- The Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Zhiliang Xiao
- The Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Aiguo Yang
- The Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
8
|
Wang X, Qi F, Sun Z, Liu H, Wu Y, Wu X, Xu J, Liu H, Qin L, Wang Z, Sang S, Dong W, Huang B, Zheng Z, Zhang X. Transcriptome sequencing and expression analysis in peanut reveal the potential mechanism response to Ralstonia solanacearum infection. BMC PLANT BIOLOGY 2024; 24:207. [PMID: 38515036 PMCID: PMC10956345 DOI: 10.1186/s12870-024-04877-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/03/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Bacterial wilt caused by Ralstonia solanacearum severely affects peanut (Arachis hypogaea L.) yields. The breeding of resistant cultivars is an efficient means of controlling plant diseases. Therefore, identification of resistance genes effective against bacterial wilt is a matter of urgency. The lack of a reference genome for a resistant genotype severely hinders the process of identification of resistance genes in peanut. In addition, limited information is available on disease resistance-related pathways in peanut. RESULTS Full-length transcriptome data were used to generate wilt-resistant and -susceptible transcript pools. In total, 253,869 transcripts were retained to form a reference transcriptome for RNA-sequencing data analysis. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of differentially expressed genes revealed the plant-pathogen interaction pathway to be the main resistance-related pathway for peanut to prevent bacterial invasion and calcium plays an important role in this pathway. Glutathione metabolism was enriched in wilt-susceptible genotypes, which would promote glutathione synthesis in the early stages of pathogen invasion. Based on our previous quantitative trait locus (QTL) mapping results, the genes arahy.V6I7WA and arahy.MXY2PU, which encode nucleotide-binding site-leucine-rich repeat receptor proteins, were indicated to be associated with resistance to bacterial wilt. CONCLUSIONS This study identified several pathways associated with resistance to bacterial wilt and identified candidate genes for bacterial wilt resistance in a major QTL region. These findings lay a foundation for investigation of the mechanism of resistance to bacterial wilt in peanut.
Collapse
Affiliation(s)
- Xiao Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Feiyan Qi
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Ziqi Sun
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Hongfei Liu
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Yue Wu
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Xiaohui Wu
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Jing Xu
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Hua Liu
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Li Qin
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Zhenyu Wang
- Henan Academy of Agricultural Sciences, Institute of Plant Protection, Zhengzhou, 450002, China
| | - Suling Sang
- Henan Academy of Agricultural Sciences, Institute of Plant Protection, Zhengzhou, 450002, China
| | - Wenzhao Dong
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Bingyan Huang
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Zheng Zheng
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China.
| | - Xinyou Zhang
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China.
- The Shennong Laboratory, Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, National Innovation Centre for Bio-Breeding Industry, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China.
| |
Collapse
|
9
|
Shang C, Liu X, Chen G, Zheng H, Khan A, Li G, Hu X. SlWRKY80-mediated jasmonic acid pathway positively regulates tomato resistance to saline-alkali stress by enhancing spermidine content and stabilizing Na +/K + homeostasis. HORTICULTURE RESEARCH 2024; 11:uhae028. [PMID: 38559468 PMCID: PMC10980716 DOI: 10.1093/hr/uhae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/16/2024] [Indexed: 04/04/2024]
Abstract
Saline-alkali is an important abiotic stressor influencing tomato production. Exogenous methyl jasmonate (MeJA) is well known to increase tomato resistance to a variety of stresses, although its exact mechanism is yet unknown. In this study we confirmed that 22.5 μmol/l MeJA could significantly improve the saline-alkali stress resistance of tomato. Saline-alkali (300 mM) stress increased the endogenous MeJA and jasmonic acid (JA) contents of tomato by 18.8 and 13.4%, respectively. Exogenous application of 22.5 μmol/l MeJA increased the endogenous MeJA and JA contents in tomato by 15.2 and 15.9%, respectively. Furthermore, we found an important transcription factor, SlWRKY80, which responded to MeJA, and constructed its overexpressing and knockout lines through genetic transformation. It was found that SlWRKY80 actively regulated tomato resistance to saline-alkali stress, and the spraying of exogenous MeJA (22.5 μmol/l) reduced the sensitivity of SlWRKY80 knockout lines to saline-alkali stress. The SlWRKY80 protein directly combines with the promoter of SlSPDS2 and SlNHX4 to positively regulate the transcription of SlSPDS2 and SlNHX4, thereby promoting the synthesis of spermidine and Na+/K+ homeostasis, actively regulating saline-alkali stress. The augmentation of JA content led to a notable reduction of 70.6% in the expression of SlJAZ1, and the release of the SlWRKY80 protein interacting with SlJAZ1. In conclusion, we revealed the mechanism of exogenous MeJA in tomato stress resistance through multiple metabolic pathways, elucidated that exogenous MeJA further promotes spermidine synthesis and Na+/K+ homeostasis by activating the expression of SlWRKY80, which provides a new theoretical basis for the study of the JA stress resistance mechanism and the production of tomato.
Collapse
Affiliation(s)
- Chunyu Shang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi, 712100, China
| | - Xiaoyan Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi, 712100, China
| | - Guo Chen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi, 712100, China
| | - Hao Zheng
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi, 712100, China
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur, 22620, Pakistan
| | - Guobin Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi, 712100, China
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi, 712100, China
| |
Collapse
|
10
|
Fang X, Wu H, Huang W, Ma Z, Jia Y, Min Y, Ma Q, Cai R. The WRKY transcription factor ZmWRKY92 binds to GA synthesis-related genes to regulate maize plant height. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108422. [PMID: 38335889 DOI: 10.1016/j.plaphy.2024.108422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/25/2023] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
The plant height is a crucial agronomic trait in contemporary maize breeding. Appropriate plant height can improve crop lodging resistance, increase the planting density and harvest index of crops, and thus contribute to stable and increased yields. In this study, molecular characterization showed that ZmWRKY92 is a nuclear protein and has transcriptional activation in yeast. ZmWRKY92 can specifically bind to the W-box (TTGACC), which was confirmed by double LUC experiments and Yeast one-hybrid assays. Subsequently we screened wrky92 mutants from a library of ethyl methanesulfonate (EMS)-induced mutants. The mutation of a base in ZmWRKY92 leading to the formation of a truncated protein variant is responsible for the dwarfing phenotype of the mutant, which was further verified by allelic testing. Detailed phenotypic analysis revealed that wrky92 mutants have shorter internodes due to reduced internode cell size and lower levels of GA3 and IAA. Transcriptome analysis revealed that the ZmWRKY92 mutation caused significant changes in the expression of genes related to plant height in maize. Additionally, ZmWRKY92 was found to interact with the promoters of ZmGA20ox7 and ZmGID1L2, which are associated with GA synthesis. This study shows that ZmWRKY92 significantly affects the plants height in maize and is crucial in identifying new varieties suitable for growing in high-density conditions.
Collapse
Affiliation(s)
- Xiu Fang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Hao Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Wanchang Huang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Zhongxian Ma
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yue Jia
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yongwei Min
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Qing Ma
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Engineering Research Center for Maize of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Ronghao Cai
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Engineering Research Center for Maize of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
11
|
Zhou Y, Liu H, Wu T, Zheng Y, Wang R, Xue D, Yan Q, Yuan X, Chen X. Screening of Reference Genes under Biotic Stress and Hormone Treatment of Mung Bean ( Vigna radiata) by Quantitative Real-Time PCR. Genes (Basel) 2023; 14:1739. [PMID: 37761879 PMCID: PMC10530681 DOI: 10.3390/genes14091739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Mung bean (Vigna radiata) production has been greatly threatened by numerous diseases. Infection with these pathogens causes extensive changes in gene expression and the activation of hormone signal transduction. Quantitative real-time PCR (qRT-PCR) is the most common technique used for gene expression validation. Screening proper reference genes for mung bean under pathogen infection and hormone treatment is a prerequisite for ensuring the accuracy of qRT-PCR data in mung bean disease-resistance research. In this study, six candidate reference genes (Cons4, ACT, TUA, TUB, GAPDH, and EF1α) were selected to evaluate the expression stability under four soil-borne disease pathogens (Pythium myriotylum, Pythium aphanidermatum, Fusarium oxysporum, and Rhizoctonia solani) and five hormone treatments (SA, MeJA, ETH, ABA, and GA3). In the samples from different treatments, the Ct value distribution of the six candidate reference genes was different. Under the condition of hormone treatment, the Ct value ranged from a minimum of 17.87 for EF1α to a maximum of 29.63 for GAPDH. Under the condition of pathogen infection, the Ct value ranged from a minimum of 19.43 for EF1α to a maximum of 31.82 for GAPDH. After primer specificity analysis, it was found that GAPDH was not specific, so the five reference genes Cons4, ACT, TUA, TUB, and EF1α were used in subsequent experiments. The software products GeNorm, NormFinder, BestKeeper and RefFinder were used for qRT-PCR data analysis. In general, the best candidates reference genes were: TUA for SA, ABA, GA3, and Pythium myriotylum treatment; TUB for ETH treatment; ACT for MeJA and Fusarium oxysporum treatment; and EF1α for Pythium aphanidermatum and Rhizoctonia solani treatment. The most stably expressed genes in all samples were TUA, while Cons4 was the least stable reference gene. Finally, the reliability of the reference gene was further validated by analysis of the expression profiles of four mung bean genes (Vradi0146s00260, Vradi0158s00480, Vradi07g23860, and Vradi11g03350) selected from transcriptome data. Our results provide more accurate information for the normalization of qRT-PCR data in mung bean response to pathogen interaction.
Collapse
Affiliation(s)
- Yanyan Zhou
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China (H.L.)
| | - Huan Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China (H.L.)
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Ting Wu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China (H.L.)
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Yu Zheng
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Ruimin Wang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Dong Xue
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Qiang Yan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xingxing Yuan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China (H.L.)
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xin Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China (H.L.)
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|