1
|
Yu S, Zuo H, Li P, Lu L, Li J, Zhou Z, Zhao S, Huang J, Liu Z, Zhu M, Zhao J. Strigolactones Regulate Secondary Metabolism and Nitrogen/Phosphate Signaling in Tea Plants via Transcriptional Reprogramming and Hormonal Interactions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25860-25878. [PMID: 39520368 DOI: 10.1021/acs.jafc.4c05100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Strigolactones (SLs) are known to regulate plant architecture formation, nitrogen (N) and phosphorus (P) responses, and secondary metabolism, but their effects in tea plants remain unclear. We demonstrated that the application of a bioactive SL analogue GR24 either to tea roots or leaves initially stimulated but later inhibited catechins, theanine, and caffeine biosynthesis. GR24 treatment also promoted the accumulation of flavonols and insoluble proanthocyanidins in a time- and dose-dependent manner. GR24 influenced flavonoid and theanine biosynthesis genes, such as up-regulating CsTT2c, CsMYB12, and CsbZIP1, modulating N-responsive and assimilation genes (CsNRT1,1, CsGSI/TS1, CsHRS1, CsPHR1, CsNLA1, and CsLBD37/38/39), and repressing N/P transport and signaling genes (CsPHO2, CsPHT1s, CsNRT2,2, CsHHO1, and CsWRKY38). GR24-induced changes in secondary metabolites were also observed in the leaves of tea plants. GR24-regulated CsLBD37a interacted with CsTT8a and CsTT2c, repressing catechins biosynthesis by interrupting MBW complex formation. GR24 regulated caffeine biosynthesis and regulator genes CsS40 and CsNAC7 and may thereby suppress caffeine production. GR24 altered the transcriptomic profiles of multiple hormone biosynthesis and signaling genes that potentially regulate tea characteristic metabolism and N/P signaling. This study provides new insights into SL-induced transcriptional reprogramming that leads to changes in N/P nutrition, secondary metabolism, and hormone signaling in tea plants.
Collapse
Affiliation(s)
- Shuwei Yu
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Tea Research institute, Shandong Academy of Agricultural Sciences, Jinan 250000, China
| | - Hao Zuo
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Ping Li
- College of Tea Sciences, Institute of Plant Health & Medicine, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Litang Lu
- College of Tea Sciences, Institute of Plant Health & Medicine, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Juan Li
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Zhi Zhou
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Shancen Zhao
- Beijing Life Science Academy, Beijing 102200, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - MingZhi Zhu
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jian Zhao
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
2
|
Jia X, Luo S, Ye X, Liu L, Wen W. Evolution of the biochemistry underpinning purine alkaloid metabolism in plants. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230366. [PMID: 39343019 PMCID: PMC11449220 DOI: 10.1098/rstb.2023.0366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 10/01/2024] Open
Abstract
Purine alkaloids are naturally occurring nitrogenous methylated derivatives of purine nucleotide degradation products, having essential roles in medicine, food and various other aspects of our daily lives. They are generated through convergent evolution in different plant species. The pivotal reaction steps within the purine alkaloid metabolic pathways have been largely elucidated, and the convergent evolution of purine alkaloids has been substantiated through bioinformatic, biochemical and other research perspectives within S-adenosyl-ʟ-methionine-dependent N-methyltransferases. Currently, the biological and ecological roles of purine alkaloids, further refinement of the purine alkaloid metabolic pathways and the investigation of purine alkaloid adaptive evolutionary mechanisms continue to attract widespread research interest. The exploration of the purine alkaloid metabolic pathways also enhances our comprehension of the biochemical mechanism, providing insights into inter-species interactions and adaptive evolution and offering potential value in drug development and agricultural applications. Here, we review the progress of research in the distribution, metabolic pathway elucidation and regulation, evolutionary mechanism and ecological roles of purine alkaloids in plants. The opportunities and challenges involved in elucidating the biochemical basis and evolutionary mechanisms of the purine alkaloid metabolic pathways, as well as other research aspects, are also discussed. This article is part of the theme issue 'The evolution of plant meta-bolism'.
Collapse
Affiliation(s)
- Xinxin Jia
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University , Wuhan 430070, People's Republic of China
| | - Shijie Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University , Wuhan 430070, People's Republic of China
| | - Xiali Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University , Wuhan 430070, People's Republic of China
| | - Lin Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University , Wuhan 430070, People's Republic of China
| | - Weiwei Wen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University , Wuhan 430070, People's Republic of China
| |
Collapse
|
3
|
Hu Y, Li P, Yao X, He Y, Tang H, Zhao Q, Lu L. Zinc Treatment of Tea Plants Improves the Synthesis of Trihydroxylated Catechins via Regulation of the Zinc-Sensitive Protein CsHIPP3. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14887-14898. [PMID: 38886187 DOI: 10.1021/acs.jafc.4c02114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The tea plant (Camellia sinensis [L.] O. Kussntze) is a global economic crop. Zinc treatment of tea plants can enhance catechin biosynthesis. However, the underlying molecular mechanism behind catechin formation through zinc regulation remains unclear. This study identified a zinc-responsive protein, C. sinensis heavy metal-associated isoprenylated plant protein 3 (CsHIPP3), from zinc-treated tea seedlings. CsHIPP3 expression was positively correlated with trihydroxylated catechin (TRIC) content. CsF3'5'H1 is a crucial regulator of the TRIC synthesis pathway. The interaction between CsHIPP3 and CsF3'5'H1 was assessed using bimolecular fluorescence complementation, firefly luciferase complementation imaging, and pulldown experiments. CsHIPP3 knockdown using virus-induced gene silencing technology decreased the content of each component of TRICs. Compared with the control, the relative catechin content was reduced by 40.12-55.39%. Co-overexpression of CsHIPP3 and CsF3'5'H1 significantly elevated the TRIC content in tea leaves and calli. Moreover, the TRIC content in transient co-overexpression leaves was 1.44-fold higher than that of the control group, and tea callus was 50.83% higher in transient co-overexpression than in the wild type. Thus, zinc-regulated TRIC synthesis in a zinc-rich environment was mediated by binding CsHIPP3 with CsF3'5'H1 to promote TRIC synthesis and accumulation.
Collapse
Affiliation(s)
- Yilan Hu
- College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Pingping Li
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Xinzhuan Yao
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Yumei He
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Hu Tang
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Qi Zhao
- College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Litang Lu
- College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Asad MAU, Yan Z, Zhou L, Guan X, Cheng F. How abiotic stresses trigger sugar signaling to modulate leaf senescence? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108650. [PMID: 38653095 DOI: 10.1016/j.plaphy.2024.108650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Plants have evolved the adaptive capacity to mitigate the negative effect of external adversities at chemical, molecular, cellular, and physiological levels. This capacity is conferred by triggering the coordinated action of internal regulatory factors, in which sugars play an essential role in the regulating chloroplast degradation and leaf senescence under various stresses. In this review, we summarize the recent findings on the senescent-associated changes in carbohydrate metabolism and its relation to chlorophyl degradation, oxidative damage, photosynthesis inhibition, programmed cell death (PCD), and sink-source relation as affected by abiotic stresses. The action of sugar signaling in regulating the initiation and progression of leaf senescence under abiotic stresses involves interactions with various plant hormones, reactive oxygen species (ROS) burst, and protein kinases. This discussion aims to elucidate the complex regulatory network and molecular mechanisms that underline sugar-induced leaf senescence in response to various abiotic stresses. The imperative role of sugar signaling in regulating plant stress responses potentially enables the production of crop plants with modified sugar metabolism. This, in turn, may facilitate the engineering of plants with improved stress responses, optimal life span and higher yield achievement.
Collapse
Affiliation(s)
- Muhmmad Asad Ullah Asad
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhang Yan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lujian Zhou
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xianyue Guan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fangmin Cheng
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China; Collaborative Innovation Centre for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing, China.
| |
Collapse
|
5
|
Jin Q, Wang Z, Sandhu D, Chen L, Shao C, Xie S, Shang F, Wen S, Wu T, Jin H, Huang F, Liu G, Hu J, Su Q, Huang M, Zhu Q, Zhou B, Zhu L, Peng L, Liu Z, Huang J, Tian N, Liu S. miR828a-CsMYB114 Module Negatively Regulates the Biosynthesis of Theobromine in Camellia sinensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4464-4475. [PMID: 38376143 DOI: 10.1021/acs.jafc.3c07736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Theobromine is an important quality component in tea plants (Camellia sinensis), which is produced from 7-methylxanthine by theobromine synthase (CsTbS), the key rate-limiting enzyme in theobromine biosynthetic pathway. Our transcriptomics and widely targeted metabolomics analyses suggested that CsMYB114 acted as a potential hub gene involved in the regulation of theobromine biosynthesis. The inhibition of CsMYB114 expression using antisense oligonucleotides (ASO) led to a 70.21% reduction of theobromine level in leaves of the tea plant, which verified the involvement of CsMYB114 in theobromine biosynthesis. Furthermore, we found that CsMYB114 was located in the nucleus of the cells and showed the characteristic of a transcription factor. The dual luciferase analysis, a yeast one-hybrid assay, and an electrophoretic mobility shift assay (EMSA) showed that CsMYB114 activated the transcription of CsTbS, through binding to CsTbS promoter. In addition, a microRNA, miR828a, was identified that directly cleaved the mRNA of CsMYB114. Therefore, we conclude that CsMYB114, as a transcription factor of CsTbS, promotes the production of theobromine, which is inhibited by miR828a through cleaving the mRNA of CsMYB114.
Collapse
Affiliation(s)
- Qifang Jin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Zhong Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Devinder Sandhu
- United States Salinity Laboratory, United States Department of Agriculture, Agricultural Research Service, Riverside, California 92507, United States
| | - Lan Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Chenyu Shao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Siyi Xie
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Fanghuizi Shang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Shuai Wen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Ting Wu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Huiying Jin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Feiyi Huang
- Tea Research Institute, Hunan Academy of Agricultural Sciences/National Small and Medium Leaf Tea Plant Germplasm Resource Nursery, Changsha 410125, China
| | - Guizhi Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Jinyu Hu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Qin Su
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Mengdi Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Qian Zhu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Biao Zhou
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Lihua Zhu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Lvwen Peng
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Na Tian
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| | - Shuoqian Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410127, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
- CoInnovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410127, China
| |
Collapse
|