1
|
Babaei K, Azimi Nezhad M, Sedigh Ziabari SN, Mirzajani E, Mozdarani H, Sharami SH, Farzadi S, Mirhafez SR, Naghdipour Mirsadeghi M, Norollahi SE, Saadatian Z, Samadani AA. TLR signaling pathway and the effects of main immune cells and epigenetics factors on the diagnosis and treatment of infertility and sterility. Heliyon 2024; 10:e35345. [PMID: 39165943 PMCID: PMC11333914 DOI: 10.1016/j.heliyon.2024.e35345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
Recurrent pregnancy loss (RPL), often known as spontaneous miscarriages occurring two or more times in a row, is a reproductive disease that affects certain couples. The cause of RPL is unknown in many cases, leading to difficulties in therapy and increased psychological suffering in couples. Toll-like receptors (TLR) have been identified as crucial regulators of inflammation in various human tissues. The occurrence of inflammation during parturition indicates that Toll-like receptor activity in tissues related to pregnancy may play a crucial role in the onset and continuation of normal function, as well as in various pregnancy complications like infection-related preterm. TLRs or their signaling molecules may serve as effective therapeutic targets for inhibiting premature activity. At the maternal-fetal interface, TLRs are found in both immune and non-immune cells, such as trophoblasts and decidual cells. TLR expression patterns are influenced by the phases of pregnancy. In this way, translational combinations like epigenetics, have indicated their impact on the TLRs.Importantly, abnormal DNA methylation patterns and histone alterations have an impressive performance in decreasing fertility by influencing gene expression and required molecular and cellular activities which are vital for a normal pregnancy and embryonic process. TLRs, play a central duty in the innate immune system and can regulate epigenetic elements by many different signaling pathways. The potential roles of TLRs in cells, epigenetics factors their ability to identify and react to infections, and their place in the innate immune system will all be covered in this narrative review essay.
Collapse
Affiliation(s)
- Kosar Babaei
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mohsen Azimi Nezhad
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- UMR INSERM U 1122, IGE-PCV, Interactions Gène-Environment En Physiopathologie Cardiovascular Université De Lorraine, Nancy, France
| | - Seyedeh Nafise Sedigh Ziabari
- BSC of Midwifery, Reproductive Health Research Center, Al-Zahra Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Ebrahim Mirzajani
- Department of Biochemistry and Biophysics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hossein Mozdarani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyedeh Hajar Sharami
- Reproductive Health Research Center, Department of Obstetrics and Gynecology, School of Medicine, Al-Zahra Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Sara Farzadi
- Department of Gynecology, School of Medicine, Alzahra Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyed Reza Mirhafez
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Misa Naghdipour Mirsadeghi
- Department of Gynecology, School of Medicine, Reproductive Health Research Center, Alzahra Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Zahra Saadatian
- Department of Physiology, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
2
|
Sfakianoudis K, Zikopoulos A, Grigoriadis S, Seretis N, Maziotis E, Anifandis G, Xystra P, Kostoulas C, Giougli U, Pantos K, Simopoulou M, Georgiou I. The Role of One-Carbon Metabolism and Methyl Donors in Medically Assisted Reproduction: A Narrative Review of the Literature. Int J Mol Sci 2024; 25:4977. [PMID: 38732193 PMCID: PMC11084717 DOI: 10.3390/ijms25094977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
One-carbon (1-C) metabolic deficiency impairs homeostasis, driving disease development, including infertility. It is of importance to summarize the current evidence regarding the clinical utility of 1-C metabolism-related biomolecules and methyl donors, namely, folate, betaine, choline, vitamin B12, homocysteine (Hcy), and zinc, as potential biomarkers, dietary supplements, and culture media supplements in the context of medically assisted reproduction (MAR). A narrative review of the literature was conducted in the PubMed/Medline database. Diet, ageing, and the endocrine milieu of individuals affect both 1-C metabolism and fertility status. In vitro fertilization (IVF) techniques, and culture conditions in particular, have a direct impact on 1-C metabolic activity in gametes and embryos. Critical analysis indicated that zinc supplementation in cryopreservation media may be a promising approach to reducing oxidative damage, while female serum homocysteine levels may be employed as a possible biomarker for predicting IVF outcomes. Nonetheless, the level of evidence is low, and future studies are needed to verify these data. One-carbon metabolism-related processes, including redox defense and epigenetic regulation, may be compromised in IVF-derived embryos. The study of 1-C metabolism may lead the way towards improving MAR efficiency and safety and ensuring the lifelong health of MAR infants.
Collapse
Affiliation(s)
- Konstantinos Sfakianoudis
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (K.P.)
| | - Athanasios Zikopoulos
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
- Obstetrics and Gynecology, Royal Cornwall Hospital, Treliske, Truro TR1 3LJ, UK
| | - Sokratis Grigoriadis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Nikolaos Seretis
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Evangelos Maziotis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - George Anifandis
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41222 Larisa, Greece;
| | - Paraskevi Xystra
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Charilaos Kostoulas
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Urania Giougli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Konstantinos Pantos
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (K.P.)
| | - Mara Simopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| |
Collapse
|
3
|
Lu Y, Tian T, Chen L, Yan L, Chang L, Qiao J. Diverse impacts of female chromosomal polymorphisms on assisted reproduction outcomes: a retrospective cohort study. BMC Pregnancy Childbirth 2024; 24:331. [PMID: 38678230 PMCID: PMC11055351 DOI: 10.1186/s12884-024-06532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND The effects of female chromosomal polymorphisms (FCPs) on various aspects of reproductive health have been investigated, yet the findings are frequently inconsistent. This study aims to clarify the role of FCPs on the outcomes of in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). METHODS This retrospective cohort study comprised 951 couples with FCPs and 10,788 couples with normal karyotypes who underwent IVF/ICSI treatment at Peking University Third Hospital between 2015 and 2021. The exposure was FCPs. The embryological outcomes and clinical outcomes were compared. RESULTS The FCPs, as a whole, compromised the oocyte maturation rate (76.0% vs. 78.8%, P = 0.008), while they did not adversely affect other IVF/ICSI outcomes. Further detailed analyses showed that every type of FCPs contributed to the lower oocyte maturation rate, particularly the rare FCPs (69.0% vs. 78.8%, P = 0.008). The female qh + was associated with a higher normal fertilization rate (63.0% vs. 59.2%, adjusted P = 0.022), a higher clinical pregnancy rate (37.0% vs. 30.7%, adjusted P = 0.048), and a higher live birth rate (27.0% vs.19.0%, adjusted P = 0.003) in couples undergoing IVF. Conversely, in couples undergoing ICSI, female qh + was found to be related to a lower normal fertilization rate (58.8% vs. 63.8%, P = 0.032), a comparable clinical pregnancy rate (25.7% vs. 30.9%, P = 0.289), and a comparable live birth rate (19.8% vs. 19.2%, P = 0.880) compared to the control group. Additionally, an increased risk of preterm birth was observed in women undergoing IVF with multiple polymorphisms (62.5% vs. 16.9%, adjusted P < 0.001) and in women undergoing ICSI with pstk+ (36.4% vs. 15.4%, P = 0.036). CONCLUSIONS Our research unravels the diverse impacts of various FCPs on IVF/ICSI outcomes, highlighting the detrimental effects of FCPs on oocyte maturation and the risk of preterm birth.
Collapse
Affiliation(s)
- Yongjie Lu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- National Clinical Key Specialty Construction Program, P. R. China 2023, Beijing, 100191, China
| | - Tian Tian
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- National Clinical Key Specialty Construction Program, P. R. China 2023, Beijing, 100191, China
| | - Lixue Chen
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- National Clinical Key Specialty Construction Program, P. R. China 2023, Beijing, 100191, China
| | - Liying Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- National Clinical Key Specialty Construction Program, P. R. China 2023, Beijing, 100191, China
| | - Liang Chang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
- National Clinical Key Specialty Construction Program, P. R. China 2023, Beijing, 100191, China.
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
- National Clinical Key Specialty Construction Program, P. R. China 2023, Beijing, 100191, China.
| |
Collapse
|
4
|
de Souza LK, Witusk JPD, Galgaro BC, Rodrigues LDS, da Cunha-Filho JSL. Total Fertilization Failure: A Single Center Analysis. Reprod Sci 2024; 31:697-703. [PMID: 37814199 DOI: 10.1007/s43032-023-01338-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/23/2023] [Indexed: 10/11/2023]
Abstract
Our main objective was to identify the male and female parameters associated with total fertilization failure (TFF) in IVF with nonmasculine indications. The present work, IRB equivalent INS 63209, is a case-control study that evaluated all cases with TFF after conventional IVF at the Center for Human Reproduction from January 2010 to December 2019 (n = 154). As a control group, we analyzed all patients who did not experience fertilization failure after conventional IVF in the same period (n = 475). We evaluated various parameters, both male and female, assessed during infertility treatment, and only cases without masculine etiology (normal seminal parameters) were included. Ages (female and male) were not different between the groups. Moreover, AMH (anti-Müllerian hormone), semen volume, preprocessing concentration and preprocessing motility were not significantly different (P > 0.05). However, the number of collected oocytes (study versus control groups, median [25-75 interquartile]: 2 [1-5] and 5 [3-8]); MII (2 [1-4] and 5 [2-7]); and postprocessing motility (85 [70-90] and 90 [80-95]) were significantly different between both groups (P < 0.05). Furthermore, a logistic regression analysis including all significant data demonstrated that the number of collected oocytes was significantly related to IVF failure. Patients with fewer than 5 oocytes had an OR of - 1.37 (- 0.938 to - 1.827) for TFF after conventional IVF. Our results showed that a lower follicular response to controlled ovarian stimulation, evidenced by a decreased number of collected oocytes, was the most important parameter associated with IVF failure in nonmasculine infertility.
Collapse
|