1
|
Vadan RL, Varela N, Zhuravko N, Ogidan NO, Adedara VO, Keku E. Comparative Management Methods for Adolescents With Polycystic Ovarian Syndrome: A Systemic Review. Cureus 2024; 16:e55876. [PMID: 38595887 PMCID: PMC11003559 DOI: 10.7759/cureus.55876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2024] [Indexed: 04/11/2024] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a common endocrinological disorder affecting many adolescents and women of reproductive age worldwide. A diagnosis of PCOS in adolescence relies upon investigating each medical history independently and noting commonly associated symptoms, including obesity, insulin resistance, acne, menstrual abnormalities, and hirsutism. Many researchers are aiming to discover a methodology to help manage the symptoms associated with PCOS, especially in adolescents. This review will investigate management methods possible for adolescents with PCOS. Although the most preferred way to help reduce symptoms is through lifestyle modifications such as vigorous exercise and dietary regimens low in carbohydrates, pharmaceuticals are also offering promising results to adolescents with PCOS. Metformin, oral contraceptives, gonadotropin-releasing hormone (GnRH) antagonists, and other alternatives, including finasteride, eflornithine, fibroblast growth factors (FGFs), and vitamin D, are all shown to help improve insulin sensitivity and regulate menstrual cycles and reduce hirsutism. Epilatory and surgical measurements are also available; however, they are reserved for when all other methods fail and once adulthood or an appropriate age is reached. Although there are many pharmaceuticals available, it is necessary to evaluate each adolescent with PCOS uniquely and prescribe the appropriate pharmacotherapy regarding their symptoms.
Collapse
Affiliation(s)
- Roberta L Vadan
- Medicine, St. George's University School of Medicine, St. George's, GRD
| | - Nanette Varela
- Medicine, St. George's University School of Medicine, St. George's, GRD
| | - Nikita Zhuravko
- Medicine, St. George's University School of Medicine, St. George's, GRD
| | - Noreena O Ogidan
- Medicine, St. George's University School of Medicine, St. George's, GRD
| | - Victor O Adedara
- Medicine, St. George's University School of Medicine, St. George's, GRD
| | - Emmanuel Keku
- Public Health & Preventive Medicine, St. George's University School of Medicine, St. George's, GRD
| |
Collapse
|
2
|
Hu M, Zhang Y, Lu Y, Han J, Guo T, Cui P, Brännström M, Shao LR, Billig H. Regulatory mechanisms of HMGB1 and its receptors in polycystic ovary syndrome-driven gravid uterine inflammation. FEBS J 2023; 290:1874-1906. [PMID: 36380688 PMCID: PMC10952262 DOI: 10.1111/febs.16678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/23/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022]
Abstract
High-mobility group box 1 (HMGB1) is critical for inflammatory homeostasis and successful pregnancy, and there is a strong association among elevated levels of HMGB1, polycystic ovary syndrome (PCOS), chronic inflammation and pregnancy loss. However, the mechanisms responsible for PCOS-driven regulation of uterine HMGB1 and its candidate receptors [toll-like receptor (TLR) 2 and 4] and inflammatory responses during pregnancy remain unclear. In this study, we found a gestational stage-dependent decrease in uterine HMGB1 and TLR4 protein abundance in rats during normal pregnancy. We demonstrated that increased expression of HMGB1, TLR2 and TLR4 proteins was associated with activation of inflammation-related signalling pathways in the gravid uterus exposed to 5α-dihydrotestosterone and insulin, mimicking the clinical features (hyperandrogenism and insulin resistance) of PCOS and this elevation was completely inhibited by treatment with the androgen receptor (AR) antagonist flutamide. Interestingly, acute exposure to lipopolysaccharide suppressed HMGB1, TLR4 and inflammation-related protein abundance but did not affect androgen levels or AR expression in the gravid uterus with viable fetuses. Furthermore, immunohistochemical analysis revealed that, in addition to being localized predominately in the nuclear compartment, HMGB1 immunoreactivity was also detected in the cytoplasm in the PCOS-like rat uterus, PCOS endometrium and pregnant rat uterus with haemorrhagic and resorbed fetuses, possibly via activation of nuclear factor κB signalling. These results suggest that both AR-dependent and AR-independent mechanisms contribute to the modulation of HMGB1/TLR2/TLR4-mediated uterine inflammation. We propose that the elevation of HMGB1 and its receptors and disruption of the pro-/anti-inflammatory balance in the gravid uterus may participate in the pathophysiology of PCOS-associated pregnancy loss.
Collapse
Affiliation(s)
- Min Hu
- Department of Traditional Chinese MedicineThe First Affiliated Hospital of Guangzhou Medical UniversityChina
- Institute of Integrated Traditional Chinese Medicine and Western MedicineGuangzhou Medical UniversityChina
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgSweden
| | - Yuehui Zhang
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgSweden
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated HospitalHeilongjiang University of Chinese MedicineHarbinChina
| | - Yaxing Lu
- Department of Traditional Chinese MedicineThe First Affiliated Hospital of Guangzhou Medical UniversityChina
- Institute of Integrated Traditional Chinese Medicine and Western MedicineGuangzhou Medical UniversityChina
| | - Jing Han
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated HospitalHeilongjiang University of Chinese MedicineHarbinChina
| | - Tingting Guo
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated HospitalHeilongjiang University of Chinese MedicineHarbinChina
| | - Peng Cui
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgSweden
- Department of Obstetrics and GynecologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineChina
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska AcademyUniversity of GothenburgSweden
| | - Linus R. Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgSweden
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgSweden
| |
Collapse
|
3
|
Recent advances in emerging PCOS therapies. Curr Opin Pharmacol 2023; 68:102345. [PMID: 36621270 DOI: 10.1016/j.coph.2022.102345] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 01/08/2023]
Abstract
Polycystic ovary syndrome is a prevalent endocrinopathy involving androgen excess, and anovulatory infertility. The disorder is also associated with many comorbidities such as obesity and hyperinsulinemia, and an increased risk of cardiovascular complications. Reproductive, endocrine, and metabolic symptoms are highly variable, with heterogenous phenotypes adding complexity to clinical management of symptoms. This review highlights recent findings regarding emerging therapies for treating polycystic ovary syndrome, including i) pharmacological agents to target androgen excess, ii) modulation of kisspeptin signalling to target central neuroendocrine dysregulation, and iii) novel insulin sensitisers to combat peripheral metabolic dysfunction.
Collapse
|
4
|
Reiser E, Lanbach J, Böttcher B, Toth B. Non-Hormonal Treatment Options for Regulation of Menstrual Cycle in Adolescents with PCOS. J Clin Med 2022; 12:jcm12010067. [PMID: 36614868 PMCID: PMC9820988 DOI: 10.3390/jcm12010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Menstrual irregularities are one of the main clinical symptoms caused by polycystic ovary syndrome (PCOS). Pharmacological treatment options for non-fertility indications to restore menstrual frequency play an important role in the management of PCOS. Oral contraceptive pills are commonly prescribed for adolescents with menstrual irregularities, however, when contraindicated or poorly tolerated, further pharmacological therapy is required. This systematic literature research aims to provide an overview concerning the effects of non-hormonal pharmacological treatment options on menstrual irregularities in adolescents suffering from PCOS. A systematic literature search in PubMed, Cochrane, Embase, Bio-SISS and Web of Science was performed, including literature from January 1998 to September 2022, using specific keywords in order to find related studies. n = 265 studies were identified of which n = 164 were eligible for further evaluation. Only four placebo-controlled studies were identified, with diverging inclusion and exclusion criteria. Available data on specific non-hormonal off-label use medication primarily consisted of metformin, Glucagon-like peptide 1 receptor agonists, thiazolidinediones, anti-androgen agents (spironolactone, finasteride, flutamide) and supplements (chromium picolinate, myo-inositol). However, only a few have partly pointed out beneficial effects on improving menstrual frequency in patients diagnosed with PCOS. In summary, metformin in dosages of 1500-2550 g/day, GLP-1-analogues and supplements were effective in regulation of menstrual cycles in adolescents diagnosed with PCOS. Menstrual frequency in adolescents with PCOS is essential to prevent hypoestrogenism with long-term consequences. In this context, MET is the most effective and cost- efficient in overweight adolescent girls, also showing beneficial effects in the regulation of insulin sensitivity, especially if COCs are contraindicated or not well-tolerated. Further studies are needed to evaluate therapies in lean and normal-weight girls with PCOS.
Collapse
|
5
|
Dhadhal S, Nampoothiri L. Decoding the molecular cascade of embryonic-uterine modulators in pregnancy loss of PCOS mother- an "in vivo" study. Reprod Biol Endocrinol 2022; 20:165. [PMID: 36476384 PMCID: PMC9727897 DOI: 10.1186/s12958-022-01041-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome is associated with an increased rate of spontaneous abortion/early pregnancy loss and pups delivered to PCOS animals were abnormal. Currently, assisted reproductive technology has been used to help numerous infertile couples to have their babies. However, there is a low implantation rate after the transfer of embryos. Till now, it could not be concluded whether the reduced pregnancy rates observed were due to abnormal embryos or endometrial modification. Further, transgenic mouse models have been used to find out the molecular deficits behind early pregnancy complications. But, the deletion of crucial genes could lead to systemic deficiencies/embryonic lethality. Also, pregnancy is a complex process with overlapping expression patterns making it challenging to mimic their stage-specific role. Therefore, the motive of the current study was to investigate the probable molecular cascade to decipher the early pregnancy loss in the letrozole-induced PCOS mouse model. METHODS PCOS was induced in mice by oral administration of letrozole daily for 21 days. Following, the pregnancy was established and animals were sacrificed on the day 6th of pregnancy. Animals were assessed for early pregnancy loss, hormonal profile, mRNA expression of steroid receptors (Ar, Pr, Esr1/2), decidualization markers (Hox10/11a), adhesion markers (Itgavb3, Itga4b1), matrix metalloproteinases and their endogenous inhibitor (Mmp2/9, Timp1/2) and key mediators of LIF/STAT pathway (Lif, Lifr, gp130, stat3) were analyzed in the embryo implanted region of the uterus. Morphological changes in ovaries and implanted regions of the uterus were assessed. RESULTS Mice treated with letrozole demonstrated significant increases in testosterone levels along with a decline in progesterone levels as compared to control animals. PCOS animals also exhibited decreased fertility index and disrupted ovarian and embryo-containing uterus histopathology. Altered gene expression of the steroid receptors and reduced expression of Hox10a, integrins, Mmp9, Timp1/3, Gp130 & Stat3 was observed in the implanted region of the uterus of PCOS animals. CONCLUSION Our results reveal that majority of the molecular markers alteration in the establishment of early pregnancy could be due to the aberrant progesterone signaling in the embryonic-uterine tissue of PCOS animals, which further translates into poor fetal outcomes as observed in the current study and in several IVF patients.
Collapse
Affiliation(s)
- Shivani Dhadhal
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Laxmipriya Nampoothiri
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
6
|
Stener-Victorin E. Update on Animal Models of Polycystic Ovary Syndrome. Endocrinology 2022; 163:bqac164. [PMID: 36201611 PMCID: PMC9631972 DOI: 10.1210/endocr/bqac164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Indexed: 11/19/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a complex disease affecting up to 15% of women of reproductive age. Women with PCOS suffer from reproductive dysfunctions with excessive androgen secretion and irregular ovulation, leading to reduced fertility and pregnancy complications. The syndrome is associated with a wide range of comorbidities including type 2 diabetes, obesity, and psychiatric disorders. Despite the high prevalence of PCOS, its etiology remains unclear. To understand the pathophysiology of PCOS, how it is inherited, and how to predict PCOS, and prevent and treat women with the syndrome, animal models provide an important approach to answering these fundamental questions. This minireview summarizes recent investigative efforts on PCOS-like rodent models aiming to define underlying mechanisms of the disease and provide guidance in model selection. The focus is on new genetic rodent models, on a naturally occurring rodent model, and provides an update on prenatal and peripubertal exposure models.
Collapse
|
7
|
Bahri Khomami M, Teede HJ, Joham AE, Moran LJ, Piltonen TT, Boyle JA. Clinical management of pregnancy in women with polycystic ovary syndrome: An expert opinion. Clin Endocrinol (Oxf) 2022; 97:227-236. [PMID: 35383999 PMCID: PMC9544149 DOI: 10.1111/cen.14723] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 12/16/2022]
Abstract
Polycystic ovary syndrome (PCOS) is associated with a higher risk for pregnancy and birth complications according to the specific features associated with PCOS. The features include obesity before and during pregnancy, hyperandrogenism, insulin resistance, infertility, cardiometabolic risk factors, and poor mental health. PCOS is not often recognized as a risk factor for poor pregnancy and birth outcomes in pregnancy care guidelines, while its associated features are. Pregnancy-related risk profile should ideally be assessed for modifiable risk factors (e.g., lifestyle and weight management) at preconception in women with PCOS. Hyperglycaemia should be screened using a 75-g oral glucose tolerance test at preconception or within the first 20 weeks of pregnancy if it has not been performed at preconception and should be repeated at 24-28 weeks of pregnancy. In the absence of evidence of benefit for strategies specific to women with PCOS, the international evidence-based guidelines for the assessment and management of PCOS recommend screening, optimizing, and monitoring risk profile in women with PCOS (at preconception, during and postpregnancy) consistent with the recommendations for the general population. Recommended factors include blood glucose, weight, blood pressure, smoking, alcohol, diet, exercise, sleep and mental health, emotional, and sexual health among women with PCOS. The guidelines recommend Metformin in addition to lifestyle for assisting with weight management and improving cardiometabolic risk factors, particularly in those with overweight or obesity. Letrozole is considered the first-line pharmacological treatment for anovulatory infertility in PCOS. Individualized approach should be considered in the management of pregnancy in PCOS.
Collapse
Affiliation(s)
- Mahnaz Bahri Khomami
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Faculty of Medicine Nursing and Health SciencesMonash UniversityClaytonLevel 1, 43‐51 Kanooka GroveAustralia
| | - Helena J Teede
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Faculty of Medicine Nursing and Health SciencesMonash UniversityClaytonLevel 1, 43‐51 Kanooka GroveAustralia
- Monash HealthMelbourneAustralia
| | - Anju E. Joham
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Faculty of Medicine Nursing and Health SciencesMonash UniversityClaytonLevel 1, 43‐51 Kanooka GroveAustralia
- Monash HealthMelbourneAustralia
| | - Lisa J. Moran
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Faculty of Medicine Nursing and Health SciencesMonash UniversityClaytonLevel 1, 43‐51 Kanooka GroveAustralia
| | - Terhi T. Piltonen
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University HospitalUniversity of OuluOuluFinland
| | - Jacqueline A. Boyle
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Faculty of Medicine Nursing and Health SciencesMonash UniversityClaytonLevel 1, 43‐51 Kanooka GroveAustralia
- Monash HealthMelbourneAustralia
| |
Collapse
|
8
|
McCartney CR, Campbell RE, Marshall JC, Moenter SM. The role of gonadotropin-releasing hormone neurons in polycystic ovary syndrome. J Neuroendocrinol 2022; 34:e13093. [PMID: 35083794 PMCID: PMC9232905 DOI: 10.1111/jne.13093] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 01/28/2023]
Abstract
Given the critical central role of gonadotropin-releasing hormone (GnRH) neurons in fertility, it is not surprising that the GnRH neural network is implicated in the pathology of polycystic ovary syndrome (PCOS), the most common cause of anovulatory infertility. Although many symptoms of PCOS relate most proximately to ovarian dysfunction, the central reproductive neuroendocrine system ultimately drives ovarian function through its regulation of anterior pituitary gonadotropin release. The typical cyclical changes in frequency of GnRH release are often absent in women with PCOS, resulting in a persistent high-frequency drive promoting gonadotropin changes (i.e., relatively high luteinizing hormone and relatively low follicle-stimulating hormone concentrations) that contribute to ovarian hyperandrogenemia and ovulatory dysfunction. However, the specific mechanisms underpinning GnRH neuron dysfunction in PCOS remain unclear. Here, we summarize several preclinical and clinical studies that explore the causes of aberrant GnRH secretion in PCOS and the role of disordered GnRH secretion in PCOS pathophysiology.
Collapse
Affiliation(s)
- Christopher R. McCartney
- Center for Research in Reproduction and Department of MedicineUniversity of Virginia School of MedicineCharlottesvilleVAUSA
| | - Rebecca E. Campbell
- Centre for Neuroendocrinology and Department of PhysiologySchool of Biomedical SciencesUniversity of OtagoDunedinNew Zealand
| | - John C. Marshall
- Center for Research in Reproduction and Department of MedicineUniversity of Virginia School of MedicineCharlottesvilleVAUSA
| | - Suzanne M. Moenter
- Departments of Molecular & Integrative PhysiologyInternal MedicineObstetrics and GynecologyUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
9
|
Silva MSB, Campbell RE. Polycystic Ovary Syndrome and the Neuroendocrine Consequences of Androgen Excess. Compr Physiol 2022; 12:3347-3369. [PMID: 35578968 DOI: 10.1002/cphy.c210025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a major endocrine disorder strongly associated with androgen excess and frequently leading to female infertility. Although classically considered an ovarian disease, altered neuroendocrine control of gonadotropin-releasing hormone (GnRH) neurons in the brain and abnormal gonadotropin secretion may underpin PCOS presentation. Defective regulation of GnRH pulse generation in PCOS promotes high luteinizing hormone (LH) pulsatile secretion, which in turn overstimulates ovarian androgen production. Early and emerging evidence from preclinical models suggests that maternal androgen excess programs abnormalities in developing neuroendocrine circuits that are associated with PCOS pathology, and that these abnormalities are sustained by postpubertal elevation of endogenous androgen levels. This article will discuss experimental evidence, from the clinic and in preclinical animal models, that has significantly contributed to our understanding of how androgen excess influences the assembly and maintenance of neuroendocrine impairments in the female brain. Abnormal central gamma-aminobutyric acid (GABA) signaling has been identified in both patients and preclinical models as a possible link between androgen excess and elevated GnRH/LH secretion. Enhanced GABAergic innervation and drive to GnRH neurons is suspected to contribute to the pathogenesis and early manifestation of neuroendocrine derangement in PCOS. Accordingly, this article also provides an overview of GABA regulation of GnRH neuron function from prenatal development to adulthood to discuss possible avenues for future discovery research and therapeutic interventions. © 2022 American Physiological Society. Compr Physiol 12:3347-3369, 2022.
Collapse
Affiliation(s)
- Mauro S B Silva
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rebecca E Campbell
- Centre for Neuroendocrinology, Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Wang C, Wen YX, Mai QY. Impact of metabolic disorders on endometrial receptivity in patients with polycystic ovary syndrome. Exp Ther Med 2022; 23:221. [PMID: 35222698 DOI: 10.3892/etm.2022.11145] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
The present study investigated the expression of endometrial receptivity-related molecules in patients with polycystic ovary syndrome (PCOS) and different androgen status, insulin resistance (IR) levels, and body mass indexes (BMI) to identify the mechanism underlying their effects on pregnancy outcomes. The present study recruited 43 participants from November 2020 to January 2021, which were classified into five groups: i) Hyperandrogenemia (HA) combined with impaired glucose tolerance group (n=8); ii) HA combined with diabetes mellitus group (n=8); iii) HA combined with non-IR (NIR) group (n=10); iv) non-HA (NHA) androgen combined with IR group (n=8); and v) NHA combined with NIR group (n=9). In addition, according to their BMIs, patients were sub-grouped into lean/normal (n=27), overweight (n=8) or obese (n=8) groups. The mRNA expression levels of endometrial receptivity-related molecules were detected using reverse transcription-quantitative PCR. In addition, flow cytometry was used to determine the phenotype and percentage of uterine natural killer cells (uNK). According to the results, patients with PCOS and IR status, HA and obesity (BMI ≥24 kg/m2) demonstrated significantly decreased mRNA expression levels of adiponectin, adiponectin receptor (AdipoR)1, AdipoR2, adapter protein containing PH domain, PTB domain and leucine zipper motif 1, estrogen receptor (ER) α, ERβ, progesterone receptor (PR), IL-15, integrin β3 avβ3, and insulin-like growth factor binding protein-1, but increased mRNA expression levels of IL-6 and IL-8 compared with NHA + NIR group or lean/normal group, respectively. In addition, obese patients with PCOS demonstrated increased mRNA expression levels of PR compared with overweight patients. This suggested that insulin resistant status, HA, and obesity could alter the endometrial receptivity of patients with PCOS, which may explain poorer embryo implantation and pregnancy outcomes in clinics.
Collapse
Affiliation(s)
- Can Wang
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yang-Xing Wen
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Qing-Yun Mai
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
11
|
Hu M, Zhang Y, Lu L, Zhou Y, Wu D, Brännström M, Shao LR, Billig H. Overactivation of the androgen receptor exacerbates gravid uterine ferroptosis via interaction with and suppression of the NRF2 defense signaling pathway. FEBS Lett 2022; 596:806-825. [DOI: 10.1002/1873-3468.14289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/02/2021] [Accepted: 01/05/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Min Hu
- Department of Traditional Chinese Medicine The First Affiliated Hospital of Guangzhou Medical University 510120 Guangzhou China
- Institute of Integrated Traditional Chinese Medicine and Western Medicine Guangzhou Medical University 510120 Guangzhou China
- Department of Physiology/Endocrinology Institute of Neuroscience and Physiology The Sahlgrenska Academy University of Gothenburg 40530 Gothenburg Sweden
| | - Yuehui Zhang
- Department of Physiology/Endocrinology Institute of Neuroscience and Physiology The Sahlgrenska Academy University of Gothenburg 40530 Gothenburg Sweden
- Department of Obstetrics and Gynecology Key Laboratory and Unit of Infertility in Chinese Medicine First Affiliated Hospital Heilongjiang University of Chinese Medicine 150040 Harbin China
| | - Lingjing Lu
- Department of Traditional Chinese Medicine The First Affiliated Hospital of Guangzhou Medical University 510120 Guangzhou China
- Institute of Integrated Traditional Chinese Medicine and Western Medicine Guangzhou Medical University 510120 Guangzhou China
| | - Yu Zhou
- Department of Traditional Chinese Medicine The First Affiliated Hospital of Guangzhou Medical University 510120 Guangzhou China
- Institute of Integrated Traditional Chinese Medicine and Western Medicine Guangzhou Medical University 510120 Guangzhou China
| | - Denghui Wu
- Department of Obstetrics and Gynecology Key Laboratory and Unit of Infertility in Chinese Medicine First Affiliated Hospital Heilongjiang University of Chinese Medicine 150040 Harbin China
| | - Mats Brännström
- Department of Obstetrics and Gynecology Sahlgrenska University Hospital Sahlgrenska Academy University of Gothenburg 41345 Gothenburg Sweden
| | - Linus R Shao
- Department of Physiology/Endocrinology Institute of Neuroscience and Physiology The Sahlgrenska Academy University of Gothenburg 40530 Gothenburg Sweden
| | - Håkan Billig
- Department of Physiology/Endocrinology Institute of Neuroscience and Physiology The Sahlgrenska Academy University of Gothenburg 40530 Gothenburg Sweden
| |
Collapse
|
12
|
Gao Q, Ma C, Meng S, Wang G, Xing Q, Xu Y, He X, Wang T, Cao Y. Exploration of molecular features of PCOS with different androgen levels and immune-related prognostic biomarkers associated with implantation failure. Front Endocrinol (Lausanne) 2022; 13:946504. [PMID: 36060967 PMCID: PMC9439868 DOI: 10.3389/fendo.2022.946504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS), the most common heterogeneous reproductive disease afflicting women of childbearing age, has been recognized as a chronic inflammatory disease recently. Most PCOS patients have hyperandrogenism, indicating a poor prognosis and poor pregnancy outcomes. The molecular mechanism underlying PCOS development is still unknown. In the present study, we investigated the gene expression profiling characteristics of PCOS with hyperandrogenism (HA) or without hyperandrogenism (NHA) and identified immune-related factors that correlated with embryo implantation failure. METHODS PCOS and recurrent implantation failure (RIF) microarray datasets were obtained from the Gene Expression Omnibus (GEO) database. ClueGO software was used to perform enrichment analysis of differentially expressed genes (DEGs) in PCOS with varying androgen levels. The Weighted Co-Expression Network Analysis (WGCNA) was used to identify co-expressed modules and shared gene signatures between HA PCOS and RIF. Moreover, the upregulated DEGs of HA PCOS and RIF were intersected with shared gene signatures screening by WGCNA to excavate further key prognostic biomarkers related to implantation failure of HA PCOS. The selected biomarker was verified by qRT-PCR. RESULTS A total of 271 DEGs were found in HA PCOS granulosa cell samples, and 720 DEGs were found in NHA PCOS. According to CuleGO enrichment analysis, DEGs in HA PCOS are enriched in immune activation and inflammatory response. In contrast, DEGs in NHA PCOS are enriched in mesenchymal cell development and extracellular space. Using WGCNA analysis, we discovered 26 shared gene signatures between HA PCOS and RIF, which were involved in corticosteroid metabolism, bone maturation and immune regulation. DAPK2 was furtherly screened out and verified to be closely related with the development of HA PCOS, acting as an independent predictor biomarker of the embryo implantation failure. DAPK2 expression was negatively correlated to the embryo implantation rate (r=-0.474, P=0.003). The immune infiltration results suggested that upregulated DAPK2 expression was closely related with NK cell infiltration and macrophage M2, playing an essential role in the pathogenesis of implantation failure in HA PCOS. CONCLUSION Our research revealed the expression profiling of PCOS with different androgen levels and identified DAPK2 as a critical prognostic biomarker for implantation failure in PCOS.
Collapse
Affiliation(s)
- Qinyu Gao
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei, China
| | - Cong Ma
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center (Anhui Medical University), Hefei, China
| | - Shuyu Meng
- Molecular Pharmacology and Therapeutics, University of Minnesota, Twin Cities, MN, United States
| | - Guanxiong Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center (Anhui Medical University), Hefei, China
| | - Qiong Xing
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center (Anhui Medical University), Hefei, China
| | - Yuping Xu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center (Anhui Medical University), Hefei, China
| | - Xiaojin He
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center (Anhui Medical University), Hefei, China
| | - Tianjuan Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei, China
- *Correspondence: Tianjuan Wang, ; Yunxia Cao,
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei, China
- *Correspondence: Tianjuan Wang, ; Yunxia Cao,
| |
Collapse
|
13
|
Zhang Y, Hu M, Yang F, Zhang Y, Ma S, Zhang D, Wang X, Sferruzzi-Perri AN, Wu X, Brännström M, Shao LR, Billig H. Increased uterine androgen receptor protein abundance results in implantation and mitochondrial defects in pregnant rats with hyperandrogenism and insulin resistance. J Mol Med (Berl) 2021; 99:1427-1446. [PMID: 34180022 PMCID: PMC8455403 DOI: 10.1007/s00109-021-02104-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/20/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022]
Abstract
Abstract In this study, we show that during normal rat pregnancy, there is a gestational stage-dependent decrease in androgen receptor (AR) abundance in the gravid uterus and that this is correlated with the differential expression of endometrial receptivity and decidualization genes during early and mid-gestation. In contrast, exposure to 5α-dihydrotestosterone (DHT) and insulin (INS) or DHT alone significantly increased AR protein levels in the uterus in association with the aberrant expression of endometrial receptivity and decidualization genes, as well as disrupted implantation. Next, we assessed the functional relevance of the androgen-AR axis in the uterus for reproductive outcomes by treating normal pregnant rats and pregnant rats exposed to DHT and INS with the anti-androgen flutamide. We found that AR blockage using flutamide largely attenuated the DHT and INS-induced maternal endocrine, metabolic, and fertility impairments in pregnant rats in association with suppressed induction of uterine AR protein abundance and androgen-regulated response protein and normalized expression of several endometrial receptivity and decidualization genes. Further, blockade of AR normalized the expression of the mitochondrial biogenesis marker Nrf1 and the mitochondrial functional proteins Complexes I and II, VDAC, and PHB1. However, flutamide treatment did not rescue the compromised mitochondrial structure resulting from co-exposure to DHT and INS. These results demonstrate that functional AR protein is an important factor for gravid uterine function. Impairments in the uterine androgen-AR axis are accompanied by decreased endometrial receptivity, decidualization, and mitochondrial dysfunction, which might contribute to abnormal implantation in pregnant PCOS patients with compromised pregnancy outcomes and subfertility. Key messages The proper regulation of uterine androgen receptor (AR) contributes to a
normal pregnancy process, whereas the aberrant regulation of uterine AR might
be linked to polycystic ovary syndrome (PCOS)-induced pregnancy-related
complications. In the current study, we found that during normal rat pregnancy there is
a stage-dependent decrease in AR abundance in the gravid uterus and that this
is correlated with the differential expression of the endometrial receptivity
and decidualization genes Spp1, Prl, Igfbp1,
and Hbegf. Pregnant rats exposed to 5α-dihydrotestosterone (DHT) and insulin (INS)
or to DHT alone show elevated uterine AR protein abundance and implantation
failure related to the aberrant expression of genes involved in endometrial
receptivity and decidualization in early to mid-gestation. Treatment with the anti-androgen flutamide, starting from
pre-implantation, effectively prevents DHT + INS-induced defects in endometrial
receptivity and decidualization gene expression, restores uterine mitochondrial
homeostasis, and increases the pregnancy rate and the numbers of viable
fetuses. This study adds to our understanding of the mechanisms underlying poor
pregnancy outcomes in PCOS patients and the possible therapeutic use of
anti-androgens, including flutamide, after spontaneous conception.
Supplementary Information The online version contains supplementary material available at 10.1007/s00109-021-02104-z.
Collapse
Affiliation(s)
- Yuehui Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.,Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, P. O. Box 434, 40530, Gothenburg, Sweden
| | - Min Hu
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, P. O. Box 434, 40530, Gothenburg, Sweden.,Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, 510120, China
| | - Fan Yang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yizhuo Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Shuting Ma
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Dongqi Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xu Wang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Amanda Nancy Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Xiaoke Wu
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Linus R Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, P. O. Box 434, 40530, Gothenburg, Sweden.
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, P. O. Box 434, 40530, Gothenburg, Sweden
| |
Collapse
|