1
|
Jin L, Li Z, Si K, Ma B, Ren X, Huang B. Outcomes of different transfer strategies for in vitro fertilization/intracytoplasmic sperm injection with poor-quality embryos-Analysis of embryonic development, perinatal period, and neonatal outcomes. Heliyon 2024; 10:e40103. [PMID: 39559221 PMCID: PMC11570467 DOI: 10.1016/j.heliyon.2024.e40103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/09/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024] Open
Abstract
During the in vitro fertilization and embryo transfer process, some expectant mothers may not have good embryos to choose from before the embryo transfer. Recommendations for this condition are currently unclear, and relevant clinical and neonatal outcomes are still lacking. This study analyzed the outcomes of poor-quality embryo transfers, including fetal outcomes, in the fresh cycle and frozen-thawed embryo transfer cycle. Embryos were also analyzed for abnormalities during the cleavage stage. The results indicate that in the absence of good embryos, clinicians and embryologists could advise expectant mothers to continue culturing the embryos to the blastocyst stage and undergo transfer if blastocysts are formed. This finding can also be used as a reference for many expectant mothers with frozen embryos that have not yet been thawed.
Collapse
Affiliation(s)
| | | | - Keyi Si
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, 430030
| | - Bingxin Ma
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, 430030
| | - Xinling Ren
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, 430030
| | - Bo Huang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, 430030
| |
Collapse
|
2
|
Janssen AEJ, Koeck RM, Essers R, Cao P, van Dijk W, Drüsedau M, Meekels J, Yaldiz B, van de Vorst M, de Koning B, Hellebrekers DMEI, Stevens SJC, Sun SM, Heijligers M, de Munnik SA, van Uum CMJ, Achten J, Hamers L, Naghdi M, Vissers LELM, van Golde RJT, de Wert G, Dreesen JCFM, de Die-Smulders C, Coonen E, Brunner HG, van den Wijngaard A, Paulussen ADC, Zamani Esteki M. Clinical-grade whole genome sequencing-based haplarithmisis enables all forms of preimplantation genetic testing. Nat Commun 2024; 15:7164. [PMID: 39223156 PMCID: PMC11369272 DOI: 10.1038/s41467-024-51508-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
High-throughput sequencing technologies have increasingly led to discovery of disease-causing genetic variants, primarily in postnatal multi-cell DNA samples. However, applying these technologies to preimplantation genetic testing (PGT) in nuclear or mitochondrial DNA from single or few-cells biopsied from in vitro fertilised (IVF) embryos is challenging. PGT aims to select IVF embryos without genetic abnormalities. Although genotyping-by-sequencing (GBS)-based haplotyping methods enabled PGT for monogenic disorders (PGT-M), structural rearrangements (PGT-SR), and aneuploidies (PGT-A), they are labour intensive, only partially cover the genome and are troublesome for difficult loci and consanguineous couples. Here, we devise a simple, scalable and universal whole genome sequencing haplarithmisis-based approach enabling all forms of PGT in a single assay. In a comparison to state-of-the-art GBS-based PGT for nuclear DNA, shallow sequencing-based PGT, and PCR-based PGT for mitochondrial DNA, our approach alleviates technical limitations by decreasing whole genome amplification artifacts by 68.4%, increasing breadth of coverage by at least 4-fold, and reducing wet-lab turn-around-time by ~2.5-fold. Importantly, this method enables trio-based PGT-A for aneuploidy origin, an approach we coin PGT-AO, detects translocation breakpoints, and nuclear and mitochondrial single nucleotide variants and indels in base-resolution.
Collapse
Affiliation(s)
- Anouk E J Janssen
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW Research Institute Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Rebekka M Koeck
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW Research Institute Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Rick Essers
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW Research Institute Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Ping Cao
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW Research Institute Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Wanwisa van Dijk
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Marion Drüsedau
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Jeroen Meekels
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Burcu Yaldiz
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Maartje van de Vorst
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Bart de Koning
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Debby M E I Hellebrekers
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Servi J C Stevens
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Su Ming Sun
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Malou Heijligers
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Sonja A de Munnik
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Chris M J van Uum
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Jelle Achten
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Lars Hamers
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Marjan Naghdi
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW Research Institute Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
- Faculty of Psychology and Neuroscience, Section Applied Social Psychology, Maastricht University, Maastricht, The Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ron J T van Golde
- Department of Obstetrics and Gynaecology, GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Guido de Wert
- Department of Health, Ethics and Society, GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
- CAPHRI Research Institute for Public Health and Primary Care, Maastricht University, Maastricht, The Netherlands
| | - Jos C F M Dreesen
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Christine de Die-Smulders
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW Research Institute Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Edith Coonen
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
- Department of Obstetrics and Gynaecology, GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Han G Brunner
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW Research Institute Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arthur van den Wijngaard
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Aimee D C Paulussen
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW Research Institute Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Masoud Zamani Esteki
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.
- Department of Genetics and Cell Biology, GROW Research Institute Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention & Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Zou H, Wang R, Morbeck DE. Diagnostic or prognostic? Decoding the role of embryo selection on in vitro fertilization treatment outcomes. Fertil Steril 2024; 121:730-736. [PMID: 38185198 DOI: 10.1016/j.fertnstert.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
In this review, we take a fresh look at embryo assessment and selection methods from the perspective of diagnosis and prognosis. On the basis of a systematic search in the literature, we examined the evidence on the prognostic value of different embryo assessment methods, including morphological assessment, blastocyst culture, time-lapse imaging, artificial intelligence, and preimplantation genetic testing for aneuploidy.
Collapse
Affiliation(s)
- Haowen Zou
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Rui Wang
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Dean E Morbeck
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia; Principle, Morbeck Consulting Ltd, Auckland, New Zealand.
| |
Collapse
|
4
|
Stevens Brentjens LBPM, Obukhova D, Delvoux B, den Hartog JE, Bui BN, Mol F, de Bruin JP, Besselink D, Teklenburg G, Morgan F, Baker M, Broekmans FJM, van Golde RJT, Zamani Esteki M, Romano A. Local production of 17β-oestradiol in the endometrium during the implantation window: a pilot study. REPRODUCTION AND FERTILITY 2023; 4:e230065. [PMID: 37962510 PMCID: PMC10762592 DOI: 10.1530/raf-23-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/14/2023] [Indexed: 11/15/2023] Open
Abstract
Abstract Sex steroids are converted to bioactive metabolites and vice versa by endometrial steroid-metabolising enzymes. Studies indicate that alterations in this metabolism might affect endometrial receptivity. This pilot study determined whether the endometrial formation and inactivation of 17β-oestradiol differed between the supposedly embryo-receptive endometrium and non-receptive endometrium of women undergoing IVF/intracytoplasmic sperm injection (ICSI). Endometrial biopsies were obtained from IVF/ICSI patients 5-8 days after ovulation in a natural cycle, prior to their second IVF/ICSI cycle with fresh embryo transfer (ET). Endometrial biopsies from patients who achieved clinical pregnancy after fresh ET (n = 15) were compared with endometrial biopsies from patients that did not conceive after fresh ET (n = 15). Formation of 17β-oestradiol (oxidative 17β-hydroxysteroid dehydrogenases (HSDs)), oestrone (reductive HSD17Bs) and inhibition of HSD17B1 activity were determined by high-performance liquid chromatography. The endometrial transcriptome was profiled using RNA sequencing followed by principal component analysis and differentially expressed gene analysis. The false discovery rate-adjusted P < 0.05 and log fold change >0.5 were selected as the screening threshold. Formation and inactivation of 17β-oestradiol resulted similar between groups. Inhibition of HSD17B1 activity was significantly higher in the non-pregnant group when only primary infertile women (n = 12) were considered (27.1%, n = 5 vs 16.2%, n = 7, P = 0.04). Gene expression analysis confirmed the presence of HSD17B1 (encoding HSD17B1), HSD17B2 (encoding HSD17B2) and 33 of 46 analysed steroid metabolising enzymes in the endometrium. In the primary infertile subgroup (n = 10) 12 DEGs were found including LINC02349 which has been linked to implantation. However, the exact relationship between steroid-metabolising enzyme activity, expression and implantation outcome requires further investigation in larger, well-defined patient groups. Lay summary Sex hormones are produced and broken down by enzymes that can be found in the endometrium (the inner lining of the womb). This enzyme activity might influence the chances of becoming pregnant. We compared (i) enzyme activity in the endometrium of 15 women who did and 15 women who did not become pregnant in their second in vitro fertilisation attempt, (ii) how enzyme activity can be blocked by an inhibitor, and (iii) differences in gene expression (the process by which instructions in our DNA are converted into a product). Enzyme activity was similar between groups. We found that in women who have never been pregnant in the past, inhibition of enzyme activity was higher and found differences in a gene that has been linked to the implantation of the embryo, but future studies should be performed in larger, well-defined patient groups to confirm these findings.
Collapse
Affiliation(s)
- L B P M Stevens Brentjens
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre+, Maastricht, The Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, Universiteitssingel, Maastricht, The Netherlands
| | - D Obukhova
- GROW School for Oncology and Reproduction, Maastricht University, Universiteitssingel, Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - B Delvoux
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre+, Maastricht, The Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, Universiteitssingel, Maastricht, The Netherlands
| | - J E den Hartog
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre+, Maastricht, The Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, Universiteitssingel, Maastricht, The Netherlands
| | - B N Bui
- Department of Gynaecology & Reproductive Medicine, University Medical Centre Utrecht, Heidelberglaan, Utrecht, The Netherlands
| | - F Mol
- Centre for Reproductive Medicine, Reproduction and Development, Amsterdam University Medical Centre, University of Amsterdam, Meibergdreef, Amsterdam, The Netherlands
| | - J P de Bruin
- Department of Obstetrics and Gynaecology, Jeroen Bosch Hospital, Henri Dunantstraat, Hertogenbosch, The Netherlands
| | - D Besselink
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre, Geert Grooteplein Zuid, Nijmegen, The Netherlands
| | - G Teklenburg
- Isala Fertility Clinic, Isala Hospital, Dokter van Heesweg, Zwolle, The Netherlands
| | - F Morgan
- Department of Complex Tissue Regeneration, MERLN Institute, Maastricht University, Maastricht, The Netherlands
| | - M Baker
- Department of Complex Tissue Regeneration, MERLN Institute, Maastricht University, Maastricht, The Netherlands
| | - F J M Broekmans
- Department of Gynaecology & Reproductive Medicine, University Medical Centre Utrecht, Heidelberglaan, Utrecht, The Netherlands
| | - R J T van Golde
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre+, Maastricht, The Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, Universiteitssingel, Maastricht, The Netherlands
| | - M Zamani Esteki
- GROW School for Oncology and Reproduction, Maastricht University, Universiteitssingel, Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention & Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - A Romano
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre+, Maastricht, The Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, Universiteitssingel, Maastricht, The Netherlands
| |
Collapse
|
5
|
Chen L, Yang J, Xu G, Wu Y. Potential Value and Application of Liquid Biopsy in Tumor, Neurodegeneration, and Muscle Degenerative Diseases. Methods Mol Biol 2023; 2695:317-335. [PMID: 37450129 DOI: 10.1007/978-1-0716-3346-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Liquid biopsy provides a promising alternative for the detection of disease-specific markers due to its superior noninvasive and original tissue representativeness. Liquid biopsies have a wide range of health and disease applications involving components ranging from circulating cells to acellular nucleic acid molecules and other metabolites. Here, we review the different components of liquid biopsy and investigate the most advanced noninvasive methods for detecting these components as well as their existing problems and trends. In particular, we emphasize the importance of analyzing liquid biopsy data from extracellular vesicles and small nucleic acids in neurological and muscle degeneration, with the aim of using this technique to enhance personalized healthcare. Although previous reviews have focused on cancer, this review mainly emphasizes the potential application of extracellular vesicles and microRNAs in liquid biopsy in neurodegeneration and muscle degeneration.
Collapse
Affiliation(s)
- Lin Chen
- Department of Health and Physical Education, Jianghan University, Wuhan, Hubei, People's Republic of China
| | - Jun Yang
- Jianghan University Library, Wuhan, Hubei, People's Republic of China
| | - Guodong Xu
- Department of Health and Physical Education, Jianghan University, Wuhan, Hubei, People's Republic of China
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
6
|
Piibor J, Dissanayake K, Midekessa G, Andronowska A, Kavak A, Waldmann A, Fazeli A. Characterization of bovine uterine fluid extracellular vesicles proteomic profiles at follicular and luteal phases of the oestrous cycle. Vet Res Commun 2022; 47:885-900. [DOI: 10.1007/s11259-022-10052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
AbstractExtracellular vesicles (EV) have been identified in uterine fluid (UF), however the bovine UF-EV profile during different phases of the oestrous cycle has not yet been established. Therefore, we compared the UF-EV, and their protein profile at follicular and luteal phases of the oestrous cycle. UF samples were collected from healthy uteri of six live and six slaughtered cows at follicular or luteal phases. Isolation of EV was performed using tangential flow filtration followed by size exclusion chromatography. EV were characterized by nanoparticle tracking analysis (NTA), fluorescence NTA, zeta potential, and transmission electron microscopy. Mass-spectrometry was used to evaluate EV protein profile from live cows. Particle concentrations (mean ± SD) were higher (P < 0.05) at follicular than at luteal phase in both live (1.01 × 108 ± 1.66 × 107 vs 7.56 × 107 ± 1.80 × 107, respectively) and slaughtered cows (1.17 × 108 ± 2.34 × 107 vs 9.12 × 107 ± 9.77 × 106, respectively). The proportion of fluorescently labelled EV varied significantly between follicular and luteal phases across live (28.9 ± 1.9% vs 19.3 ± 2.8%, respectively) and slaughtered cows (26.5 ± 6.3% vs 27.3 ± 2 .7%, respectively). In total, 41 EV proteins were differentially expressed between the phases. Some of the proteins were involved in reproductive processes, cell adhesion and proliferation, and cellular metabolic processes. The results indicated differences in bovine UF-EV concentration and protein profile at follicular and luteal phases, which would suggest that EV modulate uterine microenvironment across the oestrous cycle. Further research is needed to understand the effect of EV changes throughout the oestrous cycle.
Collapse
|
7
|
van Dijk W, Derks K, Drüsedau M, Meekels J, Koeck R, Essers R, Dreesen J, Coonen E, de Die-Smulders C, Stevens SJC, Brunner HG, van den Wijngaard A, Paulussen ADC, Zamani Esteki M. Embryo tracking system for high-throughput sequencing-based preimplantation genetic testing. Hum Reprod 2022; 37:2700-2708. [PMID: 36149256 PMCID: PMC9627733 DOI: 10.1093/humrep/deac208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/01/2022] [Indexed: 12/05/2022] Open
Abstract
STUDY QUESTION Can the embryo tracking system (ETS) increase safety, efficacy and scalability of massively parallel sequencing-based preimplantation genetic testing (PGT)? SUMMARY ANSWER Applying ETS-PGT, the chance of sample switching is decreased, while scalability and efficacy could easily be increased substantially. WHAT IS KNOWN ALREADY Although state-of-the-art sequencing-based PGT methods made a paradigm shift in PGT, they still require labor intensive library preparation steps that makes PGT cost prohibitive and poses risks of human errors. To increase the quality assurance, efficiency, robustness and throughput of the sequencing-based assays, barcoded DNA fragments have been used in several aspects of next-generation sequencing (NGS) approach. STUDY DESIGN, SIZE, DURATION We developed an ETS that substantially alleviates the complexity of the current sequencing-based PGT. With (n = 693) and without (n = 192) ETS, the downstream PGT procedure was performed on both bulk DNA samples (n = 563) and whole-genome amplified (WGAed) few-cell DNA samples (n = 322). Subsequently, we compared full genome haplotype landscapes of both WGAed and bulk DNA samples containing ETS or no ETS. PARTICIPANTS/MATERIALS, SETTING, METHODS We have devised an ETS to track embryos right after whole-genome amplification (WGA) to full genome haplotype profiles. In this study, we recruited 322 WGAed DNA samples derived from IVF embryos as well as 563 bulk DNA isolated from peripheral blood of prospective parents. To determine possible interference of the ETS in the NGS-based PGT workflow, barcoded DNA fragments were added to DNA samples prior to library preparation and compared to samples without ETS. Coverages and variants were determined. MAIN RESULTS AND THE ROLE OF CHANCE Current PGT protocols are quality sensitive and prone to sample switching. To avoid sample switching and increase throughput of PGT by sequencing-based haplotyping, six control steps should be carried out manually and checked by a second person in a clinical setting. Here, we developed an ETS approach in which one step only in the entire PGT procedure needs the four-eyes principal. We demonstrate that ETS not only precludes error-prone manual checks but also has no effect on the genomic landscape of preimplantation embryos. Importantly, our approach increases efficacy and throughput of the state-of-the-art PGT methods. LIMITATIONS, REASONS FOR CAUTION Even though the ETS simplified sequencing-based PGT by avoiding potential errors in six steps in the protocol, if the initial assignment is not performed correctly, it could lead to cross-contamination. However, this can be detected in silico following downstream ETS analysis. Although we demonstrated an approach to evaluate purity of the ETS fragment, it is recommended to perform a pre-PGT quality control assay of the ETS amplicons with non-human DNA, such that the purity of each ETS molecule can be determined prior to ETS-PGT. WIDER IMPLICATIONS OF THE FINDINGS The ETS-PGT approach notably increases efficacy and scalability of PGT. ETS-PGT has broad applicative value, as it can be tailored to any single- and few-cell sequencing approach where the starting specimen is scarce, as opposed to other methods that require a large number of cells as the input. Moreover, ETS-PGT could easily be adapted to any sequencing-based diagnostic method, including PGT for structural rearrangements and aneuploidies by low-pass sequencing as well as non-invasive prenatal testing. STUDY FUNDING/COMPETING INTEREST(S) M.Z.E. is supported by the EVA (Erfelijkheid Voortplanting & Aanleg) specialty program (grant no. KP111513) of Maastricht University Medical Centre (MUMC+), and the Horizon 2020 innovation (ERIN) (grant no. EU952516) of the European Commission. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Wanwisa van Dijk
- Department of Clinical Genetics, Maastricht University Medical Center+ (MUMC+), Maastricht, The Netherlands
| | - Kasper Derks
- Department of Clinical Genetics, Maastricht University Medical Center+ (MUMC+), Maastricht, The Netherlands
| | - Marion Drüsedau
- Department of Clinical Genetics, Maastricht University Medical Center+ (MUMC+), Maastricht, The Netherlands
| | - Jeroen Meekels
- Department of Clinical Genetics, Maastricht University Medical Center+ (MUMC+), Maastricht, The Netherlands
| | - Rebekka Koeck
- Department of Clinical Genetics, Maastricht University Medical Center+ (MUMC+), Maastricht, The Netherlands.,Department of Genetics and Cell Biology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Rick Essers
- Department of Clinical Genetics, Maastricht University Medical Center+ (MUMC+), Maastricht, The Netherlands.,Department of Genetics and Cell Biology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Joseph Dreesen
- Department of Clinical Genetics, Maastricht University Medical Center+ (MUMC+), Maastricht, The Netherlands.,Department of Genetics and Cell Biology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Edith Coonen
- Department of Clinical Genetics, Maastricht University Medical Center+ (MUMC+), Maastricht, The Netherlands.,Center for Reproductive Medicine, Maastricht University Medical Centre+, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Christine de Die-Smulders
- Department of Clinical Genetics, Maastricht University Medical Center+ (MUMC+), Maastricht, The Netherlands.,Department of Genetics and Cell Biology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Servi J C Stevens
- Department of Clinical Genetics, Maastricht University Medical Center+ (MUMC+), Maastricht, The Netherlands.,Department of Genetics and Cell Biology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Han G Brunner
- Department of Clinical Genetics, Maastricht University Medical Center+ (MUMC+), Maastricht, The Netherlands.,Department of Genetics and Cell Biology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.,Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Arthur van den Wijngaard
- Department of Clinical Genetics, Maastricht University Medical Center+ (MUMC+), Maastricht, The Netherlands.,Department of Genetics and Cell Biology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Aimée D C Paulussen
- Department of Clinical Genetics, Maastricht University Medical Center+ (MUMC+), Maastricht, The Netherlands.,Department of Genetics and Cell Biology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Masoud Zamani Esteki
- Department of Clinical Genetics, Maastricht University Medical Center+ (MUMC+), Maastricht, The Netherlands.,Department of Genetics and Cell Biology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
8
|
Saraee F, Shekari F, Moini A, Sadeghi M, Ghaznavi P, Nazari A, Ghaheri A, Totonchi M, Eftekhari-Yazdi P. Isolation and characterization of human uterine fluid lavage-derived extracellular vesicles by different methods: A comparative study for minimally invasive endometrial receptivity assessment. Reprod Biomed Online 2022; 45:457-472. [DOI: 10.1016/j.rbmo.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/17/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022]
|
9
|
Identification of differentially expressed miRNAs derived from serum exosomes associated with gastric cancer by microarray analysis. Clin Chim Acta 2022; 531:25-35. [PMID: 35300960 DOI: 10.1016/j.cca.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/23/2022]
Abstract
AIMS To explore the differentially expressed microRNAs (DEMs) in serum exosomes between gastric cancer (GC) patients and healthy people to provide new targets for GC diagnosis and treatment. METHODS DEMs in serum exosomes were screened by microarray analysis and verified by RT-qPCR. The target genes of DEMs were predicted using Targetscan and miRTarBase databases and then overlapped with the DEGs of STAD in TCGA database to obtain the common target genes. Biological function and pathway enrichment were analyzed using enrichr database, and a PPI network was constructed using STRING database. The potential target genes of DEMs were identified using the MCODE and cytoHubba plug-ins of Cytoscape software. Survival analysis were conducted using KMP and TCGA databases. The DEMs -target genes-pathways network was established using Cytoscape software. A Cox proportional hazards regression model formed by optimal target genes was used to access the reliability of this prediction process. RESULTS Three serum exosomal microRNAs (exo-miRNAs, has-miR-1273 g-3p, has-miR-4793-3p, has-miR-619-5p) were identified to be highly expressed in GC patients and performed excellent diagnostic ability. A total of 179 common target genes related to GC were predicted. They were mainly involved in 79 GO functional annotations and 6 KEGG pathways. The prognostic model formed by eight optimal target genes (TIMELESS, DNA2, MELK, CHAF1B, DBF4, PAICS, CHEK1 and NCAPG2), which were low-risk genes of GC, also performed perfect prognostic ability. CONCLUSIONS Serum exosomal has-miR-1273 g-3p, has-miR-4793-3p and has-miR-619-5p can be used as new diagnostic biomarkers for GC. Among them, serum exosomal hsa-miR-1273 g-3p / hsa-miR-4793-3p targets MELK and hsa-miR-619-5p targets NCAPG2 were identified as novel mechanisms involved in the development of GC. It provides new targets for the diagnosis and treatment of GC by exo-miRNAs.
Collapse
|