1
|
Yildirim RM, Seli E. Mitochondria as determinants of reproductive senescence and competence: implications for diagnosis of embryo competence in assisted reproduction. Hum Reprod 2024; 39:2160-2170. [PMID: 39066612 DOI: 10.1093/humrep/deae171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Mitochondria are commonly recognized as the powerhouses of the cell, primarily responsible for energy production through oxidative phosphorylation. Alongside this vital function, they also play crucial roles in regulating calcium signaling, maintaining membrane potential, and modulating apoptosis. Their involvement in various cellular pathways becomes particularly evident during oogenesis and embryogenesis, where mitochondrial quantity, morphology, and distribution are tightly controlled. The efficiency of the mitochondrial network is maintained through multiple quality control mechanisms that are essential for reproductive success. These include mitochondrial unfolded protein response, mitochondrial dynamics, and mitophagy. Not surprisingly, mitochondrial dysfunction has been implicated in infertility and ovarian aging, prompting investigation into mitochondria as diagnostic and therapeutic targets in assisted reproduction. To date, mitochondrial DNA copy number in oocytes, cumulus cells, and trophectoderm biopsies, and fluorescent lifetime imaging microscopy-based assessment of NADH and flavin adenine dinucleotide content have been explored as potential predictors of embryo competence, yielding limited success. Despite challenges in the clinical application of mitochondrial diagnostic strategies, these enigmatic organelles have a significant impact on reproduction, and their potential role as diagnostic targets in assisted reproduction is likely to remain an active area of investigation in the foreseeable future.
Collapse
Affiliation(s)
- Raziye Melike Yildirim
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
2
|
Chow DJX, Schartner EP, Corsetti S, Upadhya A, Morizet J, Gunn-Moore FJ, Dunning KR, Dholakia K. Quantifying DNA damage following light sheet and confocal imaging of the mammalian embryo. Sci Rep 2024; 14:20760. [PMID: 39237572 PMCID: PMC11377761 DOI: 10.1038/s41598-024-71443-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
Embryo quality assessment by optical imaging is increasing in popularity. Among available optical techniques, light sheet microscopy has emerged as a superior alternative to confocal microscopy due to its geometry, enabling faster image acquisition with reduced photodamage to the sample. However, previous assessments of photodamage induced by imaging may have failed to measure more subtle impacts. In this study, we employed DNA damage as a sensitive indicator of photodamage. We use light sheet microscopy with excitation at a wavelength of 405 nm for imaging embryo autofluorescence and compare its performance to laser scanning confocal microscopy. At an equivalent signal-to-noise ratio for images acquired with both modalities, light sheet microscopy reduced image acquisition time by ten-fold, and did not induce DNA damage when compared to non-imaged embryos. In contrast, imaging with confocal microscopy led to significantly higher levels of DNA damage within embryos and had a higher photobleaching rate. Light sheet imaging is also capable of inducing DNA damage within the embryo but requires multiple cycles of volumetric imaging. Collectively, this study confirms that light sheet microscopy is faster and safer than confocal microscopy for imaging live embryos, indicating its potential as a label-free diagnostic for embryo quality.
Collapse
Affiliation(s)
- Darren J X Chow
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
| | - Erik P Schartner
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
| | - Stella Corsetti
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, UK.
| | - Avinash Upadhya
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
| | - Josephine Morizet
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Frank J Gunn-Moore
- School of Biology, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Kylie R Dunning
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
| | - Kishan Dholakia
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia.
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia.
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, UK.
| |
Collapse
|
3
|
Chow DJX, Tan TCY, Upadhya A, Lim M, Dholakia K, Dunning KR. Viewing early life without labels: optical approaches for imaging the early embryo†. Biol Reprod 2024; 110:1157-1174. [PMID: 38647415 PMCID: PMC11180623 DOI: 10.1093/biolre/ioae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/26/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
Embryo quality is an important determinant of successful implantation and a resultant live birth. Current clinical approaches for evaluating embryo quality rely on subjective morphology assessments or an invasive biopsy for genetic testing. However, both approaches can be inherently inaccurate and crucially, fail to improve the live birth rate following the transfer of in vitro produced embryos. Optical imaging offers a potential non-invasive and accurate avenue for assessing embryo viability. Recent advances in various label-free optical imaging approaches have garnered increased interest in the field of reproductive biology due to their ability to rapidly capture images at high resolution, delivering both morphological and molecular information. This burgeoning field holds immense potential for further development, with profound implications for clinical translation. Here, our review aims to: (1) describe the principles of various imaging systems, distinguishing between approaches that capture morphological and molecular information, (2) highlight the recent application of these technologies in the field of reproductive biology, and (3) assess their respective merits and limitations concerning the capacity to evaluate embryo quality. Additionally, the review summarizes challenges in the translation of optical imaging systems into routine clinical practice, providing recommendations for their future development. Finally, we identify suitable imaging approaches for interrogating the mechanisms underpinning successful embryo development.
Collapse
Affiliation(s)
- Darren J X Chow
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
| | - Tiffany C Y Tan
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
| | - Avinash Upadhya
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Megan Lim
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Kishan Dholakia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
- Scottish Universities Physics Alliance, School of Physics and Astronomy, University of St Andrews, St Andrews, United Kingdom
| | - Kylie R Dunning
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
4
|
Venturas M, Racowsky C, Needleman DJ. Metabolic imaging of human cumulus cells reveals associations with pregnancy and live birth. Hum Reprod 2024; 39:1176-1185. [PMID: 38719791 PMCID: PMC11145010 DOI: 10.1093/humrep/deae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/04/2024] [Indexed: 06/04/2024] Open
Abstract
STUDY QUESTION Can fluorescence lifetime imaging microscopy (FLIM) detect associations between the metabolic state of cumulus cell (CC) samples and the clinical outcome of the corresponding embryos? SUMMARY ANSWER FLIM can detect significant variations in the metabolism of CC associated with the corresponding embryos that resulted in a clinical pregnancy versus those that did not. WHAT IS KNOWN ALREADY CC and oocyte metabolic cooperativity are known to be necessary for the acquisition of developmental competence. However, reliable CC biomarkers that reflect oocyte viability and embryo developmental competency have yet to be established. Quantitative measures of CC metabolism could be used to aid in the evaluation of oocyte and embryo quality in ART. STUDY DESIGN, SIZE, DURATION A prospective observational study was carried out. In total, 223 patients undergoing IVF with either conventional insemination or ICSI at a tertiary care center from February 2018 to May 2020 were included, with no exclusion criteria applied. PARTICIPANTS/MATERIALS, SETTING, METHODS This cohort had a mean maternal age of 36.5 ± 4.4 years and an average oocyte yield of 16.9 (range 1-50). One to four CC clusters from each patient were collected after oocyte retrieval and vitrified. CC metabolic state was assessed using FLIM to measure the autofluorescence of the molecules NAD(P)H and FAD+, which are essential for multiple metabolic pathways. CC clusters were tracked with their corresponding oocytes and associated embryos. Patient age, Day 3 and Day 5/6 embryo morphological grades, and clinical outcomes of embryos with traceable fate were recorded. Nine FLIM quantitative parameters were obtained for each CC cluster. We investigated associations between the FLIM parameters and patient maternal age, embryo morphological rank, ploidy, and clinical outcome, where false discovery rate P-values of <0.05 were considered statistically significant. MAIN RESULTS AND THE ROLE OF CHANCE A total of 851 CC clusters from 851 cumulus-oocyte complexes from 223 patients were collected. Of these CC clusters, 623 were imaged using FLIM. None of the measured CC FLIM parameters were correlated with Day 3 morphological rank or ploidy of the corresponding embryos, but FAD+ FLIM parameters were significantly associated with morphological rank of blastocysts. There were significant differences for FAD+ FLIM parameters (FAD+ fraction engaged and short lifetime) from CC clusters linked with embryos resulting in a clinical pregnancy compared with those that did not, as well as for CC clusters associated with embryos that resulted in a live birth compared those that did not. LIMITATIONS, REASONS FOR CAUTION Our data are based on a relatively low number of traceable embryos from an older patient population. Additionally, we only assessed CCs from 1 to 4 oocytes from each patient. Future work in a younger patient population with a larger number of traceable embryos, as well as measuring the metabolic state of CCs from all oocytes from each patient, would provide a better understanding of the potential utility of this technology for oocyte/embryo selection. WIDER IMPLICATIONS OF THE FINDINGS Metabolic imaging via FLIM is able to detect CC metabolic associations with maternal age and detects variations in the metabolism of CCs associated with oocytes leading to embryos that result in a clinical pregnancy and a live birth versus those that do not. Our findings suggest that FLIM of CCs may be used as a new approach to aid in the assessment of oocyte and embryo developmental competence in clinical ART. STUDY FUNDING/COMPETING INTEREST(S) National Institutes of Health grant NIH R01HD092550-03 (to C.R., and D.J.N.). Becker and Hickl GmbH and Boston Electronics sponsored research with the loaning of equipment for FLIM. D.J.N. and C.R. are inventors on patent US20170039415A1. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- M Venturas
- Department of Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Boston IVF-TheEugin Group, Waltham, MA, USA
| | - C Racowsky
- Department of Obstetrics and Gynecology, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Obstetrics and Gynecology and Reproductive Medicine, Hospital Foch, Suresnes, France
| | - D J Needleman
- Department of Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Center for Computational Biology, Flatiron Institute, New York, USA
| |
Collapse
|
5
|
Ardestani G, Martins M, Ocali O, Sanchez TH, Gulliford C, Barrett CB, Sakkas D. Effect of time post warming to embryo transfer on human blastocyst metabolism and pregnancy outcome. J Assist Reprod Genet 2024; 41:1539-1547. [PMID: 38642271 PMCID: PMC11224190 DOI: 10.1007/s10815-024-03115-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/22/2024] Open
Abstract
PURPOSE This study is aiming to test whether variation in post warming culture time impacts blastocyst metabolism or pregnancy outcome. METHODS In this single center retrospective cohort study, outcomes of 11,520 single frozen embryo transfer (FET) cycles were analyzed from January 2015 to December 2020. Patient treatments included both natural and programmed cycles. Time categories were determined using the time between blastocyst warming and embryo transfer: 0 (0- <1h), 1 (1-<2h), 2 (2-<3h), 3(3-<4h), 4 (4-<5), 5 (5-<6), 6 (6-<7) and 7 (7-8h). Non-invasive metabolic imaging of discarded human blastocysts for up to 10h was also performed using Fluorescence lifetime imaging microscopy (FLIM) to examine for metabolic perturbations during culture. RESULTS The mean age of patients across all time categories were comparable (35.6 ± 3.9). Live birth rates (38-52%) and miscarriage rate (5-11%) were not statistically different across post-warming culture time. When assessing pregnancy outcomes based on the use of PGT-A, miscarriage and live birth rates were not statistically different across culture hours in both PGT-A and non-PGT cycles. Further metabolic analysis of blastocysts for the duration of 10h of culture post warming, revealed minimal metabolic changes of embryos in culture. CONCLUSION Overall, our results show that differences in the time of post warming culture have no significant impact on miscarriage or live birth rate for frozen embryo transfers. This information can be beneficial for clinical practices with either minimal staffing or a high number of patient cases.
Collapse
Affiliation(s)
- Goli Ardestani
- Boston IVF - IVIRMA Global Research Alliance, Waltham, MA, 02451, USA.
| | - Marion Martins
- Boston IVF - IVIRMA Global Research Alliance, Waltham, MA, 02451, USA
- Kinderwunsch im Zentrum, Tulln, Austria
| | - Olcay Ocali
- Boston IVF - IVIRMA Global Research Alliance, Waltham, MA, 02451, USA
| | | | | | - C Brent Barrett
- Boston IVF - IVIRMA Global Research Alliance, Waltham, MA, 02451, USA
| | - Denny Sakkas
- Boston IVF - IVIRMA Global Research Alliance, Waltham, MA, 02451, USA
| |
Collapse
|
6
|
Sakkas D, Gulliford C, Ardestani G, Ocali O, Martins M, Talasila N, Shah JS, Penzias AS, Seidler EA, Sanchez T. Metabolic imaging of human embryos is predictive of ploidy status but is not associated with clinical pregnancy outcomes: a pilot trial. Hum Reprod 2024; 39:516-525. [PMID: 38195766 DOI: 10.1093/humrep/dead268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/28/2023] [Indexed: 01/11/2024] Open
Abstract
STUDY QUESTION Does fluorescence lifetime imaging microscopy (FLIM)-based metabolic imaging assessment of human blastocysts prior to frozen transfer correlate with pregnancy outcomes? SUMMARY ANSWER FLIM failed to distinguish consistent patterns in mitochondrial metabolism between blastocysts leading to pregnancy compared to those that did not. WHAT IS KNOWN ALREADY FLIM measurements provide quantitative information on NAD(P)H and flavin adenine dinucleotide (FAD+) concentrations. The metabolism of embryos has long been linked to their viability, suggesting the potential utility of metabolic measurements to aid in selection. STUDY DESIGN, SIZE, DURATION This was a pilot trial enrolling 121 IVF couples who consented to have their frozen blastocyst measured using non-invasive metabolic imaging. After being warmed, 105 couples' good-quality blastocysts underwent a 6-min scan in a controlled temperature and gas environment. FLIM-assessed blastocysts were then transferred without any intervention in management. PARTICIPANTS/MATERIALS, SETTING, METHODS Eight metabolic parameters were obtained from each blastocyst (4 for NAD(P)H and 4 for FAD): short and long fluorescence lifetime, fluorescence intensity, and fraction of the molecule engaged with enzyme. The redox ratio (intensity of NAD(P)H)/(intensity of FAD) was also calculated. FLIM data were combined with known metadata and analyzed to quantify the ability of metabolic imaging to differentiate embryos that resulted in pregnancy from embryos that did not. De-identified discarded aneuploid human embryos (n = 158) were also measured to quantify correlations with ploidy status and other factors. Statistical comparisons were performed using logistic regression and receiver operating characteristic (ROC) curves with 5-fold cross-validation averaged over 100 repeats with random sampling. AUC values were used to quantify the ability to distinguish between classes. MAIN RESULTS AND THE ROLE OF CHANCE No metabolic imaging parameters showed significant differences between good-quality blastocysts resulting in pregnancy versus those that did not. A logistic regression using metabolic data and metadata produced an ROC AUC of 0.58. In contrast, robust AUCs were obtained when classifying other factors such as comparison of Day 5 (n = 64) versus Day 6 (n = 41) blastocysts (AUC = 0.78), inner cell mass versus trophectoderm (n = 105: AUC = 0.88) and aneuploid (n = 158) versus euploid and positive pregnancy embryos (n = 108) (AUC = 0.82). LIMITATIONS, REASONS FOR CAUTION The study protocol did not select which embryo to transfer and the cohort of 105 included blastocysts were all high quality. The study was also limited in number of participants and study sites. Increased power and performing the trial in more sites may have provided a stronger conclusion regarding the merits of the use of FLIM clinically. WIDER IMPLICATIONS OF THE FINDINGS FLIM failed to distinguish consistent patterns in mitochondrial metabolism between good-quality blastocysts leading to pregnancy compared to those that did not. Blastocyst ploidy status was, however, highly distinguishable. In addition, embryo regions and embryo day were consistently revealed by FLIM. While metabolic imaging detects mitochondrial metabolic features in human blastocysts, this pilot trial indicates it does not have the potential to serve as an effective embryo viability detection tool. This may be because mitochondrial metabolism plays an alternative role post-implantation. STUDY FUNDING/COMPETING INTEREST(S) This study was sponsored by Optiva Fertility, Inc. Boston IVF contributed to the clinical site and services. Becker Hickl, GmbH, provided the FLIM system on loan. T.S. was the founder and held stock in Optiva Fertility, Inc., and D.S. and E.S. had options with Optiva Fertility, Inc., during this study. TRIAL REGISTRATION NUMBER The study was approved by WCG Connexus IRB (Study Number 1298156).
Collapse
Affiliation(s)
- Denny Sakkas
- Boston IVF, Research Department, Waltham, MA, USA
| | | | | | - Olcay Ocali
- Boston IVF, Research Department, Waltham, MA, USA
| | | | | | - Jaimin S Shah
- Boston IVF, Research Department, Waltham, MA, USA
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Alan S Penzias
- Boston IVF, Research Department, Waltham, MA, USA
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Emily A Seidler
- Boston IVF, Research Department, Waltham, MA, USA
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
7
|
Horta F, Salih M, Austin C, Warty R, Smith V, Rolnik DL, Reddy S, Rezatofighi H, Vollenhoven B. Reply: Artificial intelligence as a door opener for a new era of human reproduction. Hum Reprod Open 2023; 2023:hoad045. [PMID: 38033328 PMCID: PMC10686939 DOI: 10.1093/hropen/hoad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Affiliation(s)
- F Horta
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- Monash Data Future Institute, Monash University, Clayton, VIC, Australia
- City Fertility, Melbourne, VIC, Australia
| | - M Salih
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- Department of Data Science and Artificial Intelligence, Faculty of Information Technology, Monash University, Clayton, VIC, Australia
| | - C Austin
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- Department of Data Science and Artificial Intelligence, Faculty of Information Technology, Monash University, Clayton, VIC, Australia
| | - R Warty
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - V Smith
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - D L Rolnik
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- Women’s and Newborn Program, Monash Health, Melbourne, VIC, Australia
| | - S Reddy
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - H Rezatofighi
- Monash Data Future Institute, Monash University, Clayton, VIC, Australia
- Department of Data Science and Artificial Intelligence, Faculty of Information Technology, Monash University, Clayton, VIC, Australia
| | - B Vollenhoven
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- Women’s and Newborn Program, Monash Health, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Gardner DK, Sakkas D. Making and selecting the best embryo in the laboratory. Fertil Steril 2023; 120:457-466. [PMID: 36521518 DOI: 10.1016/j.fertnstert.2022.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/20/2022] [Accepted: 11/07/2022] [Indexed: 12/15/2022]
Abstract
Over the past 4 decades our ability to maintain a viable human embryo in vitro has improved dramatically, leading to higher implantation rates. This has led to a notable shift to single blastocyst transfer and the ensuing elimination of high order multiple gestations. Future improvements to embryo culture systems will not only come from new improved innovative media formulations (such as the inclusion of antioxidants), but plausibly by moving away from static culture to more dynamic perfusion-based systems now made a reality owing to the breakthroughs in three-dimensional printing technology and micro fabrication. Such an approach has already made it feasible to create high resolution devices for intracytoplasmic sperm injection, culture, and cryopreservation, paving the way not only for improvements in outcomes but also automation of assisted reproductive technology. Although improvements in culture systems can lead to further increases in pregnancy outcomes, the ability to quantitate biomarkers of embryo health and viability will reduce time to pregnancy and decrease pregnancy loss. Currently artificial intelligence is being used to assess embryo development through image analysis, but we predict its power will be realized through the creation of selection algorithms based on the integration of information related to metabolic functions, cell-free DNA, and morphokinetics, thereby using vast amounts of different data types obtained for each embryo to predict outcomes. All of this will not only make assisted reproductive technology more effective, but it will also make it more cost effective, thereby increasing patient access to infertility treatment worldwide.
Collapse
Affiliation(s)
- David K Gardner
- Melbourne IVF, East Melbourne, Victoria, Australia; School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia.
| | | |
Collapse
|
9
|
Dwapanyin GO, Chow DJX, Tan TCY, Dubost NS, Morizet JM, Dunning KR, Dholakia K. Investigation of refractive index dynamics during in vitro embryo development using off-axis digital holographic microscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:3327-3342. [PMID: 37497510 PMCID: PMC10368053 DOI: 10.1364/boe.492292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 07/28/2023]
Abstract
Embryo quality is a crucial factor affecting live birth outcomes. However, an accurate diagnostic for embryo quality remains elusive in the in vitro fertilization clinic. Determining physical parameters of the embryo may offer key information for this purpose. Here, we demonstrate that digital holographic microscopy (DHM) can rapidly and non-invasively assess the refractive index of mouse embryos. Murine embryos were cultured in either low- or high-lipid containing media and digital holograms recorded at various stages of development. The phase of the recorded hologram was numerically retrieved, from which the refractive index of the embryo was calculated. We showed that DHM can detect spatio-temporal changes in refractive index during embryo development that are reflective of its lipid content. As accumulation of intracellular lipid is known to compromise embryo health, DHM may prove beneficial in developing an accurate, non-invasive, multimodal diagnostic.
Collapse
Affiliation(s)
- George O. Dwapanyin
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, United Kingdom
| | - Darren J. X. Chow
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
| | - Tiffany C. Y. Tan
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
| | - Nicolas S. Dubost
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, United Kingdom
| | - Josephine M. Morizet
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, United Kingdom
| | - Kylie R. Dunning
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
| | - Kishan Dholakia
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, United Kingdom
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
10
|
Gill ME, Quaas AM. Looking with new eyes: advanced microscopy and artificial intelligence in reproductive medicine. J Assist Reprod Genet 2023; 40:235-239. [PMID: 36534231 PMCID: PMC9935756 DOI: 10.1007/s10815-022-02693-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Microscopy has long played a pivotal role in the field of assisted reproductive technology (ART). The advent of artificial intelligence (AI) has opened the door for new approaches to sperm and oocyte assessment and selection, with the potential for improved ART outcomes.
Collapse
Affiliation(s)
- Mark E Gill
- Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058, Basel, Switzerland.
| | - Alexander M Quaas
- Division of Reproductive Medicine and Gynecological Endocrinology (RME), University Hospital, University of Basel, Basel, Switzerland
| |
Collapse
|
11
|
Zhang L, Wu LM, Xu WH, Tian YQ, Liu XL, Xia CY, Zhang L, Li SS, Jin Z, Wu XL, Shu J. Status of maternal serum B vitamins and pregnancy outcomes: New insights from in vitro fertilization and embryo transfer (IVF-ET) treatment. Front Nutr 2022; 9:962212. [PMID: 36438768 PMCID: PMC9691978 DOI: 10.3389/fnut.2022.962212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/10/2022] [Indexed: 11/12/2022] Open
Abstract
The influence of B vitamins on human fertility and infertility treatments remains elusive. Therefore, this study investigated the association of most B vitamins with IVF-ET outcomes. A total of 216 subjects aged <35 year in their first oocyte retrieval cycle were recruited. Blood samples from the participants were collected before the oocyte pick-up procedure, and serum levels of riboflavin, niacin, pantothenic acid, vitamin B6 (including PA and PLP), folate, and methylmalonic acid (MMA) were detected using high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS). Endpoints were classified into three groups according to tertiles (lower, middle, and upper) of each vitamin index, and the association of the serum vitamin status with intermediate and clinical outcomes was analyzed using a generalized estimating equation model. Higher riboflavin levels were associated with elevated probabilities of high-quality embryos, as well as clinical pregnancy after embryo transfer. A greater likelihood of transferable embryos was found in the middle tertile of serum folate. Similarly, a negative correlation of serum MMA, a marker of vitamin B12 deficiency, with high-quality embryos was identified. No significance was observed for other vitamins in terms of all endpoints. Therefore, sufficient levels of pre-conception riboflavin, folate, and vitamin B12 are recommended for successful infertility treatment and pregnancy planning; further evidence is needed to confirm our conclusion.
Collapse
Affiliation(s)
- Ling Zhang
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Li-mei Wu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Wei-hai Xu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yu-qing Tian
- Department of Postgraduate Education, Jinzhou Medical University, Jinzhou, China
| | - Xu-ling Liu
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Provice, Hangzhou, China
- Calibra Lab, DIAN Diagnostics, Hangzhou, China
| | - Chen-yun Xia
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Provice, Hangzhou, China
- Calibra Lab, DIAN Diagnostics, Hangzhou, China
| | - Lin Zhang
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Shi-shi Li
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Zhen Jin
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xiang-li Wu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Xiang-li Wu
| | - Jing Shu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
- Jing Shu
| |
Collapse
|
12
|
Yagoub SH, Lim M, Tan TCY, Chow DJX, Dholakia K, Gibson BC, Thompson JG, Dunning KR. Vitrification within a nanoliter volume: oocyte and embryo cryopreservation within a 3D photopolymerized device. J Assist Reprod Genet 2022; 39:1997-2014. [PMID: 35951146 PMCID: PMC9474789 DOI: 10.1007/s10815-022-02589-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Vitrification permits long-term banking of oocytes and embryos. It is a technically challenging procedure requiring direct handling and movement of cells between potentially cytotoxic cryoprotectant solutions. Variation in adherence to timing, and ability to trace cells during the procedure, affects survival post-warming. We hypothesized that minimizing direct handling will simplify the procedure and improve traceability. To address this, we present a novel photopolymerized device that houses the sample during vitrification. Methods The fabricated device consisted of two components: the Pod and Garage. Single mouse oocytes or embryos were housed in a Pod, with multiple Pods docked into a Garage. The suitability of the device for cryogenic application was assessed by repeated vitrification and warming cycles. Oocytes or early blastocyst-stage embryos were vitrified either using standard practice or within Pods and a Garage and compared to non-vitrified control groups. Post-warming, we assessed survival rate, oocyte developmental potential (fertilization and subsequent development) and metabolism (autofluorescence). Results Vitrification within the device occurred within ~ 3 nL of cryoprotectant: this volume being ~ 1000-fold lower than standard vitrification. Compared to standard practice, vitrification and warming within our device showed no differences in viability, developmental competency, or metabolism for oocytes and embryos. The device housed the sample during processing, which improved traceability and minimized handling. Interestingly, vitrification-warming itself, altered oocyte and embryo metabolism. Conclusion The Pod and Garage system minimized the volume of cryoprotectant at vitrification—by ~ 1000-fold—improved traceability and reduced direct handling of the sample. This is a major step in simplifying the procedure.
Supplementary information The online version contains supplementary material available at 10.1007/s10815-022-02589-8.
Collapse
Affiliation(s)
- Suliman H Yagoub
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia, 5000, Australia.,School of Biomedicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5005, Australia.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Megan Lim
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia, 5000, Australia.,School of Biomedicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5005, Australia.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Tiffany C Y Tan
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia, 5000, Australia.,School of Biomedicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5005, Australia.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Darren J X Chow
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia, 5000, Australia.,School of Biomedicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5005, Australia.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Kishan Dholakia
- School of Physics and Astronomy, University of St Andrews, North Haugh, Scotland, KY16 9SS.,School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.,Department of Physics, College of Science, Yonsei University, Seoul, 03722, South Korea
| | - Brant C Gibson
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia, 5000, Australia.,School of Science, RMIT, Melbourne, VIC, 3001, Australia
| | - Jeremy G Thompson
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia, 5000, Australia.,School of Biomedicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5005, Australia.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, 5000, Australia.,Fertilis Pty Ltd, Adelaide, South Australia, 5005, Australia
| | - Kylie R Dunning
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia, 5000, Australia. .,School of Biomedicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5005, Australia. .,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
13
|
The effect of discrete wavelengths of visible light on the developing murine embryo. J Assist Reprod Genet 2022; 39:1825-1837. [PMID: 35737174 PMCID: PMC9428105 DOI: 10.1007/s10815-022-02555-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 06/15/2022] [Indexed: 01/19/2023] Open
Abstract
PURPOSE A current focus of the IVF field is non-invasive imaging of the embryo to quantify developmental potential. Such approaches use varying wavelengths to gain maximum biological information. The impact of irradiating the developing embryo with discrete wavelengths of light is not fully understood. Here, we assess the impact of a range of wavelengths on the developing embryo. METHODS Murine preimplantation embryos were exposed daily to wavelengths within the blue, green, yellow, and red spectral bands and compared to an unexposed control group. Development to blastocyst, DNA damage, and cell number/allocation to blastocyst cell lineages were assessed. For the longer wavelengths (yellow and red), pregnancy/fetal outcomes and the abundance of intracellular lipid were investigated. RESULTS Significantly fewer embryos developed to the blastocyst stage when exposed to the yellow wavelength. Elevated DNA damage was observed within embryos exposed to blue, green, or red wavelengths. There was no effect on blastocyst cell number/lineage allocation for all wavelengths except red, where there was a significant decrease in total cell number. Pregnancy rate was significantly reduced when embryos were irradiated with the red wavelength. Weight at weaning was significantly higher when embryos were exposed to yellow or red wavelengths. Lipid abundance was significantly elevated following exposure to the yellow wavelength. CONCLUSION Our results demonstrate that the impact of light is wavelength-specific, with longer wavelengths also impacting the embryo. We also show that effects are energy-dependent. This data shows that damage is multifaceted and developmental rate alone may not fully reflect the impact of light exposure.
Collapse
|