1
|
Huang G, Quan L, Li Q, Zhou X, Han M, Peng F, Gong Y. Umbilical Cord-Derived Mesenchymal Stem Cells Improve Ornidazole-Induced Asthenozoospermia in Rats via Activation of the AKT/mTOR Pathway. Int J Endocrinol 2024; 2024:3494652. [PMID: 39564353 PMCID: PMC11576082 DOI: 10.1155/2024/3494652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 05/29/2024] [Accepted: 06/13/2024] [Indexed: 11/21/2024] Open
Abstract
Objective: Mesenchymal stem cells (MSCs) have been highly confirmed for their critical role in the treatment of different diseases. This study focuses on the mechanism of umbilical cord-derived MSCs (UC-MSCs) in the treatment of ornidazole (ORN)-induced asthenozoospermia (AS) in rats via the AKT/mTOR pathway. Methods: An animal model of AS was established in ORN-induced rats, followed by treatment of UC-MSCs and rapamycin (autophagy activator) or MK-2206 (AKT inhibitor). The sperm motility, concentration, and viability of rats were measured by an automatic sperm analyzer. Hematoxylin and eosin (HE) staining was conducted to observe the pathological injury of testicular tissue in rats. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was utilized to evaluate the apoptosis rate of testicular cells. Western blot analysis was performed to determine the expression of apoptosis-related proteins, autophagy-related proteins, and AKT, p-AKT, mTOR, and p-mTOR. The rate of light chain 3 (LC3)-positive cells in testicular tissue was detected by immunohistochemistry (IHC). Results: In ORN-induced AS rats, sperm motility, concentration, and viability as well as the number of mesenchymal cells and spermatogenic cells were significantly decreased, spermatogenic tubule space, apoptosis rate, and cleaved caspase-3, LC3II/I, Beclin-1, and LC3-positive cell rates were increased, and Bcl2 was downregulated. UC-MSCs could improve sperm quality and testicular injury in AS rats by inhibiting excessive autophagy. Besides, UC-MSCs could activate the AKT/mTOR pathway. Moreover, inhibition of the AKT/mTOR pathway partially reversed the therapeutic effect of UC-MSCs on ORN-induced AS rats. Conclusion: UC-MSCs inhibit autophagy and improve sperm quality in AS rats through the AKT/mTOR pathway, highlighting a new idea for the treatment of AS.
Collapse
Affiliation(s)
- GaoBo Huang
- Reproductive Center, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Li Quan
- Reproductive Center, Yueyang Maternal and Child Health Hospital, Yueyang 414000, Hunan, China
| | - Qi Li
- Reproductive Center, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Xiao Zhou
- Reproductive Center, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Mei Han
- College of Life Sciences, Hunan Normal University, Changsha 410000, Hunan, China
| | - Fang Peng
- Reproductive Center, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - YanFei Gong
- Reproductive Center, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| |
Collapse
|
2
|
Contreras-Mellado P, Bravo A, Zambrano F, Sánchez R, Boguen R, Risopatrón J, Merino O, Uribe P. Oxidative Stress Induces Changes in Molecular Markers Associated with Ferroptosis in Human Spermatozoa. World J Mens Health 2024; 42:42.e83. [PMID: 39344120 DOI: 10.5534/wjmh.240085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 10/01/2024] Open
Abstract
PURPOSE Ferroptosis is a type of iron-dependent regulated cell death characterized by increased bioavailability of redox-active iron, loss of GPX4 antioxidant capacity, and oxidation of polyunsaturated fatty acid-containing phospholipids mediated by reactive oxygen species (ROS). The aim of this study was to evaluate the effect of oxidative stress induced by arachidonic acid (AA) on ferroptotic cell death in human spermatozoa. MATERIALS AND METHODS Spermatozoa from normozoospermic donors were exposed to AA (5, 25, and 50 µM) for 1 hour at 37 ℃, including an untreated control. Oxidative stress was confirmed by evaluation of cytosolic and mitochondrial ROS production, viability, mitochondrial membrane potential (ΔΨm) and motility. Subsequently, molecular markers of ferroptosis including iron content, levels of GPX4, SLC7A11, ACSL4, IREB2 and lipid peroxidation were evaluated. The analyses were carried out using either flow cytometry, a microplate reader or confocal laser microscopy. RESULTS AA-induced oxidative stress showed increased cytosolic and mitochondrial ROS production accompanied by impairedΔΨm, viability and motility in human spermatozoa. These results were associated with biochemical and molecular markers related to ferroptotic cell death including an increase in iron content in the form of ferrous (Fe2+) ions, SLC7A11, ACSL4, IREB2, a decrease in the level of GPX4, and an increase in the level of lipid peroxidation compared to the untreated control. CONCLUSIONS This study revealed that AA-induced oxidative stress induces cell death with biochemical characteristics of ferroptosis in human spermatozoa, demonstrating another mechanism of alteration of sperm function induced by oxidative stress and could establish new therapeutic objectives to prevent the decrease in sperm quality mediated by oxidative stress.
Collapse
Affiliation(s)
- Pablo Contreras-Mellado
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresources Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
- Ph.D. Program in Sciences Mention Applied Cell and Molecular Biology, Faculty of Agricultural Sciences and Environment, Universidad de La Frontera, Temuco, Chile
| | - Anita Bravo
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresources Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Fabiola Zambrano
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresources Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Raúl Sánchez
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresources Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Rodrigo Boguen
- Department of Diagnostic Processes and Evaluation, Faculty of Health Sciences, Universidad Catolica de Temuco, Temuco, Chile
| | - Jennie Risopatrón
- Center of Excellence of Biotechnology in Reproduction (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Osvaldo Merino
- Center of Excellence of Biotechnology in Reproduction (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Pamela Uribe
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresources Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
3
|
Kilama J, Dahlen CR, Reynolds LP, Amat S. Contribution of the seminal microbiome to paternal programming. Biol Reprod 2024; 111:242-268. [PMID: 38696371 PMCID: PMC11327320 DOI: 10.1093/biolre/ioae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024] Open
Abstract
The field of Developmental Origins of Health and Disease has primarily focused on maternal programming of offspring health. However, emerging evidence suggests that paternal factors, including the seminal microbiome, could potentially play important roles in shaping the developmental trajectory and long-term offspring health outcomes. Historically, the microbes present in the semen were regarded as inherently pathogenic agents. However, this dogma has recently been challenged by the discovery of a diverse commensal microbial community within the semen of healthy males. In addition, recent studies suggest that the transmission of semen-associated microbes into the female reproductive tract during mating has potentials to not only influence female fertility and embryo development but could also contribute to paternal programming in the offspring. In this review, we summarize the current knowledge on the seminal microbiota in both humans and animals followed by discussing their potential involvement in paternal programming of offspring health. We also propose and discuss potential mechanisms through which paternal influences are transmitted to offspring via the seminal microbiome. Overall, this review provides insights into the seminal microbiome-based paternal programing, which will expand our understanding of the potential paternal programming mechanisms which are currently focused primarily on the epigenetic modifications, oxidative stresses, and cytokines.
Collapse
Affiliation(s)
- Justine Kilama
- Department of Microbiological Sciences, North Dakota State University, NDSU Department 7520, Fargo, ND 58108-6050, USA
| | - Carl R Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| | - Lawrence P Reynolds
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, NDSU Department 7520, Fargo, ND 58108-6050, USA
| |
Collapse
|
4
|
Li Y, Tian Y, Xu M, Qiu X, Bao Z, Shi M, Deng F, Chen Y, Tang S, Wan Y, Jia X, Yang H. Single-cell insights into mouse testicular toxicity under peripubertal exposure to di(2-ethylhexyl) phthalate. Toxicol Sci 2024; 200:287-298. [PMID: 38730545 DOI: 10.1093/toxsci/kfae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024] Open
Abstract
Male fertility depends on normal pubertal development. Di-(2-ethylhexyl) phthalate (DEHP) is a potent antiandrogen chemical, and exposure to DEHP during peripuberty can damage the developing male reproductive system, especially the testis. However, the specific cellular targets and differentiation processes affected by DEHP, which lead to testicular toxicity, remain poorly defined. Herein, we presented the first single-cell transcriptomic profile of the pubertal mouse testis following DEHP exposure. To carry out the experiment, 2 groups (n = 8 each) of 3-week-old male mice were orally administered 0.5% carboxymethylcellulose sodium salt or 100 mg/kg body weight DEHP daily from postnatal day 21-48, respectively. Using single-cell RNA sequencing, a total of 31 distinct cell populations were identified, notably, Sertoli and Leydig cells emerged as important targets of DEHP. DEHP exposure significantly decreased the proportions of Sertoli cell clusters expressing mature Sertoli markers (Sox9 and Ar), and selectively reduced the expression of testosterone synthesis genes in fetal Leydig cells. Through cell-cell interaction analyses, we observed changed numbers of interactions in Sertoli cells 1 (SCs1), Leydig cells 1 (LCs1), and interstitial macrophages, and we also identified cell-specific ligand gene expressions in these clusters, such as Inha, Fyn, Vcam1, and Apoe. Complementary in vitro assays confirmed that DEHP directly reduced the expression of genes related to Sertoli cell adhesion and intercellular communication. In conclusion, peripubertal DEHP exposure reduced the number of mature Sertoli cells and may disrupt testicular steroidogenesis by affecting the testosterone synthesis genes in fetal Leydig cells rather than adult Leydig cells.
Collapse
Affiliation(s)
- Yongning Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yaru Tian
- Guangdong Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Food Safety and Health Research Center, Guangzhou 510515, China
| | - Miao Xu
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuemei Qiu
- Reproductive Medicine Center, Zaozhuang Maternal and Child Health Care Hospital, Shandong 277100, China
| | - Zhongjian Bao
- Reproductive Medicine Center, Zaozhuang Maternal and Child Health Care Hospital, Shandong 277100, China
| | - Miaoying Shi
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yuanyuan Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of 646 Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xudong Jia
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Hui Yang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
- Guangdong Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Food Safety and Health Research Center, Guangzhou 510515, China
| |
Collapse
|
5
|
Li Y, Zhou Y, Ma T, Dai J, Li H, Pan Q, Luo W. Research progress on the role of autophagy in the development of varicocele. Reprod Biol 2024; 24:100894. [PMID: 38776742 DOI: 10.1016/j.repbio.2024.100894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/04/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Varicocele (VC) is a common cause of infertility in men. Pathophysiological changes caused by VC, such as testicular hypoxia, high temperatures, oxidative stress, abnormal reproductive hormones, and Cd accumulation, can induce autophagy, thus affecting the reproductive function in patients with this condition. Autophagy regulators can be classified as activators or inhibitors. Autophagy activators upregulate autophagy, reduce the damage to the testis and epididymis, inhibit spermatogenic cell apoptosis, and protect fertility. In contrast, autophagy inhibitors block autophagy and aggravate the damage to the reproductive functions. Therefore, elucidating the role of autophagy in the occurrence, development, and regulation of VC may provide additional therapeutic options for men with infertility and VC. In this review, we briefly describe the progress made in autophagy research in the context of VC.
Collapse
Affiliation(s)
- Yunqing Li
- Reproductive Medicine Department, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yulan Zhou
- Reproductive Medicine Department, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Tianzhong Ma
- Reproductive Medicine Department, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jiaze Dai
- Medical Laboratory Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Hongbo Li
- Medical Laboratory Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qingjun Pan
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Wenying Luo
- Medical Laboratory Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| |
Collapse
|
6
|
Lu H, Zhao L, Wang A, Ruan H, Chen X, Li Y, Hu J, Lu W, Xiao M. Identification of potential biomarkers and pathways for asthenozoospermia by bioinformatics analysis and experiments. Front Endocrinol (Lausanne) 2024; 15:1373774. [PMID: 38863929 PMCID: PMC11165088 DOI: 10.3389/fendo.2024.1373774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024] Open
Abstract
Background Asthenozoospermia, a type of male infertility, is primarily caused by dysfunctional sperm mitochondria. Despite previous bioinformatics analysis identifying potential key lncRNAs, miRNAs, hub genes, and pathways associated with asthenospermia, there is still a need to explore additional molecular mechanisms and potential biomarkers for this condition. Methods We integrated data from Gene Expression Omnibus (GEO) (GSE22331, GSE34514, and GSE160749) and performed bioinformatics analysis to identify differentially expressed genes (DEGs) between normozoospermia and asthenozoospermia. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to gain insights into biological processes and signaling pathways. Weighted Gene Co-expression Network Analysis (WGCNA) identified gene modules associated with asthenozoospermia. Expression levels of key genes were assessed using datasets and experimental data. Gene Set Enrichment Analysis (GSEA) and correlation analysis identified pathways associated with the hub gene and explore the relationship between the ZNF764 and COQ9 and mitochondrial autophagy-related genes. Competitive endogenous RNA (ceRNA) networks were constructed, and in vitro experiments using exosome samples were conducted to validate this finding. Results COQ9 was identified as a marker gene in asthenozoospermia, involved in autophagy, ATP-dependent chromatin remodeling, endocytosis, and cell cycle, etc. The ceRNA regulatory network (LINC00893/miR-125a-5p/COQ9) was constructed, and PCR demonstrated that LINC00893 and COQ9 were downregulated in asthenozoospermia, while miR-125a-5p and m6A methylation level of LINC00893 were upregulated in asthenozoospermia compared to normozoospermic individuals. Conclusion The ceRNA regulatory network (LINC00893/miR-125a-5p/COQ9) likely plays a crucial role in the mechanism of asthenozoospermia. However, further functional experiments are needed to fully understand its significance.
Collapse
Affiliation(s)
- Hui Lu
- Reproductive Medicine Center, Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Liqiang Zhao
- Reproductive Medicine Center, Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Anguo Wang
- Reproductive Medicine Center, Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Hailing Ruan
- Reproductive Medicine Center, Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Xiaoyan Chen
- Reproductive Medicine Center, Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Yejuan Li
- Reproductive Medicine Center, Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Jiajia Hu
- Reproductive Medicine Center, Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Weiying Lu
- Reproductive Medicine Center, Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Meifang Xiao
- Department of Clinical Laboratory, Center for Laboratory Medicine, Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| |
Collapse
|
7
|
Hai E, Li B, Zhang J, Zhang J. Sperm freezing damage: the role of regulated cell death. Cell Death Discov 2024; 10:239. [PMID: 38762505 PMCID: PMC11102515 DOI: 10.1038/s41420-024-02013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
Substantial progress in research on sperm cryopreservation has occurred since the twentieth century, especially focusing on improving sperm freezing procedures and optimizing semen extenders. However, the cellular biological mechanisms of sperm freezing damage are still unclear, which greatly restricts the promotion and development of sperm cryopreservation. An essential component of sperm freezing damage is the occurrence of cell death. Considering the existence of multiple types of cell death pathways, this review discusses connections between characteristics of regulated cell death (e.g., apoptosis and ferroptosis), and accidental cell death (e.g., intracellular ice crystals) with sperm freezing damage and explores possible future research directions in this field.
Collapse
Affiliation(s)
- Erhan Hai
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Boyuan Li
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Jian Zhang
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Jiaxin Zhang
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China.
| |
Collapse
|
8
|
Hu J, Wu J, Liu X, Zhang Y, Mo L, Liu L, Liu S, Ou C, He Y. Hypoxia enhances autophagy level of human sperms. Sci Rep 2024; 14:8465. [PMID: 38605082 PMCID: PMC11009268 DOI: 10.1038/s41598-024-59213-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/08/2024] [Indexed: 04/13/2024] Open
Abstract
The relationship between oxygen sensing and autophagy in human sperms was explored in this study. Health semen and asthenozoospermia (astheno) semen were incubated with hypoxia-inducible factor-1α (HIF-1α) interferents, i.e., lificiguat (YC-1) or cobalt chloride (CoCl2), respectively. Label-free quantitative proteomic technology was used to identify the differentially expressed proteins in human semen under the hypoxia condition. Selected proteins were detected with ELISA. It was found that the autophagy levels of sperm in the YC-1 + health group or CoCl2 + astheno group increased while the vitality decreased. A total of 17, 34 and 35 differentially expressed proteins were observed in the Astheno group, the YC-1 + health group and the CoCl2 + astheno group, respectively. These proteins were primarily associated with protein processing in endoplasmic reticulum, Th17 cell differentiation, progesterone-mediated oocyte maturation, glycolysis/gluconeogenesis, HIF-1 signaling pathway, biosynthesis of amino acids, and carbon metabolism. The expression levels of protein HIF-1α, LC3B, histone H4, cathepsin L and ENO1 changed significantly in the groups. The study suggests that hypoxia can increase sperm autophagy level and reduce their vitality through HIF-1 signaling pathway and glycolysis/gluconeogenesis signaling pathway. Furthermore, proteins histone H4, cathepsin L, glutathione synthetase and ENO1 are proposed as potential biomarkers of autophagy and vitality in asthenozoospermia sperm.
Collapse
Affiliation(s)
- Jie Hu
- School of Public Health, Guilin Medical University, Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, China
| | - Jiwei Wu
- School of Public Health, Guilin Medical University, Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, China
| | - Xinge Liu
- School of Public Health, Guilin Medical University, Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, China
| | - Yan Zhang
- School of Public Health, Guilin Medical University, Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, China
| | - Linfeng Mo
- School of Public Health, Guilin Medical University, Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, China
- Medicine and Health Science College, Guangzhou Huashang Vocational College, Guangzhou, 511300, Guangdong, China
| | - Liangzhao Liu
- School of Public Health, Guilin Medical University, Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, China
| | - Shengxue Liu
- Centre of Reproductive Medicine, Affiliated Hospital of Guilin Medical University, Yiwu Road, Xiufeng District, Guilin, 541001, Guangxi, China
| | - Chaoyan Ou
- School of Public Health, Guilin Medical University, Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, China.
| | - Yonghua He
- School of Public Health, Guilin Medical University, Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, China.
| |
Collapse
|
9
|
Shi H, Li QY, Li H, Wang HY, Fan CX, Dong QY, Pan BC, Ji ZL, Li JY. ROS-induced oxidative stress is a major contributor to sperm cryoinjury. Hum Reprod 2024; 39:310-325. [PMID: 38011909 DOI: 10.1093/humrep/dead250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
STUDY QUESTION What is the mechanism behind cryoinjury in human sperm, particularly concerning the interplay between reactive oxygen species (ROS) and autophagy, and how does it subsequently affect sperm fate? SUMMARY ANSWER The freeze-thaw operation induces oxidative stress by generating abundant ROS, which impairs sperm motility and activates autophagy, ultimately guiding the sperm toward programmed cell death such as apoptosis and necrosis, as well as triggering premature capacitation. WHAT IS KNOWN ALREADY Both ROS-induced oxidative stress and autophagy are thought to exert an influence on the quality of frozen-thawed sperm. STUDY DESIGN, SIZE, DURATION Overall, 84 semen specimens were collected from young healthy fertile males, with careful quality evaluation. The specimens were split into three groups to investigate the ROS-induced cryoinjury: normal control without any treatment, sperm treated with 0.5 mM hydrogen peroxide (H2O2) for 1 h, and sperm thawed following cryopreservation. Samples from 48 individuals underwent computer-assisted human sperm analysis (CASA) to evaluate sperm quality in response to the treatments. Semen samples from three donors were analyzed for changes in the sperm proteome after H2O2 treatment, and another set of samples from three donors were analyzed for changes following the freeze-thaw process. The other 30 samples were used for fluorescence-staining and western blotting. PARTICIPANTS/MATERIALS, SETTING, METHODS Sperm motility parameters, including progressive motility (PR %) and total motility (PR + NP %), were evaluated using the CASA system on a minimum of 200 spermatozoa. The proteomic profiles were determined with label-free mass spectrometry (MS/MS) and protein identification was performed via ion search against the NCBI human database. Subsequently, comprehensive bioinformatics was applied to detect significant proteomic changes and functional enrichment. Fluorescence-staining and western blot analyses were also conducted to confirm the proteomic changes on selected key proteins. The ROS level was measured using 2',7'-dichlorodihydrofluorescein diacetate labeling and the abundance of bioactive mitochondria was determined by evaluating the inner mitochondrial membrane potential (MMP) level. Molecular behaviors of sequestosome-1 (p62 or SQSTM1) and microtubule-associated proteins 1A/1B light chain 3 (LC3) were monitored to evaluate the state of apoptosis in human sperm. Fluorescent probes oxazole yellow (YO-PRO-1) and propidium iodide (PI) were utilized to monitor programmed cell death, namely apoptosis and necrosis. Additionally, gradient concentrations of antioxidant coenzyme Q10 (CoQ10) were introduced to suppress ROS impacts on sperm. MAIN RESULTS AND THE ROLE OF CHANCE The CASA analysis revealed a significant decrease in sperm motility for both the H2O2-treatment and freeze-thaw groups. Fluorescence staining showed that high ROS levels were produced in the treated sperm and the MMPs were largely reduced. The introduction of CoQ10 at concentrations of 20 and 30 μM resulted in a significant rescue of progressive motility (P < 0.05). The result suggested that excessive ROS could be the major cause of sperm motility impairment, likely by damaging mitochondrial energy generation. Autophagy was significantly activated in sperm when they were under oxidative stress, as evidenced by the upregulation of p62 and the increased conversion of LC3 as well as the upregulation of several autophagy-related proteins, such as charged multivesicular body protein 2a, mitochondrial import receptor subunit TOM22 homolog, and WD repeat domain phosphoinositide-interacting protein 2. Additionally, fluorescent staining indicated the occurrence of apoptosis and necrosis in both H2O2-treated sperm and post-thaw sperm. The cell death process can be suppressed when CoQ10 is introduced, which consolidates the view that ROS could be the major contributor to sperm cryoinjury. The freeze-thaw process could also initiate sperm premature capacitation, demonstrated by the prominent increase in tyrosine phosphorylated proteins, verified with anti-phosphotyrosine antibody and immunofluorescence assays. The upregulation of capacitation-related proteins, such as hyaluronidase 3 and Folate receptor alpha, supported this finding. LARGE SCALE DATA The data underlying this article are available in the article and its online supplementary material. LIMITATIONS, REASONS FOR CAUTION The semen samples were obtained exclusively from young, healthy, and fertile males with progressive motility exceeding 60%, which might overemphasize the positive effects while possibly neglecting the negative impacts of cryoinjury. Additionally, the H2O2 treatment conditions in this study may not precisely mimic the oxidative stress experienced by sperm after thawing from cryopreservation, potentially resulting in the omission of certain molecular alterations. WIDER IMPLICATIONS OF THE FINDINGS This study provides substantial proteomic data for a comprehensive and deeper understanding of the impact of cryopreservation on sperm quality. It will facilitate the design of optimal protocols for utilizing cryopreserved sperm to improve applications, such as ART, and help resolve various adverse situations caused by chemotherapy, radiotherapy, and surgery. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants from the Major Innovation Project of Research Institute of National Health Commission (#2022GJZD01-3) and the National Key R&D Program of China (#2018YFC1003600). All authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Hui Shi
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Qian-Ying Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hui Li
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Hai-Yan Wang
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Chuan-Xi Fan
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Qiao-Yan Dong
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Bo-Chen Pan
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhi-Liang Ji
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jian-Yuan Li
- Institute of Science and Technology, National Health Commission, Beijing, China
| |
Collapse
|
10
|
Samare-Najaf M, Neisy A, Samareh A, Moghadam D, Jamali N, Zarei R, Zal F. The constructive and destructive impact of autophagy on both genders' reproducibility, a comprehensive review. Autophagy 2023; 19:3033-3061. [PMID: 37505071 PMCID: PMC10621263 DOI: 10.1080/15548627.2023.2238577] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Reproduction is characterized by a series of massive renovations at molecular, cellular, and tissue levels. Recent studies have strongly tended to reveal the involvement of basic molecular pathways such as autophagy, a highly conserved eukaryotic cellular recycling, during reproductive processes. This review comprehensively describes the current knowledge, updated to September 2022, of autophagy contribution during reproductive processes in males including spermatogenesis, sperm motility and viability, and male sex hormones and females including germ cells and oocytes viability, ovulation, implantation, fertilization, and female sex hormones. Furthermore, the consequences of disruption in autophagic flux on the reproductive disorders including oligospermia, azoospermia, asthenozoospermia, teratozoospermia, globozoospermia, premature ovarian insufficiency, polycystic ovarian syndrome, endometriosis, and other disorders related to infertility are discussed as well.Abbreviations: AKT/protein kinase B: AKT serine/threonine kinase; AMPK: AMP-activated protein kinase; ATG: autophagy related; E2: estrogen; EDs: endocrine disruptors; ER: endoplasmic reticulum; FSH: follicle stimulating hormone; FOX: forkhead box; GCs: granulosa cells; HIF: hypoxia inducible factor; IVF: in vitro fertilization; IVM: in vitro maturation; LCs: Leydig cells; LDs: lipid droplets; LH: luteinizing hormone; LRWD1: leucine rich repeats and WD repeat domain containing 1; MAP1LC3: microtubule associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MTOR: mechanistic target of rapamycin kinase; NFKB/NF-kB: nuclear factor kappa B; P4: progesterone; PCOS: polycystic ovarian syndrome; PDLIM1: PDZ and LIM domain 1; PI3K: phosphoinositide 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns3K: class III phosphatidylinositol 3-kinase; POI: premature ovarian insufficiency; ROS: reactive oxygen species; SCs: Sertoli cells; SQSTM1/p62: sequestosome 1; TSGA10: testis specific 10; TST: testosterone; VCP: vasolin containing protein.
Collapse
Affiliation(s)
- Mohammad Samare-Najaf
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
| | - Asma Neisy
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Samareh
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Delaram Moghadam
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Jamali
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Reza Zarei
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Zal
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Li X, Zeng YM, Luo YD, He J, Luo BW, Lu XC, Zhu LL. Effects of folic acid and folic acid plus zinc supplements on the sperm characteristics and pregnancy outcomes of infertile men: A systematic review and meta-analysis. Heliyon 2023; 9:e18224. [PMID: 37539255 PMCID: PMC10395467 DOI: 10.1016/j.heliyon.2023.e18224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/14/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023] Open
Abstract
Background Folic acid and zinc supplements have been used to treat male infertility, but their efficacy is still debated. Objective To systematically evaluate the effects of folic acid and folic acid plus zinc supplements on sperm characteristics and pregnancy outcomes of infertile men. Methods An online systematic search was performed using PubMed, Cochrane Library, and EMBASE databases from inception to August 1, 2022. The goal was to identify randomized controlled trials (RCTs) that used folic acid or folic acid plus zinc to improve sperm characteristics of infertile men. Data were extracted by two investigators who independently screened the literature and assessed for quality according to the criteria. The meta-analysis was performed using RevMan 5.4 software. Results A total of 8 RCT studies involving 2168 patients were included. The results showed that compared with the controls, folic acid significantly increased sperm motility (MD, 3.63; 95% CI, -1.22 to 6.05; P = 0.003), but did not affect the sperm concentration (MD, 2.53; 95% CI, -1.68 to 6.73; P = 0.24) and sperm morphology (MD, -0.02; 95% CI, -0.29 to 0.24; P = 0.86) in infertile men. Folic acid plus zinc did not affect sperm concentration (MD, 1.87; 95% CI, -1.39 to 5.13; P = 0.26), motility (MD, 1.67; 95% CI, -1.29 to 4.63; P = 0.27), and morphology (MD, -0.05; 95% CI, -0.27 to 0.18; P = 0.69) in infertile men. Secondary results showed that compared with a placebo, folic acid alone had a higher rate of pregnancy in transferred embryos (35.6% vs. 20.4%, P = 0.082), but the difference was not significant. Folic acid plus zinc did not affect pregnancy outcomes. Conclusions Based on the meta-analysis, no significant improvements in sperm characteristics with folic acid plus zinc supplements were seen. However, folic acid alone has demonstrated the potential to improve sperm motility and in vitro fertilization-intracytoplasmic sperm injection (IVF-ICSI) outcomes. This indicates that folic acid supplements alone may be a viable treatment option for male infertility.
Collapse
|
12
|
Uribe P, Barra J, Painen K, Zambrano F, Schulz M, Moya C, Isachenko V, Isachenko E, Mallmann P, Sánchez R. FeTPPS, a Peroxynitrite Decomposition Catalyst, Ameliorates Nitrosative Stress in Human Spermatozoa. Antioxidants (Basel) 2023; 12:1272. [PMID: 37372002 DOI: 10.3390/antiox12061272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Excessive levels of reactive nitrogen species (RNS), such as peroxynitrite, promote nitrosative stress, which is an important cause of impaired sperm function. The metalloporphyrin FeTPPS is highly effective in catalyzing the decomposition of peroxynitrite, reducing its toxic effects in vivo and in vitro. FeTPPS has significant therapeutic potential in peroxynitrite-related diseases; however, its effects on human spermatozoa under nitrosative stress have not been described. This work aimed to evaluate the in vitro effect of FeTPPS against peroxynitrite-mediated nitrosative stress in human spermatozoa. For this purpose, spermatozoa from normozoospermic donors were exposed to 3-morpholinosydnonimine, a molecule that generates peroxynitrite. First, the FeTPPS-mediated peroxynitrite decomposition catalysis was analyzed. Then, its individual effect on sperm quality parameters was evaluated. Finally, the effect of FeTPPS on ATP levels, motility, mitochondrial membrane potential, thiol oxidation, viability, and DNA fragmentation was analyzed in spermatozoa under nitrosative stress conditions. The results showed that FeTPPS effectively catalyzes the decomposition of peroxynitrite without affecting sperm viability at concentrations up to 50 μmol/L. Furthermore, FeTPPS mitigates the deleterious effects of nitrosative stress on all sperm parameters analyzed. These results highlight the therapeutic potential of FeTPPS in reducing the negative impact of nitrosative stress in semen samples with high RNS levels.
Collapse
Affiliation(s)
- Pamela Uribe
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4810296, Chile
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4781176, Chile
| | - Javiera Barra
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4810296, Chile
| | - Kevin Painen
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4810296, Chile
| | - Fabiola Zambrano
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4810296, Chile
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4781176, Chile
| | - Mabel Schulz
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4810296, Chile
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4781176, Chile
| | - Claudia Moya
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4810296, Chile
| | - Vladimir Isachenko
- Research Group in Reproductive Medicine, Department of Obstetrics and Gynecology, Cologne University, 50923 Köln, Germany
| | - Evgenia Isachenko
- Research Group in Reproductive Medicine, Department of Obstetrics and Gynecology, Cologne University, 50923 Köln, Germany
| | - Peter Mallmann
- Research Group in Reproductive Medicine, Department of Obstetrics and Gynecology, Cologne University, 50923 Köln, Germany
| | - Raúl Sánchez
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4810296, Chile
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4781176, Chile
| |
Collapse
|
13
|
Zhang L, Zhang H, Du S, Song X, Hu D. In Vitro Transcriptional Response of Eimeria tenella to Toltrazuril Reveals That Oxidative Stress and Autophagy Contribute to Its Anticoccidial Effect. Int J Mol Sci 2023; 24:ijms24098370. [PMID: 37176073 PMCID: PMC10179680 DOI: 10.3390/ijms24098370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/16/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Intestinal coccidiosis is a common parasitic disease in livestock, caused by the infection of Eimeria and Cystoisospora parasites, which results in great economic losses to animal husbandry. Triazine compounds, such as toltrazuril and diclazuril, are widely used in the treatment and chemoprophylaxis of coccidiosis. Unfortunately, widespread drug resistance has compromised their effectiveness. Most studies have focused on prophylaxis and therapeutics with toltrazuril in flocks, while a comprehensive understanding of how toltrazuril treatment alters the transcriptome of E. tenella remains unknown. In this study, merozoites of E. tenella were treated in vitro with 0.5 μg/mL toltrazuril for 0, 1, 2 and 4 h, respectively. The gene transcription profiles were then compared by high-throughput sequencing. Our results showed that protein hydrolysis genes were significantly upregulated after drug treatment, while cell cycle-related genes were significantly downregulated, suggesting that toltrazuril may affect parasite division. The expression of redox-related genes was upregulated and elevated levels of ROS and autophagosomes were detected in the parasite after toltrazuril treatment, suggesting that toltrazuril may cause oxidative stress to parasite cells and lead to its autophagy. Our results provide basic knowledge of the response of Eimeria genes to toltrazuril and further analysis of the identified transcriptional changes can provide useful information for a better understanding of the mechanism of action of toltrazuril against Eimeria.
Collapse
Affiliation(s)
- Lei Zhang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Hongtao Zhang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Shiqi Du
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xingju Song
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Dandan Hu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| |
Collapse
|
14
|
Aparicio IM, Rojo-Domínguez P, Castillejo-Rufo A, Peña FJ, Tapia JA. The Autophagy Marker LC3 Is Processed during the Sperm Capacitation and the Acrosome Reaction and Translocates to the Acrosome Where It Colocalizes with the Acrosomal Membranes in Horse Spermatozoa. Int J Mol Sci 2023; 24:ijms24020937. [PMID: 36674454 PMCID: PMC9862423 DOI: 10.3390/ijms24020937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/25/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Despite its importance in somatic cells and during spermatogenesis, little is known about the role that autophagy may play in ejaculated spermatozoa. Our aim was to investigate whether the molecular components of autophagy, such as microtubule-associated protein 1 light chain 3 (LC3), are activated in stallion spermatozoa during the capacitation and acrosome reaction and if this activation could modulate these biological processes. To analyze the autophagy turnover, LC3I and LC3II proteins were assessed by western blotting, and the ratio between both proteins (LC3II/LC3I) was calculated. In somatic cells, this ratio indicates that autophagy has been activated and similar LC3 processing has been described in mammalian spermatozoa. The subcellular localization of autophagy-related proteins was assessed by immunofluorescence with specific antibodies that recognized Atg16, Beclin-1, and LC3. The colocalization of acrosomal membranes (PNA) and LC3 was studied by confocal microcopy, and the acrosome reacted cells were quantified by flow cytometry. The incubation of stallion sperm in capacitating conditions (BWW; 3 h) significantly increased LC3 processing. This increment was three to four times higher after the induction of the acrosome reaction in these cells. LC3 was mainly expressed in the head in mature ejaculated sperm showing a clear redistribution from the post-acrosomal region to the acrosome upon the incubation of sperm in capacitating conditions (BWW, 3 h). After the induction of the acrosome reaction, LC3 colocalized with the acrosome or the apical plasmalemma membranes in the head of the stallion spermatozoa. The inhibition or activation of autophagy-related pathways in the presence of autophagy activators (STF-62247) or inhibitors (E-64d, chloroquine) significantly increased LC3 processing and increased the percent of acrosome reacted cells, whereas 3-methyladenine almost completely inhibited LC3 processing and the acrosome reaction. In conclusion, we found that sperm capacitation and acrosome reaction could be regulated by autophagy components in sperm cells ex vivo by processes that might be independent of the intraluminal pH of the acrosome and dependent of LC3 lipidation. It can be speculated that, in stallion sperm, a form of noncanonical autophagy utilizes some components of autophagy machinery to facilitate the acrosome reaction.
Collapse
Affiliation(s)
- Ines M. Aparicio
- Department of Physiology, Institute of Molecular Pathology Biomarkers (BICOMCEL), University of Extremadura, 10003 Cáceres, Spain
| | - Patricia Rojo-Domínguez
- Laboratory of Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain
| | - Alba Castillejo-Rufo
- Department of Physiology, Institute of Molecular Pathology Biomarkers (BICOMCEL), University of Extremadura, 10003 Cáceres, Spain
| | - Fernando J. Peña
- Laboratory of Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain
| | - Jose A. Tapia
- Department of Physiology, Institute of Molecular Pathology Biomarkers (BICOMCEL), University of Extremadura, 10003 Cáceres, Spain
- Correspondence:
| |
Collapse
|
15
|
Cordero-Martínez J, Jimenez-Gutierrez GE, Aguirre-Alvarado C, Alacántara-Farfán V, Chamorro-Cevallos G, Roa-Espitia AL, Hernández-González EO, Rodríguez-Páez L. Participation of signaling proteins in sperm hyperactivation. Syst Biol Reprod Med 2022; 68:315-330. [DOI: 10.1080/19396368.2022.2122761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Joaquín Cordero-Martínez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | | | - Charmina Aguirre-Alvarado
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- Unidad de Investigación Médica en Inmunología e Infectología Centro Médico Nacional La Raza, IMSS, Ciudad de México, Mexico
| | - Verónica Alacántara-Farfán
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Germán Chamorro-Cevallos
- Laboratorio de Toxicología Preclínica Departamento de Farmacia Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ana L. Roa-Espitia
- Departamento de Biología Celular Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional, México City, Mexico
| | - Enrique O. Hernández-González
- Departamento de Biología Celular Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional, México City, Mexico
| | - Lorena Rodríguez-Páez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
16
|
Adverse Effects of Single Neutrophil Extracellular Trap-Derived Components on Bovine Sperm Function. Animals (Basel) 2022; 12:ani12101308. [PMID: 35625154 PMCID: PMC9138165 DOI: 10.3390/ani12101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/04/2022] Open
Abstract
Neutrophil extracellular traps (NETs) play a key role in fertilisation by eliminating microorganisms and entrapping spermatozoa in the female reproductive tract (FRT). The deleterious effects of NETs on spermatozoa have been previously described; however, individual exposure to NET-derived components in bull spermatozoa has not been explored. The aim of this study was to evaluate the effects of the main NET-derived proteins, histone 2A (H2A), neutrophil elastase (ELA), myeloperoxidase (MPO), pentraxin 3 (PTX), cathepsin G (Cat-G), and cathelicidin LL37 (LL-37), at concentrations of 1, 10, and 30 μg/mL, on sperm parameters. Sperm were selected and incubated with different NET-derived proteins for 4 h. Membrane and acrosome integrity, lipoperoxidation, and membrane phospholipid disorders were also evaluated. Bovine polymorphonuclear neutrophil (PMN)/sperm co-cultures were evaluated by scanning electron microscopy and immunofluorescence. All NET-derived proteins/enzymes resulted in a reduction in membrane integrity, acrosome integrity, and lipoperoxidation at a concentration of 30 μg/mL. Bovine PMN/sperm co-cultures showed marked NET formation in the second hour. In conclusion, all NET-derived proteins/enzymes exerted cytotoxic effects on bull sperm, and this effect should be considered in future investigations on the uterine microenvironment and the advancement of spermatozoa in the FRT.
Collapse
|