1
|
Cichowska AW, Wisniewski J, Bromke MA, Olejnik B, Mogielnicka-Brzozowska M. Proteome Profiling of Canine Epididymal Fluid: In Search of Protein Markers of Epididymal Sperm Motility. Int J Mol Sci 2023; 24:14790. [PMID: 37834239 PMCID: PMC10573609 DOI: 10.3390/ijms241914790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Sperm maturation in the epididymis is based on interactions with proteins from epididymal fluid (EF). The aim of the study was to profile canine EF proteome and investigate correlations between EF protein content and epididymal spermatozoa (ES) motion parameters. Twenty-three male dogs were divided into two groups: good sperm motility (GSM) and poor sperm motility (PSM). The total motility and progressive motility differed significantly (p = 0.031; p < 0.001, respectively) between the GSM group and the PSM group. The semen samples were centrifuged to separate the EF apart from the ES. The canine EF proteins were analyzed using nano-liquid chromatography, which was coupled with quadrupole time-of-flight mass spectrometry (NanoUPLC-Q-TOF/MS) and bioinformatic tools for the first time. A total of 915 proteins were identified (GSM-506; PSM-409, respectively). UniProt identification resulted in six unique proteins (UPs) in the GSM group of dogs and four UPs in the PSM group. A semi-quantitative analysis showed a higher abundance (p < 0.05) of four differentially expressed proteins in the GSM group (ALB, CRISP2, LCNL1, PTGDS). Motility-dependent variations were detected in the EF proteome and were related to important metabolic pathways, which might suggest that several proteins could be potential ES motility biomarkers.
Collapse
Affiliation(s)
- Aleksandra W. Cichowska
- Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Jerzy Wisniewski
- Department of Biochemistry, Molecular Biology and Biotechnology, Wroclaw University of Science and Technology, Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Mariusz A. Bromke
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Beata Olejnik
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Marzena Mogielnicka-Brzozowska
- Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| |
Collapse
|
2
|
Wang L, Cen S, Shi X, Zhang H, Wu L, Tian X, Ma W, Li X, Ma X. Molecular characterization and functional analysis of Esr1 and Esr2 in gonads of Chinese soft-shelled turtle (Pelodiscus sinensis). J Steroid Biochem Mol Biol 2022; 222:106147. [PMID: 35714971 DOI: 10.1016/j.jsbmb.2022.106147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/04/2022] [Accepted: 06/12/2022] [Indexed: 11/20/2022]
Abstract
Estrogens and their receptors play crucial roles in regulating the gonadal development of vertebrates. To clarify the roles of estrogen receptors in the gonadal development of turtles, estrogen receptors (Esr1 and Esr2) in Chinese soft-shelled turtle (Pelodiscus sinensis) were identified and characterized, and their function in gonads was investigated by intraperitoneal injection of agonist propylpyrazoletriol (PPT) and diarylpropionitrile (DPN), and antagonist ICI 182,780 (ICI). Ps-Esr1 encoded a 588 amino acid protein and Ps-Esr2 encoded a 556 amino acid protein. The two receptors contained classic domains, including the DNA-binding domain and ligand-binding domain, and amino acid sequences showed high homology with other turtles. Ps-Esr1 showed the highest expression in the testis, followed by the ovary and liver. However, Ps-Esr2 showed the highest expression in the ovary, followed by the brain and testis. Ps-Esr1 expression showed an up-regulation trend in gonadal differentiation. Histomorphometric analysis showed that the number of follicles increased in female juvenile turtles treated with DPN or PPT. In addition, Tsc2, GnRH, and Fshβ were up-regulated in ovaries of turtles treated with agonists, while Sycp3 and Picalm were up-regulated in testes of turtles treated with agonists. Treatment with the antagonist decreased the number of sperm in matured turtles. Stra8, Scyp3, Dmc1, Picalm, Evl, Boule, and Cdk1 were up-regulated in testis after antagonist treatment. The results indicated that Esr1 might play an important role in gonadal differentiation, and the two estrogen receptors might be involved in the spermatogenesis of the turtle. These results could provide a reference for further research on the function of the estrogen signal in male vertebrates.
Collapse
Affiliation(s)
- Luming Wang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Shuangshuang Cen
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Xi Shi
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Haoran Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Limin Wu
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Xue Tian
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Wenge Ma
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Xuejun Li
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Xiao Ma
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
3
|
Dai Y, Kong X, Yao C, Xiong C, Li Z, Li H. Multi-stage screening cell-free seminal mRNAs to diagnose completion of meiosis and predict testicular sperm retrieval in men with non-obstructive azoospermia. Andrology 2022; 10:749-757. [PMID: 35266640 DOI: 10.1111/andr.13173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Differential diagnosis of men with subtypes of non-obstructive azoospermia (NOA) is important for their treatment. Many genes are transcripted during meiosis. We hypothesized that some of these genes can be detected in cell-free seminal mRNAs (cfs-mRNA) and be developed as non-invasive biomarkers for diagnosing NOA subtypes. OBJECTIVE To screen cfs-mRNA to diagnose the completion of meiosis and predict successful sperm retrieval (SR) in men with NOA. MATERIALS AND METHODS NOA patients who visited our institutes from September 2018 to December 2020 for testicular histopathological diagnosis (n = 109) or testicular SR (n = 92) were screened for participation in the study. Microarray and real-time quantitative PCR were used in five stages to obtain candidate cfs-mRNAs for comparisons between patients with early maturation arrest (eMA, meiosis not completed) and late MA or hypospermatogenesis (meiosis completed), and between NOA patients with successful SR and SR failure. RESULTS Twelve cfs-mRNAs were selected based on this comparison between men with eMA and hypospermatogenesis and their gene expression and function information. Of these, AKAP1, BOLL, TCP11, and SETX predominantly derived from testes and germ cells were proposed as candidate cfs-mRNAs. Further quantification in men with NOA demonstrated significantly higher levels of BOLL cfs-mRNA (P < 0.0001) in men with late MA or hypospermatogenesis (n = 23), compared with men with eMA (n = 51); and significantly higher levels (P < 0.0001) in patients with successful SR (n = 44) when compared with patients with SR failure (n = 37). Interestingly, with a similar cutoff value, BOLL cfs-mRNA showed high sensitivity and specificity in diagnosing late MA and hypospermatogenesis (>404 copies/mL) and predicting successful SR (>415 copies/mL). Correlation of BOLL mRNA levels was observed in paired semen and testicular tissues. DISCUSSION AND CONCLUSIONS We propose that BOLL cfs-mRNA is a promising non-invasive marker for diagnosing the completion of meiosis and predicting successful testicular SR in men with NOA. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yuwan Dai
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Henan Provincial People's Hospital, Henan, China
| | - Xiangbin Kong
- Department of Reproductive Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chencheng Yao
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengliang Xiong
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Wuhan Tongji Reproductive Hospital, Wuhan, China
| | - Zheng Li
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Honggang Li
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Wuhan Tongji Reproductive Hospital, Wuhan, China
| |
Collapse
|
4
|
TXNDC2 joint molecular marker is associated with testis pathology and is an accurate predictor of sperm retrieval. Sci Rep 2021; 11:13064. [PMID: 34158577 PMCID: PMC8219672 DOI: 10.1038/s41598-021-92603-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/14/2021] [Indexed: 11/08/2022] Open
Abstract
The association of PRM1/2 with male azoospermia is well-documented, but the relationship between TXNDC2 deficiency and the azoospermia phenotype, sperm retrieval, and pathology has not been elucidated. Here we identified the association of TXNDC2 and protamines in evaluating testis pathology and sperm retrieval. An extensive microarray meta-analysis of men with idiopathic azoospermia was performed, and after undergoing several steps of data quality controls, the data passing QC were pooled and batch effect corrected. As redox imbalance has been shown to have a variable relationship with fertility, our relative expression studies began with candidate protamination and thioredoxin genes. We constructed a logistic regression model of TXNDC2 with PRM1 and PRM2 genes, and collective ROC analysis indicated a sensitivity of 96.8% and specificity of 95.5% with a ROC value of 0.995 (SE = 0.0070, 95% CI 0.982-1.000). These results demonstrate that TXNDC2, PRM1, and PRM2 combined have a robust power to predict sperm retrieval and correlate with severe azoospermia pathology.
Collapse
|
5
|
Babakhanzadeh E, Khodadadian A, Nazari M, Dehghan Tezerjani M, Aghaei SM, Ghasemifar S, Hosseinnia M, Mazaheri M. Deficient Expression of DGCR8 in Human Testis is Related to Spermatogenesis Dysfunction, Especially in Meiosis I. Int J Gen Med 2020; 13:185-192. [PMID: 32523370 PMCID: PMC7237130 DOI: 10.2147/ijgm.s255431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/06/2020] [Indexed: 12/28/2022] Open
Abstract
Introduction DiGeorge syndrome critical region gene 8 (DGCR8) contributes to miRNA biogenesis, and defects in its expression could lead to defects in spermatogenesis. Methods Here, we assess gene and protein expression levels of DGCR8 in the testicular biopsy specimens obtained from men with obstructive azoospermia (OA, n = 19) and various types of non-obstructive azoospermia (NOA) including maturation arrest (MA, n = 17), Sertoli cell-only syndrome (SCOS, n = 20) and hypospermatogenesis (HYPO, 18). Also, samples of men with NOA were divided into two groups based on successful and unsuccessful sperm recovery, NOA+ in 21 patients and NOA− in 34 patients. Results Examinations disclosed a severe decrease in DGCR8 in samples with MA and SCOS in comparison to OA samples (P < 0.001). Also, the results showed DGCR8 has significantly lower expression in testis tissues of NOA− group in comparison to NOA+ group (p<0.05). Western blot analysis confirmed that the DGCR8 protein was not expressed in SCOS samples and had a very low expression in MA and HYPO samples. Discussion The results of this survey showed that DGCR8 is an important gene for the entire spermatogenesis pathway. Moreover, DGCR8 gene plays an important role in the diagnosis of NOA subgroups, and also the expression changes in it might contribute to SCOS or MA phenotypes. This gene with considering other related genes can also be a predictor of sperm retrieval.
Collapse
Affiliation(s)
- Emad Babakhanzadeh
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Khodadadian
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Nazari
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Seyed Mohsen Aghaei
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sina Ghasemifar
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehdi Hosseinnia
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Mahta Mazaheri
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
6
|
Liu X, Tang Z, Zhang P, Zhu X, Chu Z, Li W, Xu H. Identification and characterization of DAZ family genes in Chinese soft-shell turtle (Pelodiscus sinensis). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:258-268. [PMID: 31531931 DOI: 10.1002/jez.b.22900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 11/12/2022]
Abstract
The DAZ family genes, including boule, dazl, and daz, play pivotal roles in germ cell development and differentiation during gametogenesis in organisms, which have been widely studied in mammals, reptiles, or fishes. Dazl was bisexual expressed in both mitotic and meiotic germ cells, daz was male premeiotic expressed, whereas boule exhibits largely in unisexual meiotic germ cells but bisexual expression in several fishes, however, there is lack of report on boule gene and the evolutionary conservation and divergence of dazl and boule in reptile. Here, both boule and dazl genes were characterized in Pelodiscus sinensis. The quantitative real-time polymerase chain reaction analysis showed that boule and dazl were abundantly expressed in adult ovary and testis but barely in somatic tissues, such as heart, brain, liver, spleen, and kidney. Moreover, through fluorescent in situ hybridization, bisexual and germline-specific expression profiles of boule and dazl messenger RNAs (mRNAs) were demonstrated. Boule mRNA exhibited a maximal meiotic expression in spermatocytes, and a relatively low, but distinct expression in oocytes at meiotic stages in P. sinensis, similar to the expression profile of human boule in ovary. However, dazl mRNA was richly distributed in male germ cells at almost all stages during spermatogenesis, and predominantly expressed in most of stages of oocytes including premeiotic and meiotic stages. These findings imply that boule and dazl would play distinct roles in the sexual differentiation of germ cells during turtle gametogenesis, and the major functions of daz family members involved in germ cell differentiation would be conserved across species including P. sinensis.
Collapse
Affiliation(s)
- Xiaoli Liu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Zhoukai Tang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Fishery School of Zhejiang Ocean University, Zhoushan, China
| | - Piaoyi Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xinping Zhu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Zhangjie Chu
- Fishery School of Zhejiang Ocean University, Zhoushan, China
| | - Wei Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Hongyan Xu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
7
|
Li T, Wang X, Zhang H, Chen Z, Zhao X, Ma Y. Histomorphological Comparisons and Expression Patterns of BOLL Gene in Sheep Testes at Different Development Stages. Animals (Basel) 2019; 9:ani9030105. [PMID: 30901845 PMCID: PMC6466207 DOI: 10.3390/ani9030105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/08/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022] Open
Abstract
BOLL is implicated in mammalian testicular function maintenance and spermatogenesis. To understand the expression patterns and biological functions of sheep BOLL, we examined the expression and immunolocalization of BOLL in the developing testes of Small-Tail Han sheep aged 0 days (D0), 2 months (2M), 5 months (5M), 1 year (1Y), and 2 years (2Y), by qPCR, Western blot, and immunohistochemistry methods. Firstly, morphological studies revealed that, in addition to spermatogonia, ordered and clear spermatocytes, as well as round and elongated spermatids and sperm, were found in the 1Y and 2Y testicular seminiferous tubules of the sheep testes, compared with the D0, 2M, and 5M testes, as analyzed by hematoxylin and eosin (H&E) staining. The diameter and area of the seminiferous tubules, epithelial thickness, and the area and perimeter of the tubule lumens gradually increased with age. BOLL was specifically expressed in testes and upregulation of BOLL transcript expression was higher in the testes of the 1Y and 2Y groups than in those of the D0, 2M, and 5M groups. Similarly, BOLL protein was expressed mainly in the 1Y and 2Y testes, ranging from primary spermatocytes to round spermatids, as well as in the spermatozoa. This study is the first demonstration that sheep BOLL might serve as a key regulator of the spermiogenesis involved in sperm maturity, in addition to its role as a crucial meiotic regulator.
Collapse
Affiliation(s)
- Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xia Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Hongyu Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Zhili Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China.
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
8
|
Eelaminejad Z, Favaedi R, Sodeifi N, Sadighi Gilani MA, Shahhoseini M. Deficient expression of JMJD1A histone demethylase in patients with round spermatid maturation arrest. Reprod Biomed Online 2017; 34:82-89. [DOI: 10.1016/j.rbmo.2016.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 09/06/2016] [Accepted: 09/14/2016] [Indexed: 10/21/2022]
|
9
|
Javadirad SM, Hojati Z, Ghaedi K, Nasr-Esfahani MH. Expression ratio of histone demethylase KDM3A to protamine-1 mRNA is predictive of successful testicular sperm extraction in men with obstructive and non-obstructive azoospermia. Andrology 2016; 4:492-9. [DOI: 10.1111/andr.12164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/05/2015] [Accepted: 01/01/2016] [Indexed: 01/22/2023]
Affiliation(s)
| | - Z. Hojati
- Department of Biology; University of Isfahan; Isfahan Iran
| | - K. Ghaedi
- Department of Biology; University of Isfahan; Isfahan Iran
- Department of Cellular Biotechnology; Cell Science Research Center; Royan Institute for Biotechnology; ACECR, Isfahan Iran
| | - M. H. Nasr-Esfahani
- Department of Cellular Biotechnology; Cell Science Research Center; Royan Institute for Biotechnology; ACECR, Isfahan Iran
- Isfahan Fertility and Infertility Center; IFIC, Isfahan Iran
| |
Collapse
|
10
|
Kleiman SE, Yogev L, Lehavi O, Yavetz H, Hauser R. Distinctive pattern of expression of spermatogenic molecular markers in testes of azoospermic men with non-mosaic Klinefelter syndrome. J Assist Reprod Genet 2016; 33:807-14. [PMID: 26995389 DOI: 10.1007/s10815-016-0698-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 03/07/2016] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Mature sperm cells can be found in testicular specimens extracted from azoospermic men with non-mosaic Klinefelter syndrome (KS). The present study evaluates the expression of various known molecular markers of spermatogenesis in a population of men with KS and assesses the ability of those markers to predict spermatogenesis. METHODS Two groups of men with non-obstructive azoospermia who underwent testicular sperm-retrieval procedures were included in the study: 31 had non-mosaic KS (KS group) and 91 had normal karyotype (NK group). Each group was subdivided into mixed atrophy (containing some mature sperm cells) or Sertoli cell only syndrome according to testicular histology and cytology observations. Semi-quantitative histological morphometric analysis (interstitial hyperplasia and hyalinization, tubules with cells and abnormal thickness of the basement membrane) and expression of spermatogenetic markers (DAZ, RBM, BOLL, and CDY1) were evaluated and compared among those subgroups. RESULTS Clear differences in the histological morphometry and spermatogenetic marker expression were noted between the KS and NK groups. There was a significant difference in the expression of spermatogenetic markers between the subgroups of the NK group (as expected), while no difference could be discerned between the two subgroups in the KS group. CONCLUSION We conclude that molecular spermatogenetic markers have a pattern of expression in men with KS that is distinctively different from that of men with NK, and that it precludes and limits their use for predicting spermatogenesis in the former. It is suggested that this difference might be due to the specific highly abnormal histological morphometric parameters in KS specimens.
Collapse
Affiliation(s)
- Sandra E Kleiman
- Institute for the Study of Fertility, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, 6 Weizman Street, Tel Aviv, 6423906, Israel.
| | - Leah Yogev
- Institute for the Study of Fertility, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, 6 Weizman Street, Tel Aviv, 6423906, Israel
| | - Ofer Lehavi
- Institute for the Study of Fertility, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, 6 Weizman Street, Tel Aviv, 6423906, Israel
| | - Haim Yavetz
- Institute for the Study of Fertility, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, 6 Weizman Street, Tel Aviv, 6423906, Israel
| | - Ron Hauser
- Institute for the Study of Fertility, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, 6 Weizman Street, Tel Aviv, 6423906, Israel
| |
Collapse
|
11
|
Abstract
BACKGROUND Boule-like RNA-binding protein (BOLL protein) is the progenitor of the Deleted in Azoospermia (DAZ) gene family. To date, previous studies have focused on the reproductive function of BOLL. While we were identifying new DNA methylation biomarkers for colorectal cancer (CRC), we found that BOLL protein was overexpressed in CRC. AIM The aim of this study was to determine the role of BOLL in CRC by epigenetic and functional studies in vivo and in vitro. METHODS BOLL promoter methylation and expression were determined by MethyLight, RT-PCR, Western blot, and immunohistochemistry. The functional role of BOLL in CRC was evaluated by cell proliferation, colony formation, migration and invasion, cell cycle status, and tumor growth in a xenograft model. RESULTS BOLL promoter methylation was enhanced in CRC tissues compared with normal colorectal tissues [97/124 (78 %) vs. 2/124 (2 %)]. However, the mean immunoreactivity score of CRC tissues and paired adjacent normal tissues was 8.15 ± 0.18 (SD) and 3.35 ± 0.19 (SD), respectively (p < 0.01). No significant association was observed between immunoreactivity score and clinicopathological parameters, including age, gender, tumor size, tumor differentiation, and tumor node metastasis stage. Expression of BOLL in CRC cell lines significantly enhanced cell proliferation (p < 0.01), colony formation (p < 0.01), and migration (p < 0.01). In BOLL-expressing cells, the percentage of cells in S-phase of the cell cycle was significantly increased. Tumor volume in BOLL xenografted mice was significantly enhanced after subcutaneous implantation (p < 0.01). CONCLUSIONS Our study demonstrated an oncogenic role of BOLL in CRC despite tumor-specific promoter hypermethylation.
Collapse
|
12
|
Yao W, Li Y, Li B, Luo H, Xu H, Pan Z, Xie Z, Li Q. Epigenetic regulation of bovine spermatogenic cell-specific gene boule. PLoS One 2015; 10:e0128250. [PMID: 26030766 PMCID: PMC4451259 DOI: 10.1371/journal.pone.0128250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 04/23/2015] [Indexed: 12/24/2022] Open
Abstract
Non-primate mammals have two deleted azoospermia (DAZ) family genes, DAZL and Boule; genes in this family encode RNA-binding proteins essential for male fertility in diverse animals. Testicular DAZL transcription is regulated by epigenetic factors such as DNA methylation. However, nothing is known about the epigenetic regulation of Boule. Here, we explored the role of DNA methylation in the regulation of the bovine Boule (bBoule) gene. We found that a long CpG island (CGI) in the bBoule promoter was hypermethylated in the testes of cattle-yak hybrids with low bBoule expression, whereas cattle had relatively low methylation levels (P < 0.01), and there was no difference in the methylation level in the short CGI of the gene body between cattle and cattle-yak hybrids (P > 0.05). We identified a 107 bp proximal core promoter region of bBoule. Intriguingly, the differences in the methylation level between cattle and cattle-yak hybrids were larger in the core promoter than outside the core promoter. An in vitro methylation assay showed that the core promoter activity of bBoule decreased significantly after M.SssI methylase treatment (P < 0.01). We also observed dramatically increased bBoule transcription in bovine mammary epithelial cells (BMECs) after treatment with the methyltransferase inhibitor 5-Aza-dC. Taken together, our results establish that methylation status of the core promoter might be involved in testicular bBoule transcription, and may provide new insight into the epigenetic regulation of DAZ family genes and clinical insights regarding male infertility.
Collapse
Affiliation(s)
- Wang Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yinxia Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bojiang Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua Luo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongtao Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhuang Xie
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- * E-mail:
| |
Collapse
|
13
|
Li B, Ngo S, Wu W, Xu H, Xie Z, Li Q, Pan Z. Identification and characterization of yak (Bos grunniens) b-Boule gene and its alternative splice variants. Gene 2014; 550:193-9. [PMID: 25149018 DOI: 10.1016/j.gene.2014.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 08/11/2014] [Accepted: 08/15/2014] [Indexed: 01/31/2023]
Abstract
Boule is responsible for meiotic arrest of sperms and male sterility during mammalian spermatogenesis. In the present study, we first identified yak b-Boule gene and its two alternative splice variants. The full length coding region of yak b-Boule is 888bp and encodes a 295-amino acid protein with a typical RNA-recognition motif (RRM) and a Deleted in Azoospermia (DAZ) repetitive sequence motif. Two alternative splice variants of yak b-Boule were generated following the consensus "GT-AG" rule and named b-Boule1 (36bp deletion in exon 3) and b-Boule2 (deletion of integral exon 7), respectively. In male yak, b-Boule, b-Boule1 and b-Boule2 were found to be exclusively expressed in the testes at a ratio of 81:0.1:1. Intriguingly, the mRNA expression levels of b-Boule and b-Boule1 in yak testis were significantly higher than those in cattle-yak, although no significant difference was observed for b-Boule2 expression between the yak and cattle-yak. These results suggest that b-Boule gene, which is partially regulated by alternative splicing, may be involved in the process of yak spermatogenesis.
Collapse
Affiliation(s)
- Bojiang Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Sherry Ngo
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand
| | - Wangjun Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongtao Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhuang Xie
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
14
|
Li M, Liu C, Zhu H, Sun J, Yu M, Niu Z, Liu W, Peng S, Hua J. Expression pattern of Boule in dairy goat testis and its function in promoting the meiosis in male germline stem cells (mGSCs). J Cell Biochem 2013; 114:294-302. [PMID: 22930651 DOI: 10.1002/jcb.24368] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 08/13/2012] [Indexed: 11/06/2022]
Abstract
Boule is a conserved gene in meiosis, which encodes RNA binding protein required for spermatocyte meiosis. Deletion of Boule was found to block meiosis in spermatogenesis, which contributes to infertility. Up to date, the expression and function of Boule in the goat testis are not known. The objectives of this study were to investigate the expression pattern of Boule in dairy goat testis and their function in male germline stem cells (mGSCs). The results first revealed that the expression level of Boule in adult testes was significantly higher than younger and immature goats, and azoospermia and male intersex testis. Over-expression of Boule promoted the expression of meiosis-related genes in dairy goat mGSCs. The expression of Stra8 was up-regulated by over-expression of Boule analyzed by Western blotting and Luciferase reporter assay. While, Cdc25a, the downstream regulator of Boule, was found not to affect the expression of Stra8, and our data illustrated that Cdc25a did not regulate meiosis via Stra8. The expression of Stra8 and Boule was up-regulated by RA induction. Taken together, results suggest the Boule plays an important role in dairy goat spermatogenesis and that over-expression of Boule may promote spermatogenesis and meiosis in dairy goat.
Collapse
Affiliation(s)
- Mingzhao Li
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dorosh A, Tepla O, Zatecka E, Ded L, Koci K, Peknicova J. Expression analysis of MND1/GAJ, SPATA22, GAPDHS and ACR genes in testicular biopsies from non-obstructive azoospermia (NOA) patients. Reprod Biol Endocrinol 2013; 11:42. [PMID: 23675907 PMCID: PMC3664614 DOI: 10.1186/1477-7827-11-42] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 05/09/2013] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND High-throughput studies provide a wide spectrum of genes for use as predictive markers during testicular sperm extraction (TESE) in combination with ICSI. In this work, we used the specimens from testicular biopsies of men with non-obstructive azoospermia who underwent TESE to investigate the expression of spermatogenesis-related genes MND1, SPATA22, GAPDHS and ACR. METHODS Testicular biopsy specimens were subdivided into three groups: hypospermatogenesis (HS); maturation arrest (MA); and Sertoli cell-only syndrome (SCO). The levels of expression of the spermatogenesis-related genes MND1, SPATA22, GAPDHS and ACR in the testes were compared among these three groups using the reverse transcription polymerase chain reaction (RT-PCR) technique. RESULTS Analysis of the expression of spermatogenic genes in human testes with abnormal spermatogenesis showed different expression patterns in patients from different groups. Fertilization rate for studied set of patients was 66% and pregnancy rate 29%. For HS group fertilization rate was 72% and pregnancy rate 32%, while for MA group fertilization and pregnancy rates were 54% and 26%, respectively. Fertilization rates in relation to the studied genes were uniformly around 70%, pregnancy rates for ACR and GAPDHS genes were surprisingly low at 6% and 8% correspondingly. CONCLUSIONS Analysis of the expression of genes involved in spermatogenesis can be a fast additional test for the level of spermatogenesis in testicular samples.
Collapse
Affiliation(s)
- Andriy Dorosh
- Laboratory of Reproductive Biology, Institute of Biotechnology AS CR,v. v. i., Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Olina Tepla
- ISCARE I.V.F. a. s., Jankovcova 1569, Prague 7, Czech Republic
| | - Eva Zatecka
- Laboratory of Reproductive Biology, Institute of Biotechnology AS CR,v. v. i., Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Lukas Ded
- Laboratory of Reproductive Biology, Institute of Biotechnology AS CR,v. v. i., Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Karel Koci
- ISCARE I.V.F. a. s., Jankovcova 1569, Prague 7, Czech Republic
| | - Jana Peknicova
- Laboratory of Reproductive Biology, Institute of Biotechnology AS CR,v. v. i., Videnska 1083, 142 20, Prague 4, Czech Republic
| |
Collapse
|
16
|
Li M, Yu M, Zhu H, Song W, Hua J. The effects of Nanos2 on Boule and Stra8 in male germline stem cells (mGSCs). Mol Biol Rep 2013; 40:4383-9. [PMID: 23644984 DOI: 10.1007/s11033-013-2527-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 04/29/2013] [Indexed: 11/29/2022]
Abstract
The mitosis-meiosis switch is a key event in the differentiation of germ cells. Meiosis is important in development biology, however, it has not been clear what is the regulation mechanism in mammals. Our previous study showed that Boule could activate Stra8 directly and result in the meiosis initiation of dairy goat male germline stem cells (mGSCs). Nanos2, a RNA-binding protein, plays critical roles in the suppression of meiosis by preventing Stra8 expression and maintain the male germ cell development. The main purpose of this study was to explore whether Nanos2 represses Stra8 transcription through Boule or not. We found ectopic over-expression of Nanos2 in GC-1 and mGSCs down-regulated Stra8 transcription and translation, and Boule expression was not affected. It was in consistent with our expectation that RA could up-regulate Boule and Stra8 expression, but down-regulate Nanos2 expression in mGSCs. In dairy goat, the expression levels of Boule and Stra8 would rise with the increase of age, but the expression level of Nanos2 in 90 dpp and adult testis had not shown a clear change. In conclusion, Nanos2 represses Stra8 expression but not through Boule in dairy goat mGSCs.
Collapse
Affiliation(s)
- Mingzhao Li
- Key Lab for Animal Biotechnology of Agriculture Ministry, Shaanxi Centre of Stem Cells Engineering & Technology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | | | | | | | | |
Collapse
|
17
|
Heyn H, Ferreira HJ, Bassas L, Bonache S, Sayols S, Sandoval J, Esteller M, Larriba S. Epigenetic disruption of the PIWI pathway in human spermatogenic disorders. PLoS One 2012; 7:e47892. [PMID: 23112866 PMCID: PMC3480440 DOI: 10.1371/journal.pone.0047892] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/17/2012] [Indexed: 11/24/2022] Open
Abstract
Epigenetic changes are involved in a wide range of common human diseases. Although DNA methylation defects are known to be associated with male infertility in mice, their impact on human deficiency of sperm production has yet to be determined. We have assessed the global genomic DNA methylation profiles in human infertile male patients with spermatogenic disorders by using the Infinium Human Methylation27 BeadChip. Three populations were studied: conserved spermatogenesis, spermatogenic failure due to germ cell maturation defects, and Sertoli cell-only syndrome samples. A disease-associated DNA methylation profile, characterized by targeting members of the PIWI-associated RNA (piRNA) processing machinery, was obtained. Bisulfite genomic sequencing and pyrosequencing in a large cohort (n = 46) of samples validated the altered DNA methylation patterns observed in piRNA-processing genes. In particular, male infertility was associated with the promoter hypermethylation-associated silencing of PIWIL2 and TDRD1. The downstream effects mediated by the epigenetic inactivation of the PIWI pathway genes were a defective production of piRNAs and a hypomethylation of the LINE-1 repetitive sequence in the affected patients. Overall, our data suggest that DNA methylation, at least that affecting PIWIL2/TDRD1, has a role in the control of gene expression in spermatogenesis and its imbalance contributes to an unsuccessful germ cell development that might explain a group of male infertility disorders.
Collapse
Affiliation(s)
- Holger Heyn
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Humberto J. Ferreira
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Catalonia, Spain
- PhD Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Lluís Bassas
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Catalonia, Spain
| | - Sandra Bonache
- Human Molecular Genetics Group, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Sergi Sayols
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Juan Sandoval
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Catalonia, Spain
- Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- * E-mail:
| | - Sara Larriba
- Human Molecular Genetics Group, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| |
Collapse
|
18
|
Bronet F, Martínez E, Gaytán M, Liñán A, Cernuda D, Ariza M, Nogales M, Pacheco A, San Celestino M, Garcia-Velasco JA. Sperm DNA fragmentation index does not correlate with the sperm or embryo aneuploidy rate in recurrent miscarriage or implantation failure patients. Hum Reprod 2012; 27:1922-9. [PMID: 22537817 DOI: 10.1093/humrep/des148] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The aneuploidy rate is higher in poor-quality sperm samples, which also have higher DNA fragmentation index values. The aim of this study was to assess the relationship between sperm DNA fragmentation in samples from infertile men belonging to couples with recurrent miscarriage or implantation failure and the aneuploidy rate in spermatozoa as well as in embryos from patients. METHODS This prospective study evaluated DNA damage and the aneuploidy rate in fresh and processed (density gradient centrifugation) ejaculated sperm as well as the aneuploidy rate in biopsied embryos from fertility cycles. Fluorescence in situ hybridization was used for the aneuploidy analysis. Results were compared using linear regression and analysis of variance. RESULTS A total of 154 embryos were evaluated from 38 patients undergoing PGD cycles; 35.2% of the embryos were chromosomally normal. Analysis of the same sperm samples showed an increased DNA fragmentation after sperm preparation in 76% of the patients. There was no correlation between DNA fragmentation and the aneuploidy rate in embryos or in fresh or processed sperm samples. CONCLUSIONS Sperm DNA fragmentation is not related to chromosomal anomalies in embryos from patients with recurrent miscarriage or implantation failure. However, we cannot rule out the possibility that a relationship between DNA fragmentation and aneuploidy exists for other causes of infertility. Furthermore, the different methods used to evaluate DNA fragmentation may produce different results.
Collapse
Affiliation(s)
- F Bronet
- Departamento de Diagnostico Genetico Preimplantacional, IVI Madrid, Madrid 28023, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kleiman SE, Lehavi O, Hauser R, Botchan A, Paz G, Yavetz H, Yogev L. CDY1 and BOULE transcripts assessed in the same biopsy as predictive markers for successful testicular sperm retrieval. Fertil Steril 2011; 95:2297-302, 2302.e1. [DOI: 10.1016/j.fertnstert.2011.03.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/02/2011] [Accepted: 03/08/2011] [Indexed: 11/24/2022]
|
20
|
Lin YM, Chung CL, Cheng YS. Posttranscriptional regulation of CDC25A by BOLL is a conserved fertility mechanism essential for human spermatogenesis. J Clin Endocrinol Metab 2009; 94:2650-7. [PMID: 19417033 DOI: 10.1210/jc.2009-0108] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Human BOLL is known as a meiotic regulator, and CDC25A is considered as a potential RNA target of BOLL. OBJECTIVE The aim of the study was to clarify the relationship between BOLL and CDC25A expressions in human testes and to explore the mechanism by which BOLL regulates CDC25A. DESIGN AND SETTING A prospective experimental study was conducted at a university-based medical center. PARTICIPANTS AND INTERVENTIONS BOLL protein, CDC25A mRNA, and CDC25A protein expressions, as well as spermatocyte numbers in the testes of 32 infertile men were measured. The interaction between BOLL protein and CDC25A mRNA was assessed in in vitro studies. MAIN OUTCOME MEASURES Protein and RNA expressions, relationships between expression profiles, CDC25A mRNA binding site for BOLL, and the effects of BOLL on CDC25A mRNA stability and translatability were measured. RESULTS The protein expressions of BOLL and CDC25A are significantly decreased in patients with spermatogenic failure, with the lowest levels detected in patients with meiotic arrest. Both protein expressions are significantly correlated with spermatocyte numbers. Expressional profiling analysis among BOLL protein, CDC25A mRNA, and CDC25A protein suggests a causal relationship between BOLL and CDC25A. BOLL specifically binds to a 21-nucleotide region of the CDC25A 3'UTR, and this region is evolutionarily conserved. A U-rich region within this 21-nucleotide sequence is crucial for binding. BOLL stimulates CDC25A translation, and this effect does not involve alteration of mRNA stability. CONCLUSION CDC25A is subject to translational control by BOLL, which is an evolutionarily conserved mechanism. A decreased CDC25A expression caused by lack or decrease of BOLL may be associated with male infertility.
Collapse
Affiliation(s)
- Yung Ming Lin
- Department of Urology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | | | | |
Collapse
|
21
|
Haraguchi T, Ishikawa T, Yamaguchi K, Fujisawa M. Cyclin and protamine as prognostic molecular marker for testicular sperm extraction in patients with azoospermia. Fertil Steril 2009; 91:1424-6. [DOI: 10.1016/j.fertnstert.2008.05.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 05/19/2008] [Accepted: 05/20/2008] [Indexed: 11/16/2022]
|
22
|
Kostova E, Yeung CH, Luetjens CM, Brune M, Nieschlag E, Gromoll J. Association of three isoforms of the meiotic BOULE gene with spermatogenic failure in infertile men. ACTA ACUST UNITED AC 2006; 13:85-93. [PMID: 17114206 DOI: 10.1093/molehr/gal101] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The complex process of spermatogenesis requires the expression and precise coordination of a multitude of genes. Abnormal function of such genes is frequently associated with male infertility. Among these candidates is the human BOULE gene that is a possible fundamental mediator of meiotic transition. In this study, we describe for the first time the existence of three BOULE transcript variants (B1, B2 and B3). We investigated their tissue specificity and mRNA transcript levels in 23 testis biopsies from infertile men. B1, B2 and B3 differed solely in their N-terminal sequences, which are encoded by three alternatively spliced exons 1. In humans, all three isoforms are exclusively expressed in the testes in a relative proportion of 80:220:1 for B1, B2 and B3, respectively. RT-PCR quantification revealed significantly reduced mRNA expression of all three variants in testicular biopsies with meiotic arrest (MA) compared with those with qualitatively complete spermatogenesis. Alteration of the B1/B2 and B1/B3 transcript ratios was correlated with reduced meiotic capacity of spermatocytes to produce round spermatids as assessed by flow cytometry. Furthermore, BOULE mRNA reduction in biopsies with MA paralleled the absence of BOULE protein as analysed by immunohistochemistry. In conclusion, the relative proportions of B1, B2 and B3 may serve as predictive markers for meiotic efficiency and thus the probability of finding haploid cells in the human testis. Among the three isoforms, B2 might have the major role for meiotic completion.
Collapse
Affiliation(s)
- E Kostova
- Institute of Reproductive Medicine of the University, Domagkstrasse, Muenster, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Lin YM, Teng YN, Chung CL, Tsai WC, Lin YH, Lin JSN, Kuo PL. Decreased mRNA transcripts of M-phase promoting factor and its regulators in the testes of infertile men. Hum Reprod 2005; 21:138-44. [PMID: 16155078 DOI: 10.1093/humrep/dei285] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND M-phase promoting factor (MPF), which is comprised of Cyclin B and a catalytic subunit, Cdc2, is a key enzyme required for cells to enter M phase in both mitosis and meiosis. MPF activity is controlled by the stimulatory dephosphorylation of the Cdc25 family and the inhibitory phosphorylation of Wee1. We determined the levels of mRNA transcripts of MPF and its regulators in the testes of infertile men, and evaluated the relationship between the transcript levels and patients' testicular phenotypes and sperm retrieval results. METHODS AND RESULTS The mRNA transcript levels of CDC2, CCNB1, CCNB2, CDC25A, CDC25B, CDC25C and WEE1 in the testes of 37 azoospermic patients were examined by quantitative real-time polymerase chain reaction. Significant decreases in CDC2, CCNB1, CCNB2, CDC25A, CDC25C and WEE1 mRNA transcript levels were detected in patients with spermatogenic failure. CDC2 mRNA transcript levels correlated significantly with those of CCNB1 and CCNB2 mRNA. Significantly higher CDC2, CCNB1, CCNB2, CDC25C and WEE1 mRNA transcript levels were detected in 18 patients with successful sperm retrieval than in 11 patients with failed sperm retrieval. CONCLUSIONS We suggest that the decreased mRNA transcripts of MPF and its regulators play important roles in human spermatogenesis.
Collapse
Affiliation(s)
- Yung Ming Lin
- Department of Urology, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|