1
|
Yu F, Wei R, Yang J, Liu J, Yang K, Wang H, Mu Y, Hong T. FoxO1 inhibition promotes differentiation of human embryonic stem cells into insulin producing cells. Exp Cell Res 2017; 362:227-234. [PMID: 29157981 DOI: 10.1016/j.yexcr.2017.11.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/14/2022]
Abstract
Insulin-producing cells (IPCs) derived from human embryonic stem cells (hESCs) hold great potential for cell transplantation therapy in diabetes. Tremendous progress has been made in inducing differentiation of hESCs into IPCs in vitro, of which definitive endoderm (DE) protocol mimicking foetal pancreatic development has been widely used. However, immaturity of the obtained IPCs limits their further applications in treating diabetes. Forkhead box O1 (FoxO1) is involved in the differentiation and functional maintenance of murine pancreatic β cells, but its role in human β cell differentiation is under elucidation. Here, we showed that although FoxO1 expression level remained consistent, cytoplasmic phosphorylated FoxO1 protein level increased during IPC differentiation of hESCs induced by DE protocol. Lentiviral silencing of FoxO1 in pancreatic progenitors upregulated the levels of pancreatic islet differentiation-related genes and improved glucose-stimulated insulin secretion response in their progeny IPCs, whereas overexpression of FoxO1 showed the opposite effects. Notably, treatment with the FoxO1 inhibitor AS1842856 displayed similar effects with FoxO1 knockdown in pancreatic progenitors. These effects were closely associated with the mutually exclusive nucleocytoplasmic shuttling of FoxO1 and Pdx1 in the AS1842856-treated pancreatic progenitors. Our data demonstrated a promising effect of FoxO1 inhibition by the small molecule on gene expression profile during the differentiation, and in turn, on determining IPC maturation via modulating subcellular location of FoxO1 and Pdx1. Therefore, we identify a novel role of FoxO1 inhibition in promoting IPC differentiation of hESCs, which may provide clues for induction of mature β cells from hESCs and clinical applications in regenerative medicine.
Collapse
Affiliation(s)
- Fei Yu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Rui Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China.
| | - Jin Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Junling Liu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Kun Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Haining Wang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Yiming Mu
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
2
|
Wei R, Yang J, Gao M, Wang H, Hou W, Mu Y, Chen G, Hong T. Infarcted cardiac microenvironment may hinder cardiac lineage differentiation of human embryonic stem cells. Cell Biol Int 2016; 40:1235-1246. [PMID: 27600481 DOI: 10.1002/cbin.10679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/04/2016] [Indexed: 11/07/2022]
Abstract
Microenvironment regulates cell fate and function. In this study, we investigated the effects of the infarcted cardiac microenvironment on cardiac differentiation of human embryonic stem cells (hESCs). hESCs were intramyocardially transplanted into infarcted or uninjured rat hearts. After 4 weeks, mesodermal and cardiac lineage markers were detected by immunofluorescence. Cardiac function was assessed by echocardiography. hESCs were differentiated in vitro under hypoxic (5% O2 ), low-nutrient (5% FBS), or control condition. The numbers of beating clusters, proportions of cardiac troponin T (cTnT)-positive cells, and relative levels of cardiac-specific markers were determined. Results showed that in both uninjured and infarcted hearts, hESCs survived, underwent development, and formed intracardiac grafts, with a higher proportion in the uninjured hearts. However, cells that were double positive for human fetal liver kinase 1 (Flk1), a marker of cardiac progenitors, and human β-tubulin, a marker for labeling human cells, were found in the uninjured hearts but not in the infarcted hearts. hESC transplantation did not restore the cardiac function of acutely infarcted rats. In vitro, low FBS treatment was associated with fewer beating clusters, a lower proportion of cTnT-positive cells and lower levels of cardiac troponin I (cTnI) and α-myosin heavy chain (α-MHC) expression than those in the control. Conversely, hypoxia treatment was associated with a higher proportion of cTnT-positive cells and higher levels of cTnI expression. In conclusion, transplanted hESCs differentiate toward Flk1-positive cardiac progenitors in the uninjured but not infarcted hearts. The infarcted cardiac microenvironment recapitulated is unsuitable for cardiac differentiation of hESCs, likely due to nutrient deprivation.
Collapse
Affiliation(s)
- Rui Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.,Clinical Stem Cell Research Centre, Peking University Third Hospital, Beijing, China
| | - Jin Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.,Clinical Stem Cell Research Centre, Peking University Third Hospital, Beijing, China
| | - Meijuan Gao
- Department of Endocrinology and Metabolism, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.,Clinical Stem Cell Research Centre, Peking University Third Hospital, Beijing, China
| | - Haining Wang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.,Clinical Stem Cell Research Centre, Peking University Third Hospital, Beijing, China
| | - Wenfang Hou
- Department of Endocrinology and Metabolism, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.,Clinical Stem Cell Research Centre, Peking University Third Hospital, Beijing, China
| | - Yiming Mu
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Guian Chen
- Clinical Stem Cell Research Centre, Peking University Third Hospital, Beijing, China
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China. .,Clinical Stem Cell Research Centre, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
3
|
Liu F, Cai C, Wu X, Cheng Y, Lin T, Wei G, He D. Effect of KnockOut serum replacement on germ cell development of immature testis tissue culture. Theriogenology 2016; 85:193-9. [DOI: 10.1016/j.theriogenology.2015.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 07/30/2015] [Accepted: 09/03/2015] [Indexed: 01/27/2023]
|
4
|
Rammal H, Harmouch C, Lataillade JJ, Laurent-Maquin D, Labrude P, Menu P, Kerdjoudj H. Stem cells: a promising source for vascular regenerative medicine. Stem Cells Dev 2015; 23:2931-49. [PMID: 25167472 DOI: 10.1089/scd.2014.0132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The rising and diversity of many human vascular diseases pose urgent needs for the development of novel therapeutics. Stem cell therapy represents a challenge in the medicine of the twenty-first century, an area where tissue engineering and regenerative medicine gather to provide promising treatments for a wide variety of diseases. Indeed, with their extensive regeneration potential and functional multilineage differentiation capacity, stem cells are now highlighted as promising cell sources for regenerative medicine. Their multilineage differentiation involves environmental factors such as biochemical, extracellular matrix coating, oxygen tension, and mechanical forces. In this review, we will focus on human stem cell sources and their applications in vascular regeneration. We will also discuss the different strategies used for their differentiation into both mature and functional smooth muscle and endothelial cells.
Collapse
Affiliation(s)
- Hassan Rammal
- 1 UMR 7365, Biopôle, Faculté de Médecine, CNRS-Université de Lorraine , Vandœuvre-lès-Nancy, France
| | | | | | | | | | | | | |
Collapse
|
5
|
Jasnic-Savovic J, Klajn A, Milivojevic M, Mojsin M, Nikcevic G. Human embryonal carcinoma cells in serum-free conditions as an in vitro model system of neural differentiation. Altern Lab Anim 2015; 43:9-18. [PMID: 25802994 DOI: 10.1177/026119291504300105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Serum is generally regarded as an essential component of many eukaryotic cell culture media, despite the fact that serum composition varies greatly and may be the source of a wide range of artefacts. The objective of this study was to assess serum-free growth conditions for the human embryonal carcinoma cell line, NT2/D1. These cells greatly resemble embryonic stem cells. In the presence of retinoic acid (RA), NT2/D1 cells irreversibly differentiate along the neuronal lineage. We have previously shown that the early phases of neural induction of these cells by RA involve the up-regulation of SOX3 gene expression. Our goal was to compare RA-induced differentiation of NT2/D1 cells in serum-containing and serum-free media, by using SOX3 protein levels as a marker of differentiation. We found that NT2/D1 cells can be successfully grown under serum-free conditions, and that the presence or absence of serum does not affect the level of SOX3 protein after a 48-hour RA induction. However, six days of RA treatment resulted in a marked increase in SOX3 protein levels in serum-free media compared to serum-containing media, indicating that serum might have an inhibitory effect on the expression of this neural differentiation marker. This finding is important for both basic and translational studies that hope to exploit cell culture conditions that are free of animal-derived products.
Collapse
Affiliation(s)
- Jovana Jasnic-Savovic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Andrijana Klajn
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milena Milivojevic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Mojsin
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Gordana Nikcevic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Thymopentin enhances the generation of T-cell lineage derived from human embryonic stem cells in vitro. Exp Cell Res 2015; 331:387-98. [PMID: 25576384 DOI: 10.1016/j.yexcr.2014.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/21/2014] [Accepted: 12/24/2014] [Indexed: 11/20/2022]
Abstract
Thymopentin is a group of biologically active peptide secreted mainly by the epithelial cells of thymic cortex and medulla. Whether it promotes T cells production from human embryonic stem cells(hESCs) in vitro remains an elusive issue. In the present study, we develop a novel strategy that enhances T-cell lineage differentiation of hESCs in collagen matrix culture by sequential cytokine cocktails treatment combined with thymopentin stimulation. We observed that approximately 30.75% cells expressed CD34 on day 14 of the cultures and expressed the surface markers of erythroid, lymphoid and myeloid lineages. The results of colony assays and gene expressions by RT-PCR analysis also demonstrated that hematopoietic progenitor cells (HPCs) derived from hESCs were capable of multi-lineage differentiation. Further study revealed that culturing with thymopentin treatment, the CD34(+)CD45RA(+)CD7(+) cells sorted from HPCs expressed T-cell-related genes, IKAROS, DNTT, TCRγ and TCRβ, and T-cell surface markers, CD3, cytoplasmic CD3, CD5, CD27, TCRγδ, CD4 and CD8. The differentiated cells produced the cytokines including IFN-γ, IL-2 and TNF-α in response to stimulation, providing the evidence for T-cell function of these cells. In conclusion, thymopentin enhances T-cell lineage differentiation from hESCs in vitro by mimicking thymus peptide environment in vivo.
Collapse
|
7
|
Zaninovic N, Zhan Q, Rosenwaks Z. Derivation of human embryonic stem cells (hESC). Methods Mol Biol 2014; 1154:121-44. [PMID: 24782008 DOI: 10.1007/978-1-4939-0659-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Stem cells are characterized by their absolute or relative lack of specialization their ability for self-renewal, as well as their ability to generate differentiated progeny through cellular lineages with one or more branches. The increased availability of embryonic tissue and greatly improved derivation methods have led to a large increase in the number of hESC lines.
Collapse
Affiliation(s)
- Nikica Zaninovic
- Center for Reproductive Medicine, Weill Cornell Medical College, 1305 York Avenue, New York, NY, 10021, USA,
| | | | | |
Collapse
|
8
|
Dynamic expression of microRNAs during the differentiation of human embryonic stem cells into insulin-producing cells. Gene 2013; 518:246-55. [DOI: 10.1016/j.gene.2013.01.038] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 01/07/2013] [Accepted: 01/15/2013] [Indexed: 11/20/2022]
|
9
|
Zhu MX, Zhao JY, Chen GA. Mesoderm is committed to hemato-endothelial and cardiac lineages in human embryoid bodies by sequential exposure to cytokines. Exp Cell Res 2013; 319:21-34. [DOI: 10.1016/j.yexcr.2012.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 09/04/2012] [Accepted: 09/09/2012] [Indexed: 12/13/2022]
|
10
|
Gao M, Yang J, Wei R, Liu G, Zhang L, Wang H, Wang G, Gao H, Chen G, Hong T. Ghrelin induces cardiac lineage differentiation of human embryonic stem cells through ERK1/2 pathway. Int J Cardiol 2012; 167:2724-33. [PMID: 22809535 DOI: 10.1016/j.ijcard.2012.06.106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/16/2012] [Accepted: 06/24/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ghrelin, an endogenous ligand for growth hormone secretagogue receptor (GHS-R), shows cardioprotective activity and regulates the differentiation of several mesoderm-derived cells, including myocytes, adipocytes and osteoblasts. The effect of ghrelin on cardiogenesis and its underlying mechanism, however, have not been studied in detail. METHODS The effects of ghrelin on cardiomyocyte differentiation were tested both in human embryonic stem cells (hESCs) cultured in embryoid body (EB)-based differentiation protocol, and in hESCs transplanted into rat hearts. The signaling mechanisms of ghrelin were further investigated under the EB-based culture condition. RESULTS The generation of beating EBs and the expression of cardiac-specific markers including cardiac troponin I (cTnI) and α-myosin heavy chain (α-MHC) were 2 to 3-fold upregulated by ghrelin. Although GHS-R1α protein was expressed in differentiated EBs, the effects of exogenous ghrelin were unchanged by D-[lys(3)]-GHRP-6, a specific GHS-R1α antagonist. Moreover, des-acyl ghrelin, which does not bind to GHS-R1α, displayed similar effects with ghrelin. Importantly, activation of ERK1/2, but not Akt, was induced by ghrelin in the newly-formed EBs, and the ghrelin-induced effects of cardiomyocyte differentiation were abolished by adding specific ERK1/2 inhibitor PD98059, but not specific PI3K inhibitor Wortmannin. In addition, ghrelin promoted the differentiation of grafted hESCs into Sox9- and Flk1-positive mesodermal/cardiac progenitor cells in rat hearts. CONCLUSIONS These results suggest that ghrelin induces cardiomyocyte differentiation from hESCs via the activation of the ERK1/2 signaling pathway. Our study, therefore, indicates that using ghrelin may be an effective strategy to promote the differentiation of hESCs into cardiomyocytes.
Collapse
Affiliation(s)
- Meijuan Gao
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gao M, Yang J, Liu G, Wei R, Zhang L, Wang H, Wang G, Gao H, Chen G, Hong T. Ghrelin promotes the differentiation of human embryonic stem cells in infarcted cardiac microenvironment. Peptides 2012; 34:373-9. [PMID: 22386650 DOI: 10.1016/j.peptides.2012.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/04/2012] [Accepted: 02/06/2012] [Indexed: 11/23/2022]
Abstract
Ghrelin is broadly expressed in myocardial tissues, where it exerts different functions. It also has been found to have a wide variety of biological functions on cell differentiation and tissue development. The aim of this study was to investigate the effect of ghrelin on human embryonic stem cell (hESC) differentiation in infarcted cardiac microenvironment. The hESCs grown on feeder layers expressed several pluripotential markers including alkaline phosphatase (AKP). Four weeks after transplantation into rat infarcted hearts, the hESCs and their progeny cells survived and formed intracardiac grafts were 54.7% and 19.6% respectively in ghrelin- and phosphate-buffered saline (PBS)-treated groups. Double immunostaining with anti-human Sox9 and anti-HNA or anti-human fetal liver kinase-1 (Flk1) and anti β-tubulin showed that the human grafts were in development. However, double positive stains were only found in the ghrelin-treated group. In addition, the hESC injection protocol was insufficient to restore heart function of the acute myocardial infarction model. Our study, therefore, provides a new insight of ghrelin on promoting hESC survival and differentiation in rat infarcted cardiac microenvironment. This may give a clue for therapy for myocardial infarction by hESCs or progeny cells.
Collapse
Affiliation(s)
- Meijuan Gao
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ghrelin promotes differentiation of human embryonic stem cells into cardiomyocytes. Acta Pharmacol Sin 2011; 32:1239-45. [PMID: 21804576 DOI: 10.1038/aps.2011.79] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM Ghrelin is involved in regulating the differentiation of mesoderm-derived precursor cells. The aim of this study was to investigate whether ghrelin modulated the differentiation of human embryonic stem (hES) cells into cardiomyocytes and, if so, whether the effect was mediated by growth hormone secretagogue receptor 1α (GHS-R1α). METHODS Cardiomyocyte differentiation from hES cells was performed according to an embryoid body (EB)-based protocol. The cumulative percentage of beating EBs was calculated. The expression of cardiac-specific markers including cardiac troponin I (cTnI) and α-myosin heavy chain (α-MHC) was detected using RT-PCR, real-time PCR and Western blot. The dispersed beating EBs were examined using immunofluorescent staining. RESULTS The percentage of beating EBs and the expression of cTnI were significantly increased after ghrelin (0.1 and 1 nmol/L) added into the differentiation medium. From 6 to 18 d of differentiation, the increased expression of cTnI and α-MHC by ghrelin (1 nmol/L) was time-dependent, and in line with the alteration of the percentages of beating EBs. Furthermore, the dispersed beating EBs were double-positively immunostained with antibodies against cTnI and α-actinin. However, blockage of GHS-R1α with its specific antagonist D-[lys(3)]-GHRP-6 (1 μmol/L) did not alter the effects of ghrelin on cardiomyocyte differentiation. CONCLUSION Our data show that ghrelin enhances the generation of cardiomyocytes from hES cells, which is not mediated via GHS-R1α.
Collapse
|
13
|
Early embryonic sensitivity to cyclophosphamide in cardiac differentiation from human embryonic stem cells. Cell Biol Int 2011; 35:927-38. [DOI: 10.1042/cbi20110031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Meng G, Liu S, Rancourt DE. Rapid Isolation of Undifferentiated Human Pluripotent Stem Cells from Extremely Differentiated Colonies. Stem Cells Dev 2011; 20:583-91. [DOI: 10.1089/scd.2010.0400] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Guoliang Meng
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Shiying Liu
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Derrick E. Rancourt
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| |
Collapse
|
15
|
Zhang Y, Wang J, Chen G, Fan D, Deng M. Inhibition of Sirt1 promotes neural progenitors toward motoneuron differentiation from human embryonic stem cells. Biochem Biophys Res Commun 2010; 404:610-4. [PMID: 21144831 DOI: 10.1016/j.bbrc.2010.12.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 12/02/2010] [Indexed: 12/14/2022]
Abstract
Several protocols direct human embryonic stem cells (hESCs) toward differentiation into functional motoneurons, but the efficiency of motoneuron generation varies based on the human ESC line used. We aimed to develop a novel protocol to increase the formation of motoneurons from human ESCs. In this study, we tested a nuclear histone deacetylase protein, Sirt1, to promote neural precursor cell (NPC) development during differentiation of human ESCs into motoneurons. A specific inhibitor of Sirt1, nicotinamide, dramatically increased motoneuron formation. We found that about 60% of the cells from the total NPCs expressed HB9 and βIII-tubulin, commonly used motoneuronal markers found in neurons derived from ESCs following nicotinamide treatment. Motoneurons derived from ESC expressed choline acetyltransferase (ChAT), a positive marker of mature motoneuron. Moreover, we also examined the transcript levels of Mash1, Ngn2, and HB9 mRNA in the differentiated NPCs treated with the Sirt1 activator resveratrol (50 μM) or inhibitor nicotinamide (100 μM). The levels of Mash1, Ngn2, and HB9 mRNA were significantly increased after nicotinamide treatment compared with control groups, which used the traditional protocol. These results suggested that increasing Mash1 and Ngn2 levels by inhibiting Sirt1 could elevate HB9 expression, which promotes motoneuron differentiation. This study provides an alternative method for the production of transplantable motoneurons, a key requirement in the development of hESC-based cell therapy in motoneuron disease.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Neurology, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | | | | | | | | |
Collapse
|
16
|
Bai HY, Chen GA, Mao GH, Song TR, Wang YX. Three step derivation of cartilage like tissue from human embryonic stem cells by 2D-3D sequential culture in vitro and further implantation in vivo on alginate/PLGA scaffolds. J Biomed Mater Res A 2010; 94:539-46. [PMID: 20186773 DOI: 10.1002/jbm.a.32732] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this study a three step culture system, 2D-3D sequential culture in vitro and further implantation in vivo was developed to induce human embryonic stem cells (hESCs) into cartilage like tissues. Five-day-old embryoid bodies were plated for chondrogenic induction for 27 days (step1), then the cells were suspended in alginate and seeded onto polylactic-co-glycolic acid (PLGA) scaffolds for 3D cultivation for 7 days (step 2) and the cells/alginate/PLGA complexes were further transplanted into nude mice for 8 weeks (step 3). At same time, some of complexes were cultured in vitro up to 8 weeks. At the end of step 1, cells exhibited fibroblast-like morphology and expressed chondrocyte-specific markers, Sox 9 and collagen II. During the following 8 weeks of 3D cultivation in vitro, cells displayed spherical morphology, decreased immunoreactivity to Sox-9 and increased one to collagen II, demonstrated further differentiation to mature chondrocyte. In implanted grafts, not only cells appeared typical chondrocytes shape and markers but also cartilage like tissues were formed. These results indicate that 2D-3D sequential culture in vitro is an efficient protocol to induce hESCs differentiates into chondrocytes, while the three step culture system may be an appropriate procedure to derive cartilage like tissues from hESCs.
Collapse
Affiliation(s)
- Hai Yan Bai
- Reproductive Medical Center, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, People's Republic of China
| | | | | | | | | |
Collapse
|
17
|
Xie X, Hiona A, Lee AS, Cao F, Huang M, Li Z, Cherry A, Pei X, Wu JC. Effects of long-term culture on human embryonic stem cell aging. Stem Cells Dev 2010; 20:127-38. [PMID: 20629482 DOI: 10.1089/scd.2009.0475] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In recent years, human embryonic stem (hES) cells have become a promising cell source for regenerative medicine. Although hES cells have the ability for unlimited self-renewal, potential adverse effects of long-term cell culture upon hES cells must be investigated before therapeutic applications of hES cells can be realized. Here we investigated changes in molecular profiles associated with young (<60 passages) and old (>120 passages) cells of the H9 hES cell line as well as young (<85 passages) and old (>120 passages) cells of the PKU1 hES cell line. Our results show that morphology, stem cell markers, and telomerase activity do not differ significantly between young and old passage cells. Cells from both age groups were also shown to differentiate into derivatives of all 3 germ layers upon spontaneous differentiation in vitro. Interestingly, mitochondrial dysfunction was found to occur with prolonged culture. Old passage cells of both the H9 and PKU1 lines were characterized by higher mitochondrial membrane potential, larger mitochondrial morphology, and higher reactive oxygen species content than their younger counterparts. Teratomas derived from higher passage cells were also found to have an uneven preference for differentiation compared with tumors derived from younger cells. These findings suggest that prolonged culture of hES cells may negatively impact mitochondrial function and possibly affect long-term pluripotency.
Collapse
Affiliation(s)
- Xiaoyan Xie
- Department of Medicine, Stanford University School of Medicine , Stanford, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Meng G, Liu S, Li X, Krawetz R, Rancourt DE. Derivation of human embryonic stem cell lines after blastocyst microsurgery. Biochem Cell Biol 2010; 88:479-90. [PMID: 20555390 DOI: 10.1139/o09-188] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Embryonic stem cells (ESCs) are derived from the inner cell mass (ICM) of the blastocyst. Because of their ability to differentiate into a variety of cell types, human embryonic stem cells (hESCs) provide an unlimited source of cells for clinical medicine and have begun to be used in clinical trials. Presently, although several hundred hESC lines are available in the word, only few have been widely used in basic and applied research. More and more hESC lines with differing genetic backgrounds are required for establishing a bank of hESCs. Here, we report the first Canadian hESC lines to be generated from cryopreserved embryos and we discuss how we navigated through the Canadian regulatory process. The cryopreserved human zygotes used in this study were cultured to the blastocyst stage, and used to isolate ICM via microsurgery. Unlike previous microsurgery methods, which use specialized glass or steel needles, our method conveniently uses syringe needles for the isolation of ICM and subsequent hESC lines. ICM were cultured on MEF feeders in medium containing FBS or serum replacer (SR). Resulting outgrowths were isolated, cut into several cell clumps, and transferred onto fresh feeders. After more than 30 passages, the two hESC lines established using this method exhibited normal morphology, karyotype, and growth rate. Moreover, they stained positively for a variety of pluripotency markers and could be differentiated both in vitro and in vivo. Both cell lines could be maintained under a variety of culture conditions, including xeno-free conditions we have previously described. We suggest that this microsurgical approach may be conducive to deriving xeno-free hESC lines when outgrown on xeno-free human foreskin fibroblast feeders.
Collapse
Affiliation(s)
- Guoliang Meng
- Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
19
|
Enhancement of cardiomyocyte differentiation from human embryonic stem cells. SCIENCE CHINA-LIFE SCIENCES 2010; 53:581-9. [PMID: 20596941 DOI: 10.1007/s11427-010-0111-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 10/09/2009] [Indexed: 12/29/2022]
Abstract
Several approaches have been used to encourage the differentiation of cardiomyocytes from human embryonic stem cells. However, the differentiation efficiency is low, and appropriate culture protocols are needed to produce adequate numbers of cardiomyocytes for therapeutic cell transplantation. This study investigated the effects of serum on cardiomyocyte differentiation in suspension culture medium during embryoid body (EB) formation by human embryonic stem cells. The addition of ascorbic acid, dimethylsulfoxide and 5-aza-2'-deoxycytidine during days 5-7 at the EB-forming stage resulted in an increase in the numbers of rhythmically contracting clusters of derived cardiomyocytes. Treatment with 0.1 mmol L(-1) ascorbic acid alone, or more notably in combination with 10 micromol L(-1) 5-aza-2'-deoxycytidine, induced the formation of beating cells within EBs. Most of the beating clusters had spontaneous contraction rates similar to those found in human adults, and their contractile activity lasted for up to 194 days.
Collapse
|
20
|
Peiffer I, Barbet R, Hatzfeld A, Li ML, Hatzfeld JA. Optimization of physiological xenofree molecularly defined media and matrices to maintain human embryonic stem cell pluripotency. Methods Mol Biol 2010; 584:97-108. [PMID: 19907973 DOI: 10.1007/978-1-60761-369-5_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We describe in this chapter the development of a xenofree molecularly defined medium, SBX, associated with xenofree matrices, to maintain human embryonic stem cell (hESC) pluripotency as determined by phenotypic, functional and TLDA studies. This simple, inexpensive, and more physiological culture condition has been chosen because (1) it is xenofree and molecularly defined; it is devoid of albumin, which is a carrier of undefined molecules; (2) it maintains pluripotency, but very significantly reduces differentiation gene expression during hESC self-renewal, as compared to the widely used culture conditions tested so far; and (3) it can be further improved by replacing high concentrations of expensive additives by physiological concentrations of new factors. Xenofree molecularly defined media and matrices represent valuable tools for elucidating still unknown functions of numerous embryonic genes using more physiological culture conditions. These genes encode potential new factors controlling hESC self-renewal and pluripotency.
Collapse
Affiliation(s)
- Isabelle Peiffer
- Centre National de la Recherche Scientifique, Institut André Lwoff, Villejuif, France
| | | | | | | | | |
Collapse
|
21
|
Golestaneh N, Kokkinaki M, Pant D, Jiang J, DeStefano D, Fernandez-Bueno C, Rone JD, Haddad BR, Gallicano GI, Dym M. Pluripotent stem cells derived from adult human testes. Stem Cells Dev 2009; 18:1115-26. [PMID: 19281326 DOI: 10.1089/scd.2008.0347] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recent reports have demonstrated that adult tissue cells can be induced to pluripotency, the iPS cells, mostly with the addition of genes delivered using viruses. Also, several publications both in mouse and in human have demonstrated that spermatogonial stem cells (SSCs) from testes can convert back to embryonic stem (ES)-like cells without the addition of genes. Furthermore, these pluripotent ES-like cells can differentiate into all three germ layers and organ lineages. Thus, SSCs have great potential for cell-based, autologous organ regeneration therapy for various diseases. We obtained testes from organ donors and using 1 g pieces of tissue (biopsy size) we demonstrate that testis germ cells (putative SSCs and/or their progenitors) reprogram to pluripotency when removed from their stem cell niche and when appropriate growth factors and reagents in embryonic stem cell medium are added. In addition, our method of obtaining pluripotent ES-like cells from germ cells is simpler than the described methods and may be more suitable if this procedure is developed for the clinic to obtain pluripotent cells to cure disease.
Collapse
Affiliation(s)
- Nady Golestaneh
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC 20057, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hua J, Yu H, Liu S, Dou Z, Sun Y, Jing X, Yang C, Lei A, Wang H, Gao Z. Derivation and characterization of human embryonic germ cells: serum-free culture and differentiation potential. Reprod Biomed Online 2009; 19:238-49. [PMID: 19712561 DOI: 10.1016/s1472-6483(10)60079-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study examined the effects of a chemically defined culture medium supplement, knock-out serum replacement (KSR), on the growth and differentiation of human embryonic germ cells (hEgc) and found that the efficiency of the initial establishment of hEGC lines in KSR medium was significantly higher than in fetal calf serum (FCS) medium. The percentage of undifferentiated hEGC colonies growing in KSR medium was significantly higher than in FCS-based medium (P < 0.05). The hEGC colonies showed typical mouse embryonic germ cell-like morphology. They showed normal and stable diploid karyotype and expressed alkaline phosphatase (AP), stage-specific embryonic antigens (SSEA) and other specific markers of pluripotent cells. In addition, hEGC could form simple and cystic embryoid bodies (EB) that consisted of various cell types including neural, epithelial and rhythmically beating cardiac cells, even sperm-like and oocyte-like cells. Tumour-like outgrowths were formed in nude mice and found to contain a variety of cell types, including uterine epithelium, adipocytes, squamous tissue and skin structures. In conclusion, an appropriate serum-free culture system has been developed for the establishment of hEGC lines. This may provide an in-vitro model to study differentiation and can be used as a potential source of therapy for infertility and regenerative medicine.
Collapse
Affiliation(s)
- Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Shaanxi Key Lab for Agriculture Molecular Biotechnology Centre, Northwest A and F University, Yangling, Shaanxi, 712100 China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fleischmann G, Müller T, Blasczyk R, Sasaki E, Horn PA. Growth characteristics of the nonhuman primate embryonic stem cell line cjes001 depending on feeder cell treatment. CLONING AND STEM CELLS 2009; 11:225-33. [PMID: 19522672 DOI: 10.1089/clo.2008.0064] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Embryonic stem cells (ESC) hold tremendous potential for therapeutic applications, including regenerative medicine, as well as for understanding basic mechanisms in stem cell biology. Since numerous experiments cannot be conducted in human ESC because of ethical or practical limitations, nonhuman primate ESC serve as invaluable clinically relevant models. The novel marmoset (Callithrix jacchus) ESC line cjes001 was characterized using different stem cell markers. The cells were stained positively with Oct4, SSEA-3, SSEA-4, Tra-1-60, Tra-1-81, and Sox-2 underscoring their status as undifferentiated ESC. ESC are typically grown on mouse embryonic fibroblasts (MEF) as feeder cells whose proliferation is arrested either by treatment with Mitomycin C or by gamma-irradiation. To assess the impact of these treatments on the ability of MEF to support the growth of undifferentiated ESC, we used an MTT assay to evaluate the cellular metabolic activity of growth arrested feeder cells. There was a significant (p < 0.02) difference in gamma-irradiated cells displaying a higher metabolic activity compared to Mitomycin C inactivation. Also we quantified 69 soluble factors in the supernatant of both Mitomycin-treated and gamma-irradiated MEF by bead-based multiplex analysis, and thus established a profile of MEF-secreted factors. The time course of secretion was analyzed by monitoring the supernatant at 0, 6, 12, and 24 h after changing the medium. Comparing gamma-irradiated and Mitomycin-treated MEF suggested higher amounts of some cytokines including FGF or SCF by the former. We also assessed whether the method of inactivation had an effect on growth kinetics and differentiation of primate ESC. There appeared to be a trend to a lower number of differentiated ESC colonies on the gamma-irradiated feeder cells, suggesting that this may be the preferable method of growth arrest.
Collapse
Affiliation(s)
- Gesine Fleischmann
- Institute for Transfusion Medicine, University Hospital Essen , Essen, Germany
| | | | | | | | | |
Collapse
|
24
|
Liu W, Yin Y, Long X, Luo Y, Jiang Y, Zhang W, Du H, Li S, Zheng Y, Li Q, Chen X, Liao B, Xiao G, Wang W, Sun X. Derivation and characterization of human embryonic stem cell lines from poor quality embryos. J Genet Genomics 2009; 36:229-39. [PMID: 19376483 DOI: 10.1016/s1673-8527(08)60110-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 10/13/2008] [Accepted: 10/15/2008] [Indexed: 11/27/2022]
Abstract
Poor quality embryos discarded from in vitro fertilization (IVF) laboratories are good sources for deriving human embryonic stem cell (hESC) lines. In this study, 166 poor quality embryos donated from IVF centers on day 3 were cultured in a blastocyst medium for 2 days, and 32 early blastocysts were further cultured in a blastocyst optimum culture medium for additional 2 days so that the inner cell masses (ICMs) could be identified and isolated easily. The ICMs of 17 blastocysts were isolated by a mechanical method, while those of the other 15 blastocysts were isolated by immunosurgery. All isolated ICMs were inoculated onto a feeder layer for subcultivation. The rates of ICM attachment, primary ICM colony formation and the efficiency of hESC derivation were similar between the ICMs isolated by the two methods (P>0.05). As a result, four new hESC lines were established. Three cell lines had normal karyotypes and one had an unbalanced Robertsonian translocation. All cell lines showed normal hESC characteristics and had the differentiation ability. In conclusion, we established a stable and effective method for hESC isolation and culture, and it was confirmed that the mechanical isolation was an effective method to isolate ICMs from poor embryos. These results further indicate that hESC lines can be derived from poor quality embryos discarded by IVF laboratories.
Collapse
Affiliation(s)
- Weiqiang Liu
- Guangzhou Key Laboratory of Reproductive and Genetics; Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical College, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Skottman H, Narkilahti S, Hovatta O. Challenges and approaches to the culture of pluripotent human embryonic stem cells. Regen Med 2009; 2:265-73. [PMID: 17511563 DOI: 10.2217/17460751.2.3.265] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Since the establishment of the first human embryonic stem cell (hESC) lines, several groups have described the derivation and culture of hESC lines in various culture conditions. In this review, we describe how hESC lines have been derived from the inner cell mass of blastocysts or morula-stage embryos and the culture conditions used. In order to be used for therapeutic purposes, the pluripotent hESC lines must be established and propagated according to good manufacturing practice quality requirements. In addition, any use of animal-derived components should be avoided to gain safer hESC lines for clinical purposes. Here, we will describe the development in derivation and chemically defined culturing conditions of hESC towards good manufacturing practice and discuss the future challenges for hESCs in clinical use. Similarly, we discuss the challenges and future directions in optimization of standard culture conditions of hESCs for research purposes.
Collapse
Affiliation(s)
- Heli Skottman
- REGEA, Institute for Regenerative Medicine, University of Tampere and Tampere University Hospital, Biokatu 12, 33520 Tampere, Finland.
| | | | | |
Collapse
|
26
|
Song T, Chen G, Wang Y, Mao G, Wang Y, Bai H. Chemically defined sequential culture media for TH+ cell derivation from human embryonic stem cells. Mol Hum Reprod 2008; 14:619-25. [DOI: 10.1093/molehr/gan058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
27
|
Chiao E, Kmet M, Behr B, Baker J. Derivation of human embryonic stem cells in standard and chemically defined conditions. Methods Cell Biol 2008; 86:1-14. [PMID: 18442641 DOI: 10.1016/s0091-679x(08)00001-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Eric Chiao
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94035, USA
| | | | | | | |
Collapse
|
28
|
Petkov SG, Anderson GB. Culture of Porcine Embryonic Germ Cells in Serum-Supplemented and Serum-Free Conditions: The Effects of Serum and Growth Factors on Primary and Long-Term Culture. CLONING AND STEM CELLS 2008; 10:263-76. [DOI: 10.1089/clo.2007.0085] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Stoyan G. Petkov
- Department of Animal Science, University of California, Davis, Davis, California
| | - Gary B. Anderson
- Department of Animal Science, University of California, Davis, Davis, California
| |
Collapse
|
29
|
Liu GQ, Hong TP. Research progress and application prospect of induced pluripotent stem cells. Shijie Huaren Xiaohua Zazhi 2008; 16:1255-1259. [DOI: 10.11569/wcjd.v16.i12.1255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent reports demonstrate that mouse somatic cells can be directly reprogrammed into pluripotent embryonic stem (ES) cell-like cells by in vitro introduction of four transcription factors, Oct4, Sox2, c-Myc and Klf4. These cells are designated as induced pluripotent stem (iPS) cells. Similarly, the transfection with these four transcription factors or a cocktail of Oct4, Sox2, Nanog and LIN28 has been shown to be sufficient to reprogram human somatic cells to iPS cells that are indistinguishable from human ES cells. Since reactivation of the c-Myc transgene has been reported to increase tumorigenicity in the chimeras and progeny mice, a modified protocol with only three factors (Oct4, Sox2 and Klf4) has been recently used to make mouse and human iPS cells from adult dermal fibroblasts. Based upon the data from recent publications, human iPS cell lines should be useful in the establishment of new disease models and in drug development, and might require further investigation about the feasibility in transplantation medicine.
Collapse
|
30
|
Mannello F, Tonti GA. Concise Review: No Breakthroughs for Human Mesenchymal and Embryonic Stem Cell Culture: Conditioned Medium, Feeder Layer, or Feeder-Free; Medium with Fetal Calf Serum, Human Serum, or Enriched Plasma; Serum-Free, Serum Replacement Nonconditioned Medium, or Ad Hoc Formula? All That Glitters Is Not Gold! Stem Cells 2007; 25:1603-9. [PMID: 17395775 DOI: 10.1634/stemcells.2007-0127] [Citation(s) in RCA: 233] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The choice of an optimal strategy of stem cell culture is at the moment an impossible task, and the elaboration of a culture medium adapted to the production of embryonic and adult mesenchymal stem cells for the clinical application of cell therapy remains a crucial matter. To make an informed choice, it is crucial to not underestimate the theoretical health risk of using xenogenic compounds, to limit the immunological reactions once stem cells are transplanted, to not overestimate the controversial results obtained with human serum, plasma, and blood derivatives, as well as to carefully examine the pros and cons of serum-free and ad hoc formulation strategies; besides that, to also maintain multipotentiality, self-renewal, and transplantability. The extent to which we are able to achieve effective cell therapies will depend on assimilating a rapidly developing base of scientific knowledge with the practical considerations of design, delivery, and host response. Although clinical studies have already started, many questions remain unsolved, and concomitantly even more evidence on suitable and safe off-the-shelf products (mainly xeno-free) for embryonic and mesenchymal stem cells is cropping up, even though there should be no rush to enter the clinical stage while the underlying basic research is still not so solid; this solely will lead to high-quality translational research, without making blunders stemming from the assumption that all that glitters is not gold. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Ferdinando Mannello
- Institute of Histology and Laboratory Analysis, Faculty of Sciences and Technologies, University of Urbino Carlo Bo, Via O. Ubaldini 7, 61029 Urbino (PU), Italy.
| | | |
Collapse
|
31
|
Wang XS, Liu YL, Yang YM. Isolation and identification of side population in Lovo colon cancer cell line. Shijie Huaren Xiaohua Zazhi 2007; 15:953-959. [DOI: 10.11569/wcjd.v15.i9.953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether colon cancer cell line Lovo contains side population (SP) with cancer stem cell-like properties.
METHODS: Lovo cell line was cultivated in serum-free medium and SP cells reforming into floating spheres were isolated. The isolated SP cells were identified by limiting-dilution assay, differentiation assay, self-renewal assay, alternative cultivation assay and immunocytochemical staining with anti-Mus-1 assay.
RESULTS: In the absence of serum, a minority (0.54%-0.62%) of SP cells in Lovo cells survived, proliferated and assembled into the suspended tumor cell spheres. Lovo SP cells possessed proliferative, self-renewal and differentiation potential, which were responsible for the floating tumor clone. Serum addition into SFM resulted in the proliferation of SP cells; after several generations and alternated cultivation in SSM and SFM, SP cells maintained their characters. The stem cell surface marker Mus-1 was observed in Lovo SP cells after Musashi-1 staining.
CONCLUSION: Lovo cell line contains a tiny minority of SP cells with stem cell properties that can be maintained in SFM using a floating-culture method for a long time.
Collapse
|
32
|
Abstract
Human embryonic stem cell (hESC) lines have been derived and cultured in variable conditions. The idea behind derivation of hESC lines is to use them in human cell transplantation after differentiation, but already now these cells are widely used for research purposes. Despite similarities among the established lines, important differences have been reported between them, and it has been difficult to compare the results obtained using different lines. Recent optimization of hESC culture conditions has moved from cultures on mouse embryonic fibroblasts (MEFs) in fetal bovine serum-containing medium towards feeder-free culture methods using more defined animal substance-free cultures. The aim has been to establish robust and cost-effective systems for culturing these cells and eliminate the risk of infection transmitted by animal pathogens and immunoreactions caused by animal substances in cell cultures before clinical treatment. It is important to take these modifications into account when carrying out research using these cells. It is known that culture conditions influence gene expression and, hence, probably many properties of the cells. Optimization and standardization of culture methods is needed for research as well as for clinical purposes.
Collapse
Affiliation(s)
- Heli Skottman
- REGEA, Institute for Regenerative Medicine, University of Tampere and Tampere University Hospital, 33520 Tampere, Finland
| | | |
Collapse
|
33
|
Findikli N, Candan NZ, Kahraman S. Human embryonic stem cell culture: current limitations and novel strategies. Reprod Biomed Online 2006; 13:581-90. [PMID: 17007685 DOI: 10.1016/s1472-6483(10)60648-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Embryonic stem cells (ESC) are multipotent cells isolated from blastocyst-stage preimplantation embryos. Since their first culture in 1998, human ESC have revolutionized reproductive and regenerative medicine by allowing the establishment of detailed molecular and therapeutic models for certain metabolic pathways and life-threatening disorders. They also offer significant contributions to genetics and pharmacology in designing and analysing disease models that can be closer to in vivo than any other procedures available. However, the procedures by which they are obtained and manipulated also create intense ethical and social debates worldwide. This article discusses the current limitations and recent advances in isolation, culture and differentiation of human ESC from the laboratory perspective.
Collapse
Affiliation(s)
- N Findikli
- Istanbul Memorial Hospital ART and Reproductive Genetics Centre, Istanbul, Turkey.
| | | | | |
Collapse
|
34
|
Abstract
Human embryonic stem cells hold great promise in furthering our treatment of disease and increasing our understanding of early development. This chapter describes protocols for the derivation and maintenance of human embryonic stem cells. In addition, it summarizes briefly several alternative methods for the culture of human embryonic stem cells. Thus, this chapter provides a good starting point for researchers interested in harnessing the potential of human embryonic stem cells.
Collapse
Affiliation(s)
- Hidenori Akutsu
- Harvard University, Howard Huges Medical Institute, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
35
|
Villadsen R. In search of a stem cell hierarchy in the human breast and its relevance to breast cancer evolution. APMIS 2005; 113:903-21. [PMID: 16480457 DOI: 10.1111/j.1600-0463.2005.apm_344.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
By deliberate analogy with the well-established concept of hematopoiesis, the term "mammopoiesis" is occasionally used to describe the development of the different cellular lineages and functional units in the mammary gland. The use of this term signifies a strong bias towards the idea that tissue homeostasis during mammary development, pregnancy, lactation and involution is brought about by the action of somatic stem cells characterized by longevity and multipotency. The progenies hereof eventually differentiate into structurally and functionally well-defined ductal-lobular units. During the past two decades evidence of such a notion in the mouse has developed from being largely circumstantial based on non-clonal in vivo experiments to a quite elaborate characterization of individual candidate stem cells by a number of different properties. Within tumor biology this has led to a renaissance of the concept of tumors as caricatures of tissue renewal. Thus, recent molecular classification of breast cancer based on genome wide expression analysis operates with different subtypes with specific reference to the normal luminal epithelial and myoepithelial/basal lineages in the breast. Apparently some tumors are lineage restricted and others differentiate more broadly as if they have preserved some stem-like properties. This holds promise for the existence of a stem cell hierarchy, the understanding of which may prove to be instrumental in further dissecting the histogenesis of breast cancer evolution. Most attention has been devoted to the question of different cellular origins of cancer subtypes and different susceptibilities of possible stem cells to gain or loss of oncogenes and tumor suppressor genes, respectively. Invaluable progress has been made over the past two decades in culture technology not only in terms of population doubling and clonal growth, but also the availability of lineage specific markers, cell sorting, and three-dimensional functional assays for tissue specific morphogenesis. Transcriptional profiling of stem cell zones has unraveled a hitherto unknown preservation of signaling pathways for maintenance of stem cell properties across tissue boundaries and species. Somatic stem cells have therefore been narrowed down to specific anatomic locations not only in rapidly renewing tissues such as skin and skin derivatives, but also in tissues with slower turnover times, such as lung, kidney and prostate. It is therefore now possible to integrate this information in a search for similar cells within the breast. Even if cell turnover after birth is provided exclusively by dividing lineage-restricted cells, more information about the robustness of breast differentiation programs during tumor progression is still very much required. Complete knowledge of the primary cell of origin of breast cancer and the mechanisms that influence differentiation programs during tumor initiation, promotion and progression may be crucial for the development of novel non-toxic therapies that influence tumor cell behaviour. The scope of this review is to discuss reports that have begun to elucidate the topographic location, key cellular type and lineage fidelity in culture and xenograft models of candidate human breast stem cells and their differentiated progenies with particular emphasis on comparison with the differentiation programs of tumor subtypes.
Collapse
Affiliation(s)
- René Villadsen
- Structural Cell Biology Unit, Institute of Medical Anatomy, The Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|