1
|
Yang Y, Yuan F, Zhou H, Quan J, Liu C, Wang Y, Xiao F, Liu Q, Liu J, Zhang Y, Yu X. Potential roles of heparanase in cancer therapy: Current trends and future direction. J Cell Physiol 2023; 238:896-917. [PMID: 36924082 DOI: 10.1002/jcp.30995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023]
Abstract
Heparanase (HPSE; heparanase-1) is an endo-β-glucuronidase capable of degrading the carbohydrate moiety of heparan sulfate proteoglycans, thus modulating and facilitating the remodeling of the extracellular matrix and basement membrane. HPSE activity is strongly associated with major human pathological complications, including but not limited to tumor progress and angiogenesis. Several lines of literature have shown that overexpression of HPSE leads to enhanced tumor growth and metastatic transmission, as well as poor prognosis. Gene silencing of HPSE or treatment of tumor with compounds that block HPSE activity are shown to remarkably attenuate tumor progression. Therefore, targeting HPSE is considered as a potential therapeutical strategy for the treatment of cancer. Intriguingly, recent findings disclose that heparanase-2 (HPSE-2), a close homolog of HPSE but lacking enzymatic activity, can also regulate antitumor mechanisms. Given the pleiotropic roles of HPSE, further investigation is in demand to determine the precise mechanism of regulating action of HPSE in different cancer settings. In this review, we first summarize the current understanding of HPSE, such as its structure, subcellular localization, and tissue distribution. Furthermore, we systematically review the pro- and antitumorigenic roles and mechanisms of HPSE in cancer progress. In addition, we delineate HPSE inhibitors that have entered clinical trials and their therapeutic potential.
Collapse
Affiliation(s)
- Yiyuan Yang
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Fengyan Yuan
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Huiqin Zhou
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Jing Quan
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Chongyang Liu
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yi Wang
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Fen Xiao
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Qiao Liu
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Jie Liu
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yujing Zhang
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Xing Yu
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
2
|
The effects of female sexual hormones on the endothelial glycocalyx. CURRENT TOPICS IN MEMBRANES 2023; 91:89-137. [PMID: 37080682 DOI: 10.1016/bs.ctm.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The glycocalyx is a layer composed of carbohydrate side chains bound to core proteins that lines the vascular endothelium. The integrity of the glycocalyx is essential for endothelial cells' performance and vascular homeostasis. The neuroendocrine and immune systems influence the composition, maintenance, activity and degradation of the endothelial glycocalyx. The female organism has unique characteristics, and estrogen and progesterone, the main female hormones are essential to the development and physiology of the reproductive system and to the ability to develop a fetus. Female sex hormones also exert a wide variety of effects on other organs, including the vascular endothelium. They upregulate nitric oxide synthase expression and activity, decrease oxidative stress, increase vasodilation, and protect from vascular injury. This review will discuss how female hormones and pregnancy, which prompts to high levels of estrogen and progesterone, modulate the endothelial glycocalyx. Diseases prevalent in women that alter the glycocalyx, and therapeutic forms to prevent glycocalyx degradation and potential treatments that can reconstitute its structure and function will also be discussed.
Collapse
|
3
|
Silva Martins R, Helio Oliani A, Vaz Oliani D, Martinez de Oliveira J. The predictive value of serial serum estradiol and serial endometrial volume on endometrial receptivity on assisted reproductive technology cycles. BMC Pregnancy Childbirth 2021; 21:184. [PMID: 33673820 PMCID: PMC7936427 DOI: 10.1186/s12884-021-03672-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background Diagnosis of endometrial receptivity is still unclear and conflicting. Despite advances in embryo development during assisted reproductive technologies (ART) cycles, the intricate process of implantation is still matter for debate and research. Materials and methods Prospective case control of 169 subjects during ovarian controlled stimulation for ART. Endometrial receptivity assessment to predict clinical pregnancy with serial continuous biochemical (serum estradiol) and biophysical (endometrial volume and adjusted endometrial volume) parameters were used. Both parameters were compared between negative and positive outcome in terms of clinical pregnancy. Results No statistical difference was noted between the two groups in terms of demographics and ART procedures and scores. Serum estradiol was significantly higher in the positive group from day 8 after ovarian controlled stimulation. Endometrial volume and adjusted endometrial volume were significantly higher in the positive group as soon as day 6 of ovarian controlled stimulation. Conclusions Continuous serum estradiol and 3D endometrial volume and adjusted endometrial volumes may reflect endometrial changes during ART procedures and provide a useful real time tool for clinicians in predicting endometrial receptivity.
Collapse
Affiliation(s)
- R Silva Martins
- Centro Hospitalar Universitário Cova da Beira EPE, Quinta do Alvito, 6200 503, Covilha, Portugal. .,Centro Investigação Ciências da Saúde - Faculdade Ciências da Saúde, Universidade da Beira Interior, Alameda Infante D, Henrique, 6200 506, Covilha, Portugal.
| | - A Helio Oliani
- Centro Hospitalar Universitário Cova da Beira EPE, Quinta do Alvito, 6200 503, Covilha, Portugal
| | - D Vaz Oliani
- Centro Hospitalar Universitário Cova da Beira EPE, Quinta do Alvito, 6200 503, Covilha, Portugal
| | - J Martinez de Oliveira
- Centro Hospitalar Universitário Cova da Beira EPE, Quinta do Alvito, 6200 503, Covilha, Portugal.,Centro Investigação Ciências da Saúde - Faculdade Ciências da Saúde, Universidade da Beira Interior, Alameda Infante D, Henrique, 6200 506, Covilha, Portugal
| |
Collapse
|
4
|
Huang X, Reye G, Momot KI, Blick T, Lloyd T, Tilley WD, Hickey TE, Snell CE, Okolicsanyi RK, Haupt LM, Ferro V, Thompson EW, Hugo HJ. Heparanase Promotes Syndecan-1 Expression to Mediate Fibrillar Collagen and Mammographic Density in Human Breast Tissue Cultured ex vivo. Front Cell Dev Biol 2020; 8:599. [PMID: 32760722 PMCID: PMC7373078 DOI: 10.3389/fcell.2020.00599] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/19/2020] [Indexed: 01/06/2023] Open
Abstract
Mammographic density (MD) is a strong and independent factor for breast cancer (BC) risk and is increasingly associated with BC progression. We have previously shown in mice that high MD, which is characterized by the preponderance of a fibrous stroma, facilitates BC xenograft growth and metastasis. This stroma is rich in extracellular matrix (ECM) factors, including heparan sulfate proteoglycans (HSPGs), such as the BC-associated syndecan-1 (SDC1). These proteoglycans tether growth factors, which are released by heparanase (HPSE). MD is positively associated with estrogen exposure and, in cell models, estrogen has been implicated in the upregulation of HPSE, the activity of which promotes SDC expression. Herein we describe a novel measurement approach (single-sided NMR) using a patient-derived explant (PDE) model of normal human (female) mammary tissue cultured ex vivo to investigate the role(s) of HPSE and SDC1 on MD. Relative HSPG gene and protein analyses determined in patient-paired high vs. low MD tissues identified SDC1 and SDC4 as potential mediators of MD. Using the PDE model we demonstrate that HPSE promotes SDC1 rather than SDC4 expression and cleavage, leading to increased MD. In this model system, synstatin (SSTN), an SDC1 inhibitory peptide designed to decouple SDC1-ITGαvβ3 parallel collagen alignment, reduced the abundance of fibrillar collagen as assessed by picrosirius red viewed under polarized light, and reduced MD. Our results reveal a potential role for HPSE in maintaining MD via its direct regulation of SDC1, which in turn physically tethers collagen into aligned fibers characteristic of MD. We propose that inhibitors of HPSE and/or SDC1 may afford an opportunity to reduce MD in high BC risk individuals and reduce MD-associated BC progression in conjunction with established BC therapies.
Collapse
Affiliation(s)
- Xuan Huang
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia.,School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Gina Reye
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia.,School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Konstantin I Momot
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Faculty of Science and Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Tony Blick
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia.,School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Thomas Lloyd
- Radiology Department, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Cameron E Snell
- Cancer Pathology Research Group, Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia.,Mater Pathology, Mater Hospital Brisbane, South Brisbane, QLD, Australia
| | - Rachel K Okolicsanyi
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia.,Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Larisa M Haupt
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia.,Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia.,School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Honor J Hugo
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia.,School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Khanna M, Parish CR. Heparanase: Historical Aspects and Future Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:71-96. [PMID: 32274707 DOI: 10.1007/978-3-030-34521-1_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heparanase is an endo-β-glucuronidase that cleaves at a limited number of internal sites the glycosaminoglycan heparan sulfate (HS). Heparanase enzymatic activity was first reported in 1975 and by 1983 evidence was beginning to emerge that the enzyme was a facilitator of tumor metastasis by cleaving HS chains present in blood vessel basement membranes and, thereby, aiding the passage of tumor cells through blood vessel walls. Due to a range of technical difficulties, it took another 16 years before heparanase was cloned and characterized in 1999 and a further 14 years before the crystal structure of the enzyme was solved. Despite these substantial deficiencies, there was steady progress in our understanding of heparanase long before the enzyme was fully characterized. For example, it was found as early as 1984 that activated T cells upregulate heparanase expression, like metastatic tumor cells, and the enzyme aids the entry of T cells and other leukocytes into inflammatory sites. Furthermore, it was discovered in 1989 that heparanase releases pre-existing growth factors and cytokines associated with HS in the extracellular matrix (ECM), the liberated growth factors/cytokines enhancing angiogenesis and wound healing. There were also the first hints that heparanase may have functions other than enzymatic activity, in 1995 it being reported that under certain conditions the enzyme could act as a cell adhesion molecule. Also, in the same year PI-88 (Muparfostat), the first heparanase inhibitor to reach and successfully complete a Phase III clinical trial was patented.Nevertheless, the cloning of heparanase (also known as heparanase-1) in 1999 gave the field an enormous boost and some surprises. The biggest surprise was that there is only one heparanase encoding gene in the mammalian genome, despite earlier research, based on substrate specificity, suggesting that there are at least three different heparanases. This surprising conclusion has remained unchanged for the last 20 years. It also became evident that heparanase is a family 79 glycoside hydrolase that is initially produced as a pro-enzyme that needs to be processed by proteases to form an enzymatically active heterodimer. A related molecule, heparanase-2, was also discovered that is enzymatically inactive but, remarkably, recently has been shown to inhibit heparanase-1 activity as well as acting as a tumor suppressor that counteracts many of the pro-tumor properties of heparanase-1.The early claim that heparanase plays a key role in tumor metastasis, angiogenesis and inflammation has been confirmed by many studies over the last 20 years. In fact, heparanase expression is enhanced in all major cancer types, namely carcinomas, sarcomas, and hematological malignancies, and correlates with increased metastasis and poor prognosis. Also, there is mounting evidence that heparanase plays a central role in the induction of inflammation-associated cancers. The enzymatic activity of heparanase has also emerged in unexpected situations, such as in the spread of HS-binding viruses and in Type-1 diabetes where the destruction of intracellular HS in pancreatic insulin-producing beta cells precipitates diabetes. But the most extraordinary recent discoveries have been with the realization that heparanase can exert a range of biological activities that are independent of its enzymatic function, most notably activation of several signaling pathways and being a transcription factor that controls methylation of histone tails. Collectively, these data indicate that heparanase is a truly multifunctional protein that has the additional property of cleaving HS chains and releasing from ECM and cell surfaces hundreds of HS-binding proteins with a plethora of functional consequences. Clearly, there are many unique features of this intriguing molecule that still remain to be explored and are highlighted in this Chapter.
Collapse
Affiliation(s)
- Mayank Khanna
- Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.,Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Christopher R Parish
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| |
Collapse
|
6
|
Chhabra M, Ferro V. PI-88 and Related Heparan Sulfate Mimetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:473-491. [PMID: 32274723 DOI: 10.1007/978-3-030-34521-1_19] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The heparan sulfate mimetic PI-88 (muparfostat) is a complex mixture of sulfated oligosaccharides that was identified in the late 1990s as a potent inhibitor of heparanase. In preclinical animal models it was shown to block angiogenesis, metastasis and tumor growth, and subsequently became the first heparanase inhibitor to enter clinical trials for cancer. It progressed to Phase III trials but ultimately was not approved for use. Herein we summarize the preparation, physicochemical and biological properties of PI-88, and discuss preclinical/clinical and structure-activity relationship studies. In addition, we discuss the PI-88-inspired development of related HS mimetic heparanase inhibitors with improved properties, ultimately leading to the discovery of PG545 (pixatimod) which is currently in clinical trials.
Collapse
Affiliation(s)
- Mohit Chhabra
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia. .,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
7
|
Heparanase: Cloning, Function and Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:189-229. [PMID: 32274711 DOI: 10.1007/978-3-030-34521-1_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In 2019, we mark the 20th anniversary of the cloning of the human heparanase gene. Heparanase remains the only known enzyme to cleave heparan sulfate, which is an abundant component of the extracellular matrix. Thus, elucidating the mechanisms underlying heparanase expression and activity is critical to understanding its role in healthy and pathological settings. This chapter provides a historical account of the race to clone the human heparanase gene, describes the intracellular and extracellular function of the enzyme, and explores the various mechanisms regulating heparanase expression and activity at the gene, transcript, and protein level.
Collapse
|
8
|
Veridiano JM, Theodoro TR, Negrete BR, Petri G, da Silva Pinhal MA, de Toledo OMS. Distribution of heparan sulfate correlated with the expression of heparanase-1 and matrix metalloproteinase-9 in an ovariectomized rats skin. Cell Biol Int 2020; 44:1458-1466. [PMID: 32159248 DOI: 10.1002/cbin.11339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/08/2020] [Indexed: 12/02/2022]
Abstract
There are few studies on heparan sulfate (HS) in the skin, during aging, when estrogen is suppressed. The enzyme heparanase-1 (HPSE-1), has its 17β-estrogen-regulated expression in pathological conditions such as cancer and chronic inflammatory diseases. HPSE-1 is correlated with the matrix metalloproteinase-9 (MMP-9), an endopeptidase that also undergoes estrogen action. We investigated the distribution of HS, expression HPSE-1 and MMP-9 in the skin of adult rats at different ages and in the age-matched ovariectomized rats to evaluate the influence of low estrogen on the distribution of HS. Thirty female Wistar rats were used. Rats underwent to a sham surgery (ctr, n = 15) or to a bilateral ovariectomy (ovx, n = 15) and were euthanized after 45, 75, and 90 days after ovariectomy. Morphological, morphometric, biochemical, and reverse transcriptase polymerase chain reaction (RT-PCR) methodologies were used. A significant decrease (P < 0.001) in total skin thickness was observed in the ctr and ovx animals, being higher in the older animals. The thickness of the epidermis and dermis decreased; however, the proportion in the total skin remained similar comparing ctr and ovx. An increase of HS with increasing age and ovariectomy was observed. The expression of the HPSE-1 and MMP-9 enzymes decreased, being higher in old animals. A correlation between the increase of HS and the decrease of the HPSE-1 was demonstrated in both groups. Overall, these data suggested that estrogen acts in the regulation of the expression of the HPSE-1, not only in pathological states, as already established, but also in aging.
Collapse
Affiliation(s)
- Juliana M Veridiano
- Department of Morphology and Physiology, Faculdade de Medicina ABC, Av. Lauro Gomes, 2000 - Vila Sacadura Cabral, Santo André, São Paulo, 09060-870, Brazil
| | - Thérèse R Theodoro
- Department of Morphology and Physiology, Faculdade de Medicina ABC, Av. Lauro Gomes, 2000 - Vila Sacadura Cabral, Santo André, São Paulo, 09060-870, Brazil
| | - Bárbara R Negrete
- Department of Morphology and Physiology, Faculdade de Medicina ABC, Av. Lauro Gomes, 2000 - Vila Sacadura Cabral, Santo André, São Paulo, 09060-870, Brazil
| | - Giuliana Petri
- Vivarium, Faculdade de Medicina ABC, Av. Lauro Gomes, 2000 - Vila Sacadura Cabral, Santo André, São Paulo, 09060-870, Brazil
| | - Maria A da Silva Pinhal
- Department of Morphology and Physiology, Faculdade de Medicina ABC, Av. Lauro Gomes, 2000 - Vila Sacadura Cabral, Santo André, São Paulo, 09060-870, Brazil
| | - Olga Maria S de Toledo
- Department of Morphology and Physiology, Faculdade de Medicina ABC, Av. Lauro Gomes, 2000 - Vila Sacadura Cabral, Santo André, São Paulo, 09060-870, Brazil
| |
Collapse
|
9
|
Hermano E, Goldberg R, Rubinstein AM, Sonnenblick A, Maly B, Nahmias D, Li JP, Bakker MAH, van der Vlag J, Vlodavsky I, Peretz T, Elkin M. Heparanase Accelerates Obesity-Associated Breast Cancer Progression. Cancer Res 2019; 79:5342-5354. [PMID: 31481501 DOI: 10.1158/0008-5472.can-18-4058] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/06/2019] [Accepted: 08/26/2019] [Indexed: 11/16/2022]
Abstract
Obese women have higher risk of bearing breast tumors that are highly aggressive and resistant to therapies. Tumor-promoting effects of obesity occur locally via adipose inflammation and related alterations to the extracellular matrix (ECM) as well as systemically via circulating metabolic mediators (e.g., free fatty acids, FFA) associated with excess adiposity and implicated in toll-like receptor-mediated activation of macrophages-key cellular players in obesity-related cancer progression. Although the contribution of macrophages to proneoplastic effects of obesity is well documented, the role of ECM components and their enzymatic degradation is less appreciated. We show that heparanase, the sole mammalian endoglucuronidase that cleaves heparan sulfate in ECM, is preferentially expressed in clinical/experimental obesity-associated breast tumors. Heparanase deficiency abolished obesity-accelerated tumor progression in vivo. Heparanase orchestrated a complex molecular program that occurred concurrently in adipose and tumor tissue and sustained the cancer-promoting action of obesity. Heparanase was required for adipose tissue macrophages to produce inflammatory mediators responsible for local induction of aromatase, a rate-limiting enzyme in estrogen biosynthesis. Estrogen upregulated heparanase in hormone-responsive breast tumors. In subsequent stages, elevated levels of heparanase induced acquisition of procancerous phenotype by tumor-associated macrophages, resulting in activation of tumor-promoting signaling and acceleration of breast tumor growth under obese conditions. As techniques to screen for heparanase expression in tumors become available, these findings provide rational and a mechanistic basis for designing antiheparanase approaches to uncouple obesity and breast cancer in a rapidly growing population of obese patients. SIGNIFICANCE: This study reveals the role of heparanase in promoting obesity-associated breast cancer and provides a mechanistically informed approach to uncouple obesity and breast cancer in a rapidly growing population of obese patients.
Collapse
Affiliation(s)
- Esther Hermano
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Rachel Goldberg
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ariel M Rubinstein
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Amir Sonnenblick
- Oncology Division, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Bella Maly
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Daniela Nahmias
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Marinka A H Bakker
- Nephrology Research Laboratory, Department of Nephrology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Johan van der Vlag
- Nephrology Research Laboratory, Department of Nephrology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, The Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Tamar Peretz
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- Hebrew University Medical School, Jerusalem, Israel
| | - Michael Elkin
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
- Hebrew University Medical School, Jerusalem, Israel
| |
Collapse
|
10
|
Elevated heparanase expression is associated with poor prognosis in breast cancer: a study based on systematic review and TCGA data. Oncotarget 2018; 8:43521-43535. [PMID: 28388549 PMCID: PMC5522166 DOI: 10.18632/oncotarget.16575] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/10/2017] [Indexed: 01/01/2023] Open
Abstract
Heparanase promotes tumorigenesis, angiogenesis, and metastasis. Here, we conducted a study based on systematic review and the Cancer Genome Atlas (TCGA) data that examined heparanase expression in clinical samples to determine its prognostic value. According to the meta-analysis and TCGA data, we found that heparanase expression was up-regulated in most breast cancer specimens, and elevated heparanase expression was associated with increased lymph node metastasis, larger tumor size, higher histological grade, and poor survival. These results suggest that targeting heparanase might improve treatments for breast cancer patients.
Collapse
|
11
|
Heparanase: roles in cell survival, extracellular matrix remodelling and the development of kidney disease. Nat Rev Nephrol 2017; 13:201-212. [PMID: 28163306 DOI: 10.1038/nrneph.2017.6] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heparanase has regulatory roles in various processes, including cell communication, gene transcription and autophagy. In addition, it is the only known mammalian endoglycosidase that is capable of degrading heparan sulfate (HS). HS chains are important constituents and organizers of the extracellular matrix (ECM), and have a key role in maintaining the integrity and function of the glomerular filtration barrier. In addition, HS chains regulate the activity of numerous bioactive molecules, such as cytokines and growth factors, at the cell surface and in the ECM. Given the functional diversity of HS, its degradation by heparanase profoundly affects important pathophysiological processes, including tumour development, neovascularization and inflammation, as well as progression of kidney disease. Heparanase-mediated degradation and subsequent remodelling of HS in the ECM of the glomerulus is a key mechanism in the development of glomerular disease, as exemplified by the complete resistance of heparanase-deficient animals to diabetes and immune-mediated kidney disease. This Review summarizes the role of heparanase in the development of kidney disease, and its potential as a therapeutic target.
Collapse
|
12
|
Kamel AM, El-Faissal Y, Aboulghar M, Mansour R, Serour GI, Aboulghar M. Does intrauterine injection of low-molecular-weight heparin improve the clinical pregnancy rate in intracytoplasmic sperm injection? Clin Exp Reprod Med 2017; 43:247-252. [PMID: 28090465 PMCID: PMC5234286 DOI: 10.5653/cerm.2016.43.4.247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/17/2016] [Accepted: 10/31/2016] [Indexed: 11/06/2022] Open
Abstract
Objective Heparin can modulate proteins, and influence processes involved in implantation and trophoblastic development. This study aimed to assess the improvement of clinical pregnancy and implantation rates after local intrauterine injection of low-molecular-weight heparin (LMWH) in patients undergoing intracytoplasmic sperm injection (ICSI). Methods A randomised case/control design was followed in women scheduled for ICSI. The study arm was injected with intrauterine LMWH during mock embryo transfer immediately following the ovum pickup procedure, while the control arm was given an intrauterine injection with a similar volume of tissue culture media. Side effects, the clinical pregnancy rate, and the implantation rate were recorded. Results The pregnancy rate was acceptable (33.9%) in the LMWH arm with no significant reported side effects, confirming the safety of the intervention. No statistically significant differences were found in the clinical pregnancy and implantation rates between both groups (p=0.182 and p=0.096, respectively). The odds ratio of being pregnant after intrauterine injection with LMWH compared to the control group was 0.572 (95% confidence interval [CI], 0.27−1.22), while the risk ratio was 0.717 (95% CI, 0.46−1.13; p=0.146). No statistical significance was found between the two groups in other factors affecting implantation, such as day of transfer (p=0.726), number of embryos transferred (p=0.362), or embryo quality. Conclusion Intrauterine injection of LMWH is a safe intervention, but the dose used in this study failed to improve the outcome of ICSI. Based on its safety, further research involving modification of the dosage and/or the timing of administration could result in improved ICSI success rates.
Collapse
Affiliation(s)
- Ahmed Mohamed Kamel
- Department of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, Cairo, Egypt.; Egyptian IVF and ET Center, Cairo, Egypt
| | - Yahia El-Faissal
- Department of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, Cairo, Egypt.; Egyptian IVF and ET Center, Cairo, Egypt
| | - Mona Aboulghar
- Department of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, Cairo, Egypt.; Egyptian IVF and ET Center, Cairo, Egypt
| | | | - Gamal I Serour
- Egyptian IVF and ET Center, Cairo, Egypt.; Department of Obstetrics and Gynecology, Faculty of Medicine, Al Azhar University, Cairo, Egypt
| | - Mohamed Aboulghar
- Department of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, Cairo, Egypt.; Egyptian IVF and ET Center, Cairo, Egypt
| |
Collapse
|
13
|
Othman ER, Curiel DT, Hussein M, Abdelaal II, Fetih AN, Al-Hendy A. Enhancing Adenoviral-Mediated Gene Transfer and Expression to Endometrial Cells. Reprod Sci 2016; 23:1109-15. [PMID: 26865542 DOI: 10.1177/1933719116630420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Our aim was to screen a panel of modified adenoviral gene transfer vectors to identify those which can sustain high gene expression in human endometrial cells. METHODS Normal endometrial stromal cell cultures were established from endometrial lining of hysterectomy specimens performed for benign gynecologic indications. Human endometrial stromal cells were transfected by modified adenoviruses expressing luciferase reporter gene. Luciferase activity mediated by each virus was expressed as a percentage of adenovirus serotype 5 (Ad5-CMV-luc) activity. The 2-tailed Student t test was used to compare data. RESULTS At a multiplicity of infection (MOI) of 10 pfu/cell, of the transductionally modified adenoviruses, adenovirus-RGD (Ad-RGD-luc) mediated highest level of endometrial cell transduction with transgene expression around 4 times higher when compared to Ad5 (P < .001). Of the transcriptionally targeted adenoviruses, adenovirus under secretory leukocyte protease inhibitor promoter (Ad-SLPI-luc) and adenovirus under heparanase promoter (Ad-heparanase-luc)-mediated luciferase activation were 5.8- and 4.3-folds higher than Ad5-CMV-luc, respectively (P = .02 and .03, respectively). At MOI of 50 pfu/cell, Ad-RGD-luc and AD-SLPI-luc mediated significantly higher gene transfer efficiency compared to Ad5-CMV-luc (P values < .001, for each virus). Ad-heparanase-luc achieved higher gene activity, but difference was not significant (P = .1). Ad-SLPI-luc, at low viral dose (10 pfu/ cell), mediated gene expression effect comparable to Ad5-CMV-luc at a high dose (50 pfu/cell), with no significant difference. CONCLUSIONS We conclude that when compared to the wild-type adenovirus, Ad-RGD-luc, Ad-SLPI-luc, and Ad-heparanase-luc mediate higher reporter gene activity in endometrial cells and can work as effective gene transfer vectors in gene therapy applications to the endometrium.
Collapse
Affiliation(s)
- Essam R Othman
- OB-GYN Department, Assiut University, Assiut, Egypt Center of Excellence of Stem Cells and Regenerative Medicine CESCRM, Assiut University, Assiut, Egypt
| | - David T Curiel
- Division of Cancer Biology, Department of Radiation Oncology, Washington University Medical School, Washington, DC, USA
| | | | | | | | - Ayman Al-Hendy
- OB-GYN Department, Georgia Regents University, Medical College of Georgia, Augusta, GA, USA
| |
Collapse
|
14
|
Immunohistochemical Expression of Heparanases 1 and 2 in Benign Tissue and in Invasive Neoplasia of the Endometrium: A Case-Control Study. Int J Gynecol Cancer 2015; 25:269-78. [DOI: 10.1097/igc.0000000000000329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
ObjectivesOur purpose was to compare the expression of heparanase isoforms, in normal and in neoplastic endometrium. In a pioneering way, we sought to evaluate the expression of heparanase 1 (HPSE1) and heparanase 2 (HPSE2) in glandular and in stromal tissues.MethodsThis is a case-control study, conducted retrospectively in a public hospital, using paraffin blocks of endometrial tissue from patients admitted from 2002 to 2011 with and without endometrial cancer, with regard to the immunohistochemical expression of HPSE1 and HPSE2. The paraffin blocks were used for tissue microarray analysis and immunohistochemistry study in glandular and stromal tissues.ResultsIn the study period, 195 participants were enrolled, 75 with and 120 without cancer. There was no significant difference between them regarding HPSE1 expression, both in gland and in stromal tissues. Heparanase 1 expression in the glandular tissue was more frequent among those with high-grade carcinoma, compared with patients with carcinoma type I. The difference in the expression of HPSE2 was significant between groups: it was less frequent in the controls than in the patients with cancer in the glandular tissue. In the stromal tissue, HPSE2 expression was significantly higher in the controls than in the patients with cancer and different when patients of the secretory endometrium subgroup were compared with those with hypotrophic, proliferative endometriums or with architectural disorders. No significant difference was found in the heparanase expressions in patients with cancer according to prognosis factors.ConclusionsHeparanase 1 is more intensely expressed in the glandular tissue of high-grade compared with type I carcinomas. Heparanase 2 is more intensely expressed in the glandular tissue of cancer than in nonneoplastic endometrium, whereas the HPSE2 expression in the stromal tissue is higher in the nonneoplastic controls compared with the group of patients with cancer mainly in the secretory endometrium. This suggests that HPSE2 might be stimulated by progesterone, with a possible antineoplastic role, antagonist to HPSE1, to be further investigated.
Collapse
|
15
|
Abstract
Heparanase, a β-D-endoglucuronidase abundant in platelets that was discovered 30 years ago, is an enzyme that cleaves heparan sulfate side chains on the cell surface and in the extracellular matrix. It was later recognized as being a pro-inflammatory and pro-metastatic protein. We had earlier demonstrated that heparanase may also affect the hemostatic system in a non-enzymatic manner. We had shown that heparanase up-regulated the expression of the blood coagulation initiator tissue factor (TF) and interacted with the tissue factor pathway inhibitor (TFPI) on the cell surface membrane of endothelial and tumor cells, leading to dissociation of TFPI and resulting in increased cell surface coagulation activity. Moreover, we have demonstrated that heparanase directly enhanced TF activity which led to increased factor Xa production and subsequent activation of the coagulation system. Recently, heparanase inhibitory peptides derived of TFPI-2 were demonstrated by us to inhibit heparanase procoagulant activity and attenuate sepsis in mouse models.
Collapse
Affiliation(s)
- Yona Nadir
- Thrombosis and Hemostasis Unit, Department of Hematology, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
16
|
Akhtar MA, Sur SD, Raine‐Fenning N, Jayaprakasan K, Thornton JG, Quenby S. Heparin for assisted reproduction. Cochrane Database Syst Rev 2013; 2013:CD009452. [PMID: 23955506 PMCID: PMC10788127 DOI: 10.1002/14651858.cd009452.pub2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Heparin as an adjunct in assisted reproduction (peri-implantation heparin) is given at or after egg collection or at embryo transfer during assisted reproduction. Heparin has been advocated to improve embryo implantation and clinical outcomes. It has been proposed that heparin enhances the intra-uterine environment by improving decidualisation with an associated activation of growth factors and a cytokine expression profile in the endometrium that is favourable to pregnancy. OBJECTIVES To investigate whether the administration of heparin around the time of implantation (peri-implantation heparin) improves clinical outcomes in subfertile women undergoing assisted reproduction. SEARCH METHODS A comprehensive and exhaustive search strategy was developed in consultation with the Trials Search Co-ordinator of the Cochrane Menstrual Disorders and Subfertility Group (MDSG). The strategy was used in an attempt to identify all relevant studies regardless of language or publication status (published, unpublished, in press, and in progress). Relevant trials were identified from both electronic databases and other resources (last search 6 May 2013). SELECTION CRITERIA All randomised controlled trials (RCTs) were included where peri-implantation heparin was given during assisted reproduction. Peri-implantation low molecular weight heparin (LMWH) during IVF/ICSI was given at or after egg collection or at embryo transfer in the included studies. Live birth rate was the primary outcome. DATA COLLECTION AND ANALYSIS Two review authors independently assessed the eligibility and quality of trials and extracted relevant data. The quality of the evidence was evaluated using GRADE methods. MAIN RESULTS Three RCTs (involving 386 women) were included in the review.Peri-implantation LMWH administration during assisted reproduction was associated with a significant improvement in live birth rate compared with placebo or no LMWH (odds ratio (OR) 1.77, 95% confidence interval (CI) 1.07 to 2.90, three studies, 386 women, I(2) = 51%, very low quality evidence with high heterogeneity). There was also a significant improvement in the clinical pregnancy rate with use of LMWH (OR 1.61, 95% CI 1.03 to 2.53, three studies, 386 women, I(2) = 29%, very low quality evidence with low heterogeneity).However these findings should be interpreted with extreme caution as they were dependent upon the choice of statistical method: they were no longer statistically significant when a random-effects model was used.Adverse events were poorly reported in all included studies, with no comparative data available. However, LMWH did cause adverse effects including bruising, ecchymosis, bleeding, thrombocytopenia and allergic reactions. It appeared that these adverse effects were increased if heparin therapy was used over a longer duration. AUTHORS' CONCLUSIONS The results of this Cochrane review of three randomised controlled trials with a total of 386 women suggested that peri-implantation LMWH in assisted reproduction treatment (ART) cycles may improve the live birth rate in women undergoing assisted reproduction. However, these results were dependent on small low quality studies with substantial heterogeneity, and were sensitive to the choice of statistical model. There were side effects reported with use of heparin, including bruising and bleeding, and no reliable data on long-term effects. The results do not justify this use of heparin outside well-conducted research trials.These findings need to be further investigated with well-designed, adequately powered, double-blind, randomised, placebo-controlled, multicentre trials. Further investigations could also focus on the effects of the local (uterine) and not systemic application of heparin during ART.
Collapse
Affiliation(s)
- Muhammad A Akhtar
- St Mary's HospitalReproductive MedicineHathersage RoadManchesterUKM13 0JH
| | - Shyamaly D Sur
- Queen Charlotte's and Chelsea HospitalImperial College Healthcare TrustLondonUK
| | - Nick Raine‐Fenning
- University of NottinghamDivision of Child Health, Obstetrics and Gynaecology, School of MedicineD Floor, East Block, Queens Medical CentreNottinghamUKNG27SE
| | - Kannamannadiar Jayaprakasan
- University of NottinghamDivision of Child Health, Obstetrics and Gynaecology, School of MedicineD Floor, East Block, Queens Medical CentreNottinghamUKNG27SE
| | - Jim G Thornton
- University of NottinghamDivision of Child Health, Obstetrics and Gynaecology, School of MedicineD Floor, East Block, Queens Medical CentreNottinghamUKNG27SE
| | - Siobhan Quenby
- University of WarwickClinical Sciences Research InstituteCoventryUKCV4 7AL
| | | |
Collapse
|
17
|
Meirovitz A, Goldberg R, Binder A, Rubinstein AM, Hermano E, Elkin M. Heparanase in inflammation and inflammation-associated cancer. FEBS J 2013; 280:2307-19. [PMID: 23398975 PMCID: PMC3651782 DOI: 10.1111/febs.12184] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/29/2013] [Accepted: 02/06/2013] [Indexed: 12/21/2022]
Abstract
Recent years have seen a growing body of evidence that enzymatic remodeling of heparan sulfate proteoglycans profoundly affects a variety of physiological and pathological processes, including inflammation, neovascularization, and tumor development. Heparanase is the sole mammalian endoglycosidase that cleaves heparan sulfate. Extensively studied in cancer progression and aggressiveness, heparanase was recently implicated in several inflammatory disorders as well. Although the precise mode of heparanase action in inflammatory reactions is still not completely understood, the fact that heparanase activity is mechanistically important both in malignancy and in inflammation argues that this enzyme is a candidate molecule linking inflammation and tumorigenesis in inflammation-associated cancers. Elucidation of the specific effects of heparanase in cancer development, particularly when inflammation is a causal factor, will accelerate the development of novel therapeutic/chemopreventive interventions and help to better define target patient populations in which heparanase-targeting therapies could be particularly beneficial.
Collapse
Affiliation(s)
- Amichay Meirovitz
- Sharett Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
18
|
Goldberg R, Meirovitz A, Hirshoren N, Bulvik R, Binder A, Rubinstein AM, Elkin M. Versatile role of heparanase in inflammation. Matrix Biol 2013; 32:234-240. [PMID: 23499528 DOI: 10.1016/j.matbio.2013.02.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 01/26/2013] [Accepted: 02/02/2013] [Indexed: 12/20/2022]
Abstract
Heparanase is the only known mammalian endoglycosidase capable of degrading heparan sulfate glycosaminoglycan, both in extracellular space and within the cells. It is tightly implicated in cancer progression and over the past few decades significant progress has been made in elucidating the multiple functions of heparanase in malignant tumor development, neovascularization and aggressive behavior. Notably, current data show that in addition to its well characterized role in cancer, heparanase activity may represent an important determinant in the pathogenesis of several inflammatory disorders, such as inflammatory lung injury, rheumatoid arthritis and chronic colitis. Nevertheless, the precise mode of heparanase action in inflammatory reactions remains largely unclear and recent observations suggest that heparanase can either facilitate or limit inflammatory responses, when tissue/cell-specific contextual cues may dictate an outcome of heparanase action in inflammation. In this review the involvement of heparanase in modulation of inflammatory reactions is discussed through a few illustrative examples, including neuroinflammation, sepsis-associated lung injury and inflammatory bowel disease. We also discuss possible action of the enzyme in coupling inflammation and tumorigenesis in the setting of inflammation-triggered cancer.
Collapse
Affiliation(s)
- Rachel Goldberg
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Amichay Meirovitz
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Nir Hirshoren
- Department of Otolaryngology, Head & Neck Surgery, Hadassah Hospital, Jerusalem 91120, Israel
| | - Raanan Bulvik
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Adi Binder
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Ariel M Rubinstein
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Michael Elkin
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| |
Collapse
|
19
|
Abstract
Heparanase that was cloned from and is abundant in the placenta is implicated in cell invasion, tumor metastasis and angiogenesis. We have recently demonstrated that heparanase may also affect the hemostatic system in a non-enzymatic manner. Heparanase was shown to up-regulate tissue factor (TF) expression and interact with tissue factor pathway inhibitor (TFPI) on cell surface, leading to dissociation of TFPI from cell membrane of endothelial and tumor cells, resulting in increased cell surface coagulation activity. We have lately shown that heparanase directly enhances TF activity resulting in increased factor Xa production and activation of the coagulation system. Data indicate increased plasma levels of heparanase suggesting its possible involvement in pregnancy vascular complications. Elevation in heparanase levels and procoagulant activity was also documented in orthopedic surgery patients receiving prophylactic doses of enoxaparin. Taking into account the pro-metastatic and pro-angiogenic functions of heparanase, with over-expression in human malignancies and abundance in platelets and placenta, its involvement in the coagulation machinery is an intriguing novel platform for further research.
Collapse
|
20
|
Hermano E, Lerner I, Elkin M. Heparanase enzyme in chronic inflammatory bowel disease and colon cancer. Cell Mol Life Sci 2012; 69:2501-13. [PMID: 22331282 PMCID: PMC11114524 DOI: 10.1007/s00018-012-0930-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/18/2012] [Accepted: 01/23/2012] [Indexed: 12/20/2022]
Abstract
Heparanase is the sole mammalian endoglycosidase that cleaves heparan sulfate, the key polysaccharide of the extracellular matrix and basement membranes. Enzymatic cleavage of heparan sulfate profoundly affects a variety of physiological and pathological processes, including morphogenesis, neovascularization, inflammation, and tumorigenesis. Critical involvement of heparanase in colorectal tumor progression and metastatic spread is widely documented; however, until recently a role for heparanase in the initiation of colon carcinoma remained underappreciated. Interestingly, the emerging data that link heparanase to chronic inflammatory bowel conditions, also suggest contribution of the enzyme to colonic tumor initiation, at least in the setting of colitis-associated cancer. Highly coordinated interplay between intestinal heparanase and immune cells (i.e., macrophages) preserves chronic inflammatory conditions and creates a tumor-promoting microenvironment. Here we review the action of heparanase in colon tumorigenesis and discuss recent findings, pointing to a role for heparanase in sustaining immune cell-epithelial crosstalk that underlies intestinal inflammation and the associated cancer.
Collapse
Affiliation(s)
- Esther Hermano
- Tumor Biology Research Unit, Department of Oncology, Sharett Institute, Hadassah-Hebrew University Medical Center, 91120 Jerusalem, Israel
| | - Immanuel Lerner
- Tumor Biology Research Unit, Department of Oncology, Sharett Institute, Hadassah-Hebrew University Medical Center, 91120 Jerusalem, Israel
| | - Michael Elkin
- Tumor Biology Research Unit, Department of Oncology, Sharett Institute, Hadassah-Hebrew University Medical Center, 91120 Jerusalem, Israel
| |
Collapse
|
21
|
The Immunoexpression of Heparanase 2 in Normal Epithelium, Intraepithelial, and Invasive Squamous Neoplasia of the Cervix. J Low Genit Tract Dis 2012; 16:256-62. [DOI: 10.1097/lgt.0b013e3182422c69] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Abstract
Heparanase that was cloned from and is abundant in the placenta is implicated in cell invasion, tumor metastasis, and angiogenesis. Recently we have demonstrated that heparanase may also affect the hemostatic system in a non-enzymatic manner. Heparanase was shown to up-regulate tissue factor (TF) expression and interact with tissue factor pathway inhibitor (TFPI) on the cell surface, leading to dissociation of TFPI from the cell membrane of endothelial and tumor cells, resulting in increased cell surface coagulation activity. More recently, we have shown that heparanase directly enhances TF activity, resulting in increased factor Xa production and activation of the coagulation system. Data indicate increased levels and possible involvement of heparanase in vascular complications in pregnancy. Taking into account the prometastatic and proangiogenic functions of heparanase, overexpression in human malignancies, and abundance in platelets and placenta, its involvement in the coagulation machinery is an intriguing novel arena for further research.
Collapse
Affiliation(s)
- Yona Nadir
- To whom correspondence should be addressed. E-mail:
| | | |
Collapse
|
23
|
Akhtar M, Sur S, Raine-Fenning N, Jayaprakasan K, Thornton JG, Quenby S. Heparin for assisted reproduction. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2011. [DOI: 10.1002/14651858.cd009452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Rao G, Ding HG, Huang W, Le D, Maxhimer JB, Oosterhof A, van Kuppevelt T, Lum H, Lewis EJ, Reddy V, Prinz RA, Xu X. Reactive oxygen species mediate high glucose-induced heparanase-1 production and heparan sulphate proteoglycan degradation in human and rat endothelial cells: a potential role in the pathogenesis of atherosclerosis. Diabetologia 2011; 54:1527-38. [PMID: 21424539 DOI: 10.1007/s00125-011-2110-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 02/01/2011] [Indexed: 01/10/2023]
Abstract
AIMS/HYPOTHESIS The content of heparan sulphate is reduced in the endothelium under hyperglycaemic conditions and may contribute to the pathogenesis of atherosclerosis. Heparanase-1 (HPR1) specifically degrades heparan sulphate proteoglycans. We therefore sought to determine whether: (1) heparan sulphate reduction in endothelial cells is due to increased HPR1 production through increased reactive oxygen species (ROS) production; and (2) HPR1 production is increased in vivo in endothelial cells under hyperglycaemic and/or atherosclerotic conditions. METHODS HPR1 mRNA and protein levels in endothelial cells were analysed by RT-PCR and Western blot or HPR1 enzymatic activity assay, respectively. Cell surface heparan sulphate levels were analysed by FACS. HPR1 in the artery from control rats and a rat model of diabetes, and from patients under hyperglycaemic and/or atherosclerotic conditions was immunohistochemically examined. RESULTS High-glucose-induced HPR1 production and heparan sulphate degradation in three human endothelial cell lines, both of which were blocked by ROS scavengers, glutathione and N-acetylcysteine. Exogenous H(2)O(2) induced HPR1 production, subsequently leading to decreased cell surface heparan sulphate levels. HPR1 content was significantly increased in endothelial cells in the arterial walls of a rat model of diabetes. Clinical studies revealed that HPR1 production was increased in endothelial cells under hyperglycaemic conditions, and in endothelial cells and macrophages in atherosclerotic lesions. CONCLUSIONS/INTERPRETATION Hyperglycaemia induces HPR1 production and heparan sulphate degradation in endothelial cells through ROS. HPR1 production is increased in endothelial cells from a rat model of diabetes, and in macrophages in the atherosclerotic lesions of diabetic and non-diabetic patients. Increased HPR1 production may contribute to the pathogenesis and progression of atherosclerosis.
Collapse
Affiliation(s)
- G Rao
- Department of General Surgery, Rush University Medical Center, 1653 W Congress Parkway, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Induction of heparanase-1 expression by mutant B-Raf kinase: role of GA binding protein in heparanase-1 promoter activation. Neoplasia 2011; 12:946-56. [PMID: 21076620 DOI: 10.1593/neo.10790] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/11/2010] [Accepted: 08/16/2010] [Indexed: 01/15/2023] Open
Abstract
Heparanase-1 (HPR1), an endoglycosidase that specifically degrades heparan sulfate (HS) proteoglycans, is overexpressed in a variety of malignancies. Our present study sought to determine whether oncogene BRAF and RAS mutations lead to increased HPR1 expression. Reverse transcription-polymerase chain reaction analysis revealed that HPR1 gene expression was increased in HEK293 cells transiently transfected with a mutant BRAF or RAS gene. Flow cytometric analysis revealed that B-Raf activation led to loss of the cell surface HS, which could be blocked by two HPR1 inhibitors: heparin and PI-88. Cotransfection of a BRAF or RAS mutant gene with HPR1 promoter-driven luciferase reporters increased luciferase reporter gene expression in HEK293 cells. Knockdown of BRAF expression in a BRAF-mutated KAT-10 tumor cell line led to the suppression of HPR1 gene expression, subsequently leading to increased cell surface HS levels. Truncational and mutational analyses of the HPR1 promoter revealed that the Ets-relevant elements in the HPR1 promoter were critical for BRAF activation-induced HPR1 expression. Luciferase reporter gene expression driven by a four-copy GA binding protein (GABP) binding site was significantly lower in BRAF siRNA-transfected KAT-10 cells than in the control siRNA-transfected cells. We further showed that BRAF knockdown led to suppression of the expression of the GABPβ, an Ets family transcription factor involved in regulating HPR1 promoter activity. Taken together, our study suggests that B-Raf kinase activation plays an important role in regulating HPR1 expression. Increased HPR1 expression may contribute to the aggressive behavior of BRAF-mutated cancer.
Collapse
|
26
|
Abstract
Heparanase is an endo-beta-D-glucuronidase capable of cleaving heparan sulfate (HS) side chains of heparan sulfate proteoglycans (HSPG) on cell surfaces and the extracellular matrix, activity that is strongly implicated in tumor metastasis and angiogenesis. Evidence was provided that heparanase over-expression in cancer cells results in a marked increase in tissue factor (TF) levels. Likewise, TF was induced by exogenous addition of recombinant heparanase to tumor cells and primary endothelial cells, induction that was mediated by p38 phosphorylation and correlated with enhanced procoagulant activity. TF induction was further confirmed in heparanase over-expressing transgenic mice and correlated with heparanase expression levels in leukemia patients. Heparanase was also found to be involved in the regulation of tissue factor pathway inhibitor (TFPI). A physical interaction between heparanase and TFPI was demonstrated, suggesting a mechanism by which secreted heparanase interacts with TFPI on the cell surface, leading to dissociation of TFPI from the cell membrane and increased coagulation activity, thus further supporting the local pro-thrombotic function of heparanase. Data indicate a possible involvement of heparanase in early miscarriages and point to a regulatory effect on TFPI and TFPI-2 in trophoblasts. As heparins are strong inhibitor of heparanase, in view of the effect of heparanase on TF, the role of heparins anticoagulant-activity may potentially be expanded. Taking into account the pro-metastatic and pro-angiogenic functions of heparanase, its over-expression in human malignancies and abundance in platelets, its involvement in the coagulation machinery is an intriguing novel arena for further research.
Collapse
|
27
|
Nadir Y, Henig I, Naroditzky I, Paz B, Vlodavsky I, Brenner B. Involvement of Heparanase in early pregnancy losses. Thromb Res 2010; 125:e251-7. [DOI: 10.1016/j.thromres.2009.11.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 11/23/2009] [Accepted: 11/24/2009] [Indexed: 10/20/2022]
|
28
|
The role of heparanase in diseases of the glomeruli. Arch Immunol Ther Exp (Warsz) 2010; 58:45-56. [PMID: 20049646 DOI: 10.1007/s00005-009-0061-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 07/30/2009] [Indexed: 12/28/2022]
Abstract
The glomerular basement membrane (GBM) is a kind of net that remains in a state of dynamic equilibrium. Heparan sulfate proteoglycans (HSPGs) are among its most important components. There are much data indicating the significance of these proteoglycans in protecting proteins such as albumins from penetrating to the urine, although some new data indicate that loss of proteoglycans does not always lead to proteinuria. Heparanase is an enzyme which cleaves beta 1,4 D: -glucuronic bonds in sugar groups of HSPGs. Thus it is supposed that heparanase may have an important role in the pathogenesis of proteinuria. Increased heparanase expression and activity in the course of many glomerular diseases was observed. The most widely documented is the significance of heparanase in the pathogenesis of diabetic nephropathy. Moreover, heparanase acts as a signaling molecule and may influence the concentrations of active growth factors in the GBM. It is being investigated whether heparanase inhibition may cause decreased proteinuria. The heparanase inhibitor PI-88 (phosphomannopentaose sulfate) was effective as an antiproteinuric drug in an experimental model of membranous nephropathy. Nevertheless, this drug is burdened by some toxicity, so further investigations should be considered.
Collapse
|
29
|
Oral hormonal contraceptives affect the concentration and composition of urinary glycosaminoglycans in young women. Int Urogynecol J 2009; 20:1353-9. [DOI: 10.1007/s00192-009-0948-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 06/11/2009] [Indexed: 10/20/2022]
|
30
|
Klipper E, Tatz E, Kisliouk T, Vlodavsky I, Moallem U, Schams D, Lavon Y, Wolfenson D, Meidan R. Induction of heparanase in bovine granulosa cells by luteinizing hormone: possible role during the ovulatory process. Endocrinology 2009; 150:413-21. [PMID: 18818292 DOI: 10.1210/en.2008-0697] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Follicular development, follicular rupture, and corpus luteum (CL) formation are accompanied by extensive tissue remodeling. We examined whether heparanase (HPSE), which cleaves heparan sulfate glycosaminoglycans, is induced during these processes. Prostaglandin F2alpha injection, which initiated luteolysis and the development of a preovulatory follicle, moderately increased HPSE mRNA in bovine granulosa cells (GCs). GnRH, used to induce gonadotropin surge, markedly augmented HPSE mRNA levels 12 h after its injection. The temporal pattern of HPSE gene expression in follicular-luteal transition was further examined in follicles collected before, and 4, 10, 20, 25, and 60 h after GnRH injection. HPSE mRNA increased transiently 10-20 h after GnRH injection to levels 10-fold higher than in untreated heifers. HPSE protein levels were similarly elevated 20 h after GnRH injection in GCs, but not in the theca layer. Cyclooxygenase-2 (PTGS2) mRNA peaked before ovulation when HPSE levels returned to baseline levels. HPSE mRNA abundance also remained low in the CLs. The antiprogesterone, RU-486, elevated HPSE levels in GC culture, suggesting that progesterone secreted by CLs may inhibit HPSE. HPSE immunostaining was more abundant in GCs than thecae. In cultured GCs, LH induced a transient increase in HPSE mRNA 3-6 h after its addition, but not at 24 h. However, PTGS2 mRNA was clearly induced at this time. These findings suggest that: 1) HPSE may play a role in ovulation but much less so during CL development, and 2) GC-derived HSPE may be a novel member of the LH-induced extracellular matrix-degrading enzyme family and may contribute to follicular rupture.
Collapse
Affiliation(s)
- Eyal Klipper
- Department of Animal Sciences, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Nelson SM, Greer IA. The potential role of heparin in assisted conception. Hum Reprod Update 2008; 14:623-45. [DOI: 10.1093/humupd/dmn031] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
32
|
Tian SG, Gao HW, Chang HY, Li SB, Wang XL, Zhang YP, Gong F. Heparanase: a novel target of tumor metastasis therapy. Shijie Huaren Xiaohua Zazhi 2008; 16:406-412. [DOI: 10.11569/wcjd.v16.i4.406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Heparanase plays a key role in promoting tumor angiogenesis, vasiveness and metastasis. This predominant enzyme is primarily responsible for cleaving heparin sulphate, the main polysaccharide constituent of extracellular matrix and basement membrane, thus having become a novel target of tumor therapy. It can prevent tumor growth and metastasis by inhibiting its expression and reducing its activity. This paper reviews the biological characteristics of heparanase as a target of tumor therapy, the significance in tumor progression and tumor therapies, and the prospect of its relating medicine in clinical applications.
Collapse
|
33
|
D'Souza SS, Fazleabas AT, Banerjee P, Sherwin JRA, Sharkey AM, Farach-Carson MC, Carson DD. Decidual Heparanase Activity Is Increased During Pregnancy in the Baboon (Papio anubis) and in In Vitro Decidualization of Human Stromal Cells1. Biol Reprod 2008; 78:316-23. [DOI: 10.1095/biolreprod.107.063891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
34
|
Cohen I, Maly B, Simon I, Meirovitz A, Pikarsky E, Zcharia E, Peretz T, Vlodavsky I, Elkin M. Tamoxifen induces heparanase expression in estrogen receptor-positive breast cancer. Clin Cancer Res 2007; 13:4069-77. [PMID: 17634531 DOI: 10.1158/1078-0432.ccr-06-2546] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Mammalian heparanase degrades heparan sulfate, the main polysaccharide of the basement membrane. Heparanase is an important determinant in cancer progression, acting via the breakdown of extracellular barriers for invasion, as well as release of heparan sulfate-bound angiogenic and growth-promoting factors. The present study was undertaken to elucidate molecular mechanisms responsible for heparanase overexpression in breast cancer. EXPERIMENTAL DESIGN To characterize heparanase regulation by estrogen and tamoxifen and its clinical relevance for breast tumorigenesis, we applied immunohistochemical analysis of tissue microarray combined with chromatin immunoprecipitation assay, reverse transcription-PCR, and Western blot analysis. RESULTS A highly significant correlation (P<0.0001) between estrogen receptor (ER) positivity and heparanase overexpression was found in breast cancer. Binding of ER to heparanase promoter accompanied estrogen-induced increase in heparanase expression by breast carcinoma cells. Surprisingly, heparanase transcription was also stimulated by tamoxifen, conferring a proliferation advantage to breast carcinoma cells grown on a naturally produced extracellular matrix. Heparanase overexpression was invariably detected in ER-positive second primary breast tumors, developed in patients receiving tamoxifen for the initial breast carcinoma. The molecular mechanism of the estrogenlike effect of tamoxifen on heparanase expression involves recruitment of transcription coactivator AIB1 to the heparanase promoter. CONCLUSIONS Heparanase induction by ligand-bound ER represents an important pathway in breast tumorigenesis and may be responsible, at least in part, for the failure of tamoxifen therapy in some patients. Our study provides new insights on breast cancer progression and endocrine therapy resistance, offering future strategies for delaying or reversing this process.
Collapse
Affiliation(s)
- Irit Cohen
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kirn-Safran CB, D'Souza SS, Carson DD. Heparan sulfate proteoglycans and their binding proteins in embryo implantation and placentation. Semin Cell Dev Biol 2007; 19:187-93. [PMID: 17766150 PMCID: PMC2275896 DOI: 10.1016/j.semcdb.2007.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 07/20/2007] [Indexed: 12/23/2022]
Abstract
Complex interactions occur among embryonic, placental and maternal tissues during embryo implantation. Many of these interactions are controlled by growth factors, extracellular matrix and cell surface components that share the ability to bind heparan sulfate (HS) polysaccharides. HS is carried by several classes of cell surface and secreted proteins called HS proteoglycan that are expressed in restricted patterns during implantation and placentation. This review will discuss the expression of HS proteoglycans and various HS binding growth factors as well as extracellular matrix components and HS-modifying enzymes that can release HS-bound proteins in the context of implantation and placentation.
Collapse
|
36
|
Xu X, Ding J, Ding H, Shen J, Gattuso P, Prinz RA, Rana N, Dmowski WP. Immunohistochemical detection of heparanase-1 expression in eutopic and ectopic endometrium from women with endometriosis. Fertil Steril 2007; 88:1304-10. [PMID: 17481627 DOI: 10.1016/j.fertnstert.2006.12.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 12/26/2006] [Accepted: 12/28/2006] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the expression of heparanase-1, an endoglycosidase that degrades heparan sulfate proteoglycans, in eutopic and ectopic endometrial tissues from women with endometriosis. DESIGN An immunohistochemical study. SETTING Academic research laboratory and a private infertility clinic affiliated with a university medical center. PATIENT(S) Premenopausal women undergoing laparoscopy for endometriosis. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Expression of heparanase-1 analyzed by immunohistochemical staining in 91 eutopic and 14 ectopic endometrial specimens. RESULT(S) We found that 17% (4/24) of the eutopic endometrial specimens in the early proliferative phase and 32% (9/28) of the samples in the midproliferative phase were heparanase-1 positive. However, >or=80% of eutopic endometrial specimens at late proliferate phase and at luteal phase were heparanase-1 positive. Twelve of 14 ectopic endometriotic specimens stained heparanase-1 positive. Comparison of heparanase-1 expression in paired eutopic and ectopic endometrial tissues revealed that 5 of 6 ectopic specimens in the early proliferative phase were heparanase-1 positive, whereas only 1 eutopic specimen was heparanase-1 positive. In comparison with our recent study of heparanase-1 expression in normal endometrium, we found that there was no significant difference in heparanase-1 expression in the eutopic endometrium from women with or without endometriosis. CONCLUSION(S) Heparanase-1 was differentially expressed in the eutopic endometrium in the different menstrual phases. Heparanase-1 was highly expressed in the ectopic endometriotic lesions regardless of their menstrual phases, suggesting that the local environment is responsible for increased heparanase-1 expression.
Collapse
Affiliation(s)
- Xiulong Xu
- Department of General Surgery, Rush University Medical Center, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|