1
|
Bogolyubova I, Salimov D, Bogolyubov D. Chromatin Configuration in Diplotene Mouse and Human Oocytes during the Period of Transcriptional Activity Extinction. Int J Mol Sci 2023; 24:11517. [PMID: 37511273 PMCID: PMC10380668 DOI: 10.3390/ijms241411517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
In the oocyte nucleus, called the germinal vesicle (GV) at the prolonged diplotene stage of the meiotic prophase, chromatin undergoes a global rearrangement, which is often accompanied by the cessation of its transcriptional activity. In many mammals, including mice and humans, chromatin condenses around a special nuclear organelle called the atypical nucleolus or formerly nucleolus-like body. Chromatin configuration is an important indicator of the quality of GV oocytes and largely predicts their ability to resume meiosis and successful embryonic development. In mice, GV oocytes are traditionally divided into the NSN (non-surrounded nucleolus) and SN (surrounded nucleolus) based on the specific chromatin configuration. The NSN-SN transition is a key event in mouse oogenesis and the main prerequisite for the normal development of the embryo. As for humans, there is no single nomenclature for the chromatin configuration at the GV stage. This often leads to discrepancies and misunderstandings, the overcoming of which should expand the scope of the application of mouse oocytes as a model for developing new methods for assessing and improving the quality of human oocytes. As a first approximation and with a certain proviso, the mouse NSN/SN classification can be used for the primary characterization of human GV oocytes. The task of this review is to analyze and discuss the existing classifications of chromatin configuration in mouse and human GV oocytes with an emphasis on transcriptional activity extinction at the end of oocyte growth.
Collapse
Affiliation(s)
- Irina Bogolyubova
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Daniil Salimov
- Clinical Institute of Reproductive Medicine, 620014 Yekaterinburg, Russia
| | - Dmitry Bogolyubov
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia
| |
Collapse
|
2
|
Chen Y, Liu Y, Zuo X, Zhao Q, Sun M, Cui M, Zhao X, Du Y. Identification of significant imaging features for sensing oocyte viability. Microsc Res Tech 2023; 86:181-192. [PMID: 36278826 DOI: 10.1002/jemt.24248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 01/21/2023]
Abstract
The evaluation of oocyte viability in the laboratory is limited to the morphological assessment by naked eyes, but the realization that most normal-appearing oocytes may conceal abnormalities prompts the search for automated approaches that can detect the abnormalities imperceptible to naked eyes. In this study, we developed an image processing pipeline applicable to bright-field microscope images to quantify the causal relationship between the quantitative imaging features and the developmental potential of oocytes. We acquired 19 imaging features of approximately 700 oocytes and determined two imaging subtypes, namely viable and nonviable subtypes that correlated closely with a viability fluorescence indicator and cleavage rates. The causal relationship between these imaging features and oocyte viability was derived from a viability-oriented Bayesian network that was developed based on the Bayesian information criterion and Tabu search. Our experimental results revealed that entropy with mean Gray Level Co-Occurrence Matrix energy describing the uniformity and texture roughness of cytoplasm were salient features for the automated selection of promising oocytes that exhibited excellent developmental potential.
Collapse
Affiliation(s)
- Yizhe Chen
- Institute of Robotics and Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China.,Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Tianjin, China
| | - Yaowei Liu
- Institute of Robotics and Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China.,Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Tianjin, China
| | - Xiaoying Zuo
- Institute of Robotics and Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China.,Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Tianjin, China
| | - Qili Zhao
- Institute of Robotics and Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China.,Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Tianjin, China
| | - Mingzhu Sun
- Institute of Robotics and Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China.,Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Tianjin, China
| | - Maosheng Cui
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Tianjin, China.,Innovation Team of Pig Feeding, Institute of Animal Science and Veterinary of Tianjin, Tianjin, China
| | - Xin Zhao
- Institute of Robotics and Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China.,Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Tianjin, China
| | - Yue Du
- Institute of Robotics and Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China.,Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Tianjin, China
| |
Collapse
|
3
|
Mancini V, McKeegan PJ, Schrimpe‐Rutledge AC, Codreanu SG, Sherrod SD, McLean JA, Picton HM, Pensabene V. Probing morphological, genetic and metabolomic changes of in vitro embryo development in a microfluidic device. Biotechnol Prog 2021; 37:e3194. [PMID: 34288603 PMCID: PMC11475506 DOI: 10.1002/btpr.3194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023]
Abstract
Assisted reproduction technologies for clinical and research purposes rely on a brief in vitro embryo culture which, despite decades of progress, remain suboptimal in comparison to the physiological environment. One promising tool to improve this technique is the development of bespoke microfluidic chambers. Here we present and validate a new microfluidic device in polydimethylsiloxane (PDMS) for the culture of early mouse embryos. Device material and design resulted embryo compatible and elicit minimal stress. Blastocyst formation, hatching, attachment and outgrowth formation on fibronectin-coated devices were similar to traditional microdrop methods. Total blastocyst cell number and allocation to the trophectoderm and inner cell mass lineages were unaffected. The devices were designed for culture of 10-12 embryos. Development rates, mitochondrial polarization and metabolic turnover of key energy substrates glucose, pyruvate and lactate were consistent with groups of 10 embryos in microdrop controls. Increasing group size to 40 embryos per device was associated with increased variation in development rates and altered metabolism. Device culture did not perturb blastocyst gene expression but did elicit changes in embryo metabolome, which can be ascribed to substrate leaching from PDMS and warrant further investigation.
Collapse
Affiliation(s)
- Vanessa Mancini
- School of Electronic and Electrical EngineeringUniversity of LeedsLeedsUK
| | - Paul J. McKeegan
- Reproduction and Early Development Research Group, Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of MedicineUniversity of LeedsUK
- Centre for Anatomical and Human Sciences, Hull York Medical SchoolUniversity of HullHullUK
| | | | - Simona G. Codreanu
- Center for Innovative Technology (CIT), Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
| | - Stacy D. Sherrod
- Center for Innovative Technology (CIT), Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
| | - John A. McLean
- Center for Innovative Technology (CIT), Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
| | - Helen M. Picton
- Reproduction and Early Development Research Group, Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of MedicineUniversity of LeedsUK
| | - Virginia Pensabene
- School of Electronic and Electrical EngineeringUniversity of LeedsLeedsUK
- Leeds Institute of Medical ResearchUniversity of LeedsUK
| |
Collapse
|
4
|
Zhao H, Li T, Zhao Y, Tan T, Liu C, Liu Y, Chang L, Huang N, Li C, Fan Y, Yu Y, Li R, Qiao J. Single-Cell Transcriptomics of Human Oocytes: Environment-Driven Metabolic Competition and Compensatory Mechanisms During Oocyte Maturation. Antioxid Redox Signal 2019; 30:542-559. [PMID: 29486586 PMCID: PMC6338670 DOI: 10.1089/ars.2017.7151] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIMS The mechanisms coordinating maturation with an environment-driven metabolic shift, a critical step in determining the developmental potential of human in vitro maturation (IVM) oocytes, remain to be elucidated. Here we explored the key genes regulating human oocyte maturation using single-cell RNA sequencing and illuminated the compensatory mechanism from a metabolic perspective by analyzing gene expression. RESULTS Three key genes that encode CoA-related enzymes were screened from the RNA sequencing data. Two of them, ACAT1 and HADHA, were closely related to the regulation of substrate production in the Krebs cycle. Dysfunction of the Krebs cycle was induced by decreases in the activity of specific enzymes. Furthermore, the activator of these enzymes, the calcium concentration, was also decreased because of the failure of influx of exogenous calcium. Although release of endogenous calcium from the endoplasmic reticulum and mitochondria met the requirement for maturation, excessive release resulted in aneuploidy and developmental incompetence. High nicotinamide nucleotide transhydrogenase expression induced NADPH dehydrogenation to compensate for the NADH shortage resulting from the dysfunction of the Krebs cycle. Importantly, high NADP+ levels activated DPYD to enhance the repair of DNA double-strand breaks to maintain euploidy. INNOVATION The present study shows for the first time that exposure to the in vitro environment can lead to the decline of energy metabolism in human oocytes during maturation but that a compensatory action maintains their developmental competence. CONCLUSION In vitro maturation of human oocytes is mediated through a cascade of competing and compensatory actions driven by genes encoding enzymes.
Collapse
Affiliation(s)
- Hongcui Zhao
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| | - Tianjie Li
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| | - Yue Zhao
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| | - Tao Tan
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China .,2 Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology , Kunming, China
| | - Changyu Liu
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| | - Yali Liu
- 3 Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou, China
| | - Liang Chang
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| | - Ning Huang
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| | - Chang Li
- 2 Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology , Kunming, China
| | - Yong Fan
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China .,3 Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou, China
| | - Yang Yu
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| | - Rong Li
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| | - Jie Qiao
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| |
Collapse
|
5
|
Exploring timing activation of functional pathway based on differential co-expression analysis in preimplantation embryogenesis. Oncotarget 2018; 7:74120-74131. [PMID: 27705919 PMCID: PMC5342040 DOI: 10.18632/oncotarget.12339] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/17/2016] [Indexed: 12/15/2022] Open
Abstract
Recent genome-wide omics studies have confirmed the early embryogenesis strictly dependent on the rigorous spatiotemporal activation and multilevel regulation. However, the full effect of functional pathway was not considered. To obtain complete understanding of the gene activation during early development, we performed systematic comparisons based on differential co-expression analysis for bovine preimplantation embryo development (PED). The results confirmed that the functional pathways actively transcribes as early as the 2-cell and 4-cell waves, which Basal transcription factor, Endocytosis and Spliceosome pathway can represent first signs of embryonic activity. Endocytosis act as one of master activators for uncovering a series of successive waves of maternal pioneer signal regulator with the help of Spliceosome complex. Furthermore, the results showed that pattern recognition receptors began to perform its essential function at 4-cell stage, which might be needed to coordinate the later major activation. And finally, our work presented a probable dynamic landscape of key functional pathways for embryogenesis. A clearer understanding of early embryo development will be helpful for Assisted Reproductive Technology (ART) and Regenerative Medicine (RM).
Collapse
|
6
|
Tang X, Qin H, Gu X, Fu X. China’s landscape in regenerative medicine. Biomaterials 2017; 124:78-94. [DOI: 10.1016/j.biomaterials.2017.01.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 01/24/2017] [Accepted: 01/28/2017] [Indexed: 12/15/2022]
|
7
|
Derivation and application of pluripotent stem cells for regenerative medicine. SCIENCE CHINA-LIFE SCIENCES 2016; 59:576-83. [DOI: 10.1007/s11427-016-5066-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/20/2016] [Indexed: 01/21/2023]
|
8
|
Techniques of Human Embryonic Stem Cell and Induced Pluripotent Stem Cell Derivation. Arch Immunol Ther Exp (Warsz) 2016; 64:349-70. [PMID: 26939778 PMCID: PMC5021740 DOI: 10.1007/s00005-016-0385-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 11/17/2015] [Indexed: 12/22/2022]
Abstract
Developing procedures for the derivation of human pluripotent stem cells (PSCs) gave rise to novel pathways into regenerative medicine research. For many years, stem cells have attracted attention as a potentially unlimited cell source for cellular therapy in neurodegenerative disorders, cardiovascular diseases, and spinal cord injuries, for example. In these studies, adult stem cells were insufficient; therefore, many attempts were made to obtain PSCs by other means. This review discusses key issues concerning the techniques of pluripotent cell acquisition. Technical and ethical issues hindered the medical use of somatic cell nuclear transfer and embryonic stem cells. Therefore, induced PSCs (iPSCs) emerged as a powerful technique with great potential for clinical applications, patient-specific disease modelling and pharmaceutical studies. The replacement of viral vectors or the administration of analogous proteins or chemical compounds during cell reprogramming are modifications designed to reduce tumorigenesis risk and to augment the procedure efficiency. Intensified analysis of new PSC lines revealed other barriers to overcome, such as epigenetic memory, disparity between human and mouse pluripotency, and variable response to differentiation of some iPSC lines. Thus, multidimensional verification must be conducted to fulfil strict clinical-grade requirements. Nevertheless, the first clinical trials in patients with spinal cord injury and macular dystrophy were recently carried out with differentiated iPSCs, encouraging alternative strategies for potential autologous cellular therapies.
Collapse
|
9
|
Chromosome microduplication in somatic cells decreases the genetic stability of human reprogrammed somatic cells and results in pluripotent stem cells. Sci Rep 2015; 5:10114. [PMID: 25965553 PMCID: PMC4428033 DOI: 10.1038/srep10114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 03/30/2015] [Indexed: 01/01/2023] Open
Abstract
Human pluripotent stem cells, including cloned embryonic and induced pluripotent stem cells, offer a limitless cellular source for regenerative medicine. However, their derivation efficiency is limited, and a large proportion of cells are arrested during reprogramming. In the current study, we explored chromosome microdeletion/duplication in arrested and established reprogrammed cells. Our results show that aneuploidy induced by somatic cell nuclear transfer technology is a key factor in the developmental failure of cloned human embryos and primary colonies from implanted cloned blastocysts and that expression patterns of apoptosis-related genes are dynamically altered. Overall, ~20%–53% of arrested primary colonies in induced plurpotent stem cells displayed aneuploidy, and upregulation of P53 and Bax occurred in all arrested primary colonies. Interestingly, when somatic cells with pre-existing chromosomal mutations were used as donor cells, no cloned blastocysts were obtained, and additional chromosomal mutations were detected in the resulting iPS cells following long-term culture, which was not observed in the two iPS cell lines with normal karyotypes. In conclusion, aneuploidy induced by the reprogramming process restricts the derivation of pluripotent stem cells, and, more importantly, pre-existing chromosomal mutations enhance the risk of genome instability, which limits the clinical utility of these cells.
Collapse
|
10
|
ASSIDI M, MONTAG M, SIRARD MA. Use of both cumulus cells' transcriptomic markers and zona pellucida birefringence to select developmentally competent oocytes in human assisted reproductive technologies. BMC Genomics 2015; 16 Suppl 1:S9. [PMID: 25923296 PMCID: PMC4315169 DOI: 10.1186/1471-2164-16-s1-s9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Selection of the best oocyte for subsequent steps of fertilization and embryo transfer was shown to be the crucial step in human infertility treatment procedure. Oocyte selection using morphological criteria mainly Zona pellucida (ZP) has been the gold standard method in assisted reproductive technologies (ART) clinics, but this selection approach has limitations in terms of accuracy, objectivity and constancy. Recent studies using OMICs-based approaches have allowed the identification of key molecular markers that quantitatively and non-invasively predict the oocyte quality for higher pregnancy rates and efficient infertility treatment. These biomarkers are a valuable reinforcement of the morphological selection criteria widely used in in vitro fertilization (IVF) clinics. In this context, this study was designed to investigate the relationship between transcriptomic predictors of oocyte quality found by our group and the conventional morphological parameters of oocyte quality mainly the ZP birefringence. RESULTS Microarray data revealed that 48 and 27 differentially expressed candidate genes in cumulus cells (CCs) were respectively overexpressed and underexpressed in the ZGP (Zona Good Pregnant) versus ZBNP (Zona Bad Non Pregnant) groups. More than 70% of previously reported transcriptomic biomarkers of oocyte developmental competence were confirmed in this study. The analysis of possible association between ZP birefringence versus molecular markers approach showed an absence of correlation between them using the current set of markers. CONCLUSIONS This study suggested a new integrative approach that matches morphological and molecular approaches used to select developmentally competent oocytes able to lead to successful pregnancy and the delivery of healthy baby. For each ZP birefringence score, oocytes displayed a particular CCs' gene expression pattern. However, no correlations were found between the 7 gene biomarkers of oocyte developmental potential and the ZP birefringence score. Further studies using larger lists of candidate markers are required to identify suitable genes that are highly correlated with the morphological criteria, and therefore able to reinforce the accuracy of oocyte selection and the effectiveness of infertility treatment.
Collapse
Affiliation(s)
- Mourad ASSIDI
- Center of Excellence in Genomic Medicine Research, King AbdulAziz University, Jeddah, 21589, Saudi Arabia
- KACST Technology Innovation Center in Personalized Medicine, King AbdulAziz University, Jeddah, Saudi Arabia
- Centre de Recherche en Biologie de la Reproduction, Laval University, Quebec City, QC, G1K 7P4, Canada
| | - Markus MONTAG
- Department of Gynecological Endocrinology and Reproductive Medicine, Bonn University, Bonn, Germany
- Current address: ilabcomm Gm bH, Eisenachstr. 34; D-53757 St. Augustin; Germany
| | - Marc-André SIRARD
- Centre de Recherche en Biologie de la Reproduction, Laval University, Quebec City, QC, G1K 7P4, Canada
| |
Collapse
|
11
|
Li JQ, Cheng M, Tian WC, Zhang J. Generation of induced pluripotent stem cells using skin fibroblasts from patients with myocardial infarction under feeder-free conditions. Mol Med Rep 2014; 9:837-42. [PMID: 24398533 DOI: 10.3892/mmr.2014.1885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 12/18/2013] [Indexed: 11/06/2022] Open
Abstract
Myocardial infarction (MI) is an increasing medical problem; however, its pathogenesis has yet to be elucidated and more effective treatment strategies are required. Induced pluripotent stem cells (iPSCs) were recently successfully generated using human somatic cells transfected with four transcription factors. The present study aimed to generate iPSCs from cells from patients with myocardial infarction. Six patients who had been diagnosed with myocardial infarction were enrolled in this study. The fibroblast cells from the biopsied skin were reprogrammed using octamer-binding transcription factor 4 (Oct‑4), SRY-related HMG-box gene 2 (Sox‑2), Kruppel-like factor 4 (Klf‑4) and cellular myelocytomatosis oncogene (c‑Myc) transcription factors. The generated cells were identified by karyotyping, in vitro and in vivo differentiation ability and staining for specific markers. These human MI‑iPSCs expressed pluripotent genes and cell surface markers, and exhibited normal proliferation. The iPSCs also showed in vivo and in vitro differentiation ability, as indicated by teratoma and embryoid body formation, respectively. Moreover, the iPSCs differentiated into cardiomyocytes and neuronal cells. In conclusion, human iPSCs were successfully generated from skin fibroblasts from patients with MI under feeder‑independent conditions, which increases their potential suitability for clinical applications. These results may encourage further study of MI pathogenesis and facilitate the development of safe downstream clinical applications of iPSC‑based cell therapies.
Collapse
Affiliation(s)
- Jun-Quan Li
- Department of Cardiac Surgery, The Second Affiliated Hospital, Harbin Medical University, Nangang, Harbin, Heilongjiang 150086, P.R. China
| | - Ming Cheng
- Department of Cardiac Surgery, The Second Affiliated Hospital, Harbin Medical University, Nangang, Harbin, Heilongjiang 150086, P.R. China
| | - Wei-Chen Tian
- Department of Cardiac Surgery, The Second Affiliated Hospital, Harbin Medical University, Nangang, Harbin, Heilongjiang 150086, P.R. China
| | - Jian Zhang
- Department of Surgery, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
12
|
Qiao J, Wang ZB, Feng HL, Miao YL, Wang Q, Yu Y, Wei YC, Yan J, Wang WH, Shen W, Sun SC, Schatten H, Sun QY. The root of reduced fertility in aged women and possible therapentic options: current status and future perspects. Mol Aspects Med 2013; 38:54-85. [PMID: 23796757 DOI: 10.1016/j.mam.2013.06.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 06/06/2013] [Indexed: 12/21/2022]
Abstract
It is well known that maternal ageing not only causes increased spontaneous abortion and reduced fertility, but it is also a high genetic disease risk. Although assisted reproductive technologies (ARTs) have been widely used to treat infertility, the overall success is still low. The main reasons for age-related changes include reduced follicle number, compromised oocyte quality especially aneuploidy, altered reproductive endocrinology, and increased reproductive tract defect. Various approaches for improving or treating infertility in aged women including controlled ovarian hyperstimulation with intrauterine insemination (IUI), IVF/ICSI-ET, ovarian reserve testing, preimplantation genetic diagnosis and screening (PGD/PGS), oocyte selection and donation, oocyte and ovary tissue cryopreservation before ageing, miscarriage prevention, and caloric restriction are summarized in this review. Future potential reproductive techniques for infertile older women including oocyte and zygote micromanipulations, derivation of oocytes from germ stem cells, ES cells, and iPS cells, as well as through bone marrow transplantation are discussed.
Collapse
Affiliation(s)
- Jie Qiao
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Zhen-Bo Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Huai-Liang Feng
- Department of Laboratory Medicine, and Obstetrics and Gynecology, New York Hospital Queens, Weill Medical College of Cornell University, New York, NY, USA
| | - Yi-Liang Miao
- Reproductive Medicine Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Qiang Wang
- Department of Obstetrics and Gynecology, Washington University School of Medicine, 660 South Euclid Ave., St. Louis, MO 63110, USA
| | - Yang Yu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Yan-Chang Wei
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jie Yan
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Wei-Hua Wang
- Houston Fertility Institute, Tomball Regional Hospital, Tomball, TX 77375, USA
| | - Wei Shen
- Laboratory of Germ Cell Biology, Department of Animal Science, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Shao-Chen Sun
- Department of Animal Science, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Qing-Yuan Sun
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| |
Collapse
|
13
|
Increased cleavage rate of human nuclear transfer embryos after 5-aza-2′-deoxycytidine treatment. Reprod Biomed Online 2012; 25:425-33. [DOI: 10.1016/j.rbmo.2012.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/24/2012] [Accepted: 06/25/2012] [Indexed: 11/18/2022]
|
14
|
Toxic effects of Hoechst staining and UV irradiation on preimplantation development of parthenogenetically activated mouse oocytes. ZYGOTE 2012; 22:32-40. [PMID: 22784634 DOI: 10.1017/s0967199412000251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Parthenogenetic activation of oocytes is a helpful tool to obtain blastocysts, of which the inner cell mass may be used for derivation of embryonic stem cells. In order to improve activation and embryonic development after parthenogenesis, we tried to use sperm injection and subsequent removal of the sperm head to mimic the natural Ca2+ increases by release of the oocyte activating factor. Visualization of the sperm could be accomplished by Hoechst staining and ultraviolet (UV) light irradiation. To exclude negative effects of this treatment, we examined toxicity on activated mouse oocytes. After activation, oocytes were incubated in Hoechst 33342 or 33258 stain and exposed to UV irradiation. The effects on embryonic development were evaluated. Our results showed that both types of Hoechst combined with UV irradiation have toxic effects on parthenogenetically activated mouse oocytes. Although activation and cleavage rate were not affected, blastocyst formation was significantly reduced. Secondly, we used MitoTracker staining for removal of the sperm. Sperm heads were stained before injection and removed again after 1 h. However, staining was not visible anymore in all oocytes after intracytoplasmic sperm injection. In case the sperm could be removed, most oocytes died after 1 day. As MitoTracker was also not successful, alternative methods for sperm identification should be investigated.
Collapse
|
15
|
Derivation, culture and retinal pigment epithelial differentiation of human embryonic stem cells using human fibroblast feeder cells. J Assist Reprod Genet 2012; 29:735-44. [PMID: 22661130 DOI: 10.1007/s10815-012-9802-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/20/2012] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Retinal pigment epithelium cells derived from human embryonic stem cells (ESCs) could be useful for restoring retinal function in age-related macular degeneration. However the use of non-human feeder cells to support the growth of ESCs for clinical applications raises the concern of possible contamination because of direct contact between animal and human cells. METHODS In this study, we produced human ESCs using human fibroblast feeder layers isolated from foreskin and abdominal tissues. Using this system, human ESCs differentiated into retinal pigment epithelium cells in differentiation medium. RESULTS Seven human ESC lines were established from 18 blastocysts. These human ESCs showed normal morphology, expressed all expected cell surface markers, had the ability to form embryoid bodies upon culture in vitro and teratomas after injection into SCID mice, and differentiated further into derivatives of all three germ layers. Under conditions of committed differentiation, these human ESCs could differentiate into retinal pigment epithelium cells after 2 months in culture. CONCLUSIONS The results of this study demonstrated that human foreskin/abdominal fibroblasts have the potential to support the derivation and long-term culture of human ESCs, which can then be used to generate retinal pigment epithelium cells with characteristic morphology and molecular markers. This technique avoids the concerns of contamination from animal feeder layers during human ESC derivation, culture and differentiation, and will thus facilitate the development of retinal pigment epithelium cell transplantation therapy.
Collapse
|
16
|
Yu Y, Yan J, Zhang Q, Yan L, Li M, Zhou Q, Qiao J. Successful reprogramming of differentiated cells by somatic cell nuclear transfer, using in vitro-matured oocytes with a modified activation method. J Tissue Eng Regen Med 2012; 7:855-63. [PMID: 22589148 DOI: 10.1002/term.1476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/28/2011] [Accepted: 01/13/2012] [Indexed: 11/06/2022]
Abstract
Therapeutic cloning has tremendous potential for cell therapy and tissue repair in some diseases. However, the efficiency of development of cloned human embryos by somatic cell nuclear transfer is still low. In the present study, the activation of cloned human embryos was investigated while using in vitro-matured oocytes. Pseudo-pronuclear formation and the subsequent development was compared with different activation parameters, including different durations of ionomycin and 6-dimethylaminopurine treatment. The results showed that somatic cells were successfully reprogrammed by modification of activation treatments while using in vitro-matured oocytes. The activation efficiency of cloned human embryos was significantly increased at durations of ionomycin at both 5 and 7 min, despite different durations of 6-DMAP treatment. The results of blastocyst development showed that 20% of activated embryos developed to the blastocyst stage when the embryos were activated with 5 µm ionomycin for 5 min and 2 mm 6-DMAP for 5 h, which was significantly higher than those activated with other parameters. Moreover, we found that an increasing duration of 6-DMAP induced the formation of a single, large, pseudo-pronucleus in cloned human embryos and impaired subsequent development competence. In conclusion, successful reprogramming of human somatic cells was achieved using in vitro-matured oocytes by somatic cell nuclear transfer and improved with a modified activation method.
Collapse
Affiliation(s)
- Yang Yu
- Centre for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, the People's Republic of China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, the People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
17
|
Yu Y, Yan J, Li M, Yan L, Zhao Y, Lian Y, Li R, Liu P, Qiao J. Effects of combined epidermal growth factor, brain-derived neurotrophic factor and insulin-like growth factor-1 on human oocyte maturation and early fertilized and cloned embryo development. Hum Reprod 2012; 27:2146-59. [DOI: 10.1093/humrep/des099] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
18
|
Roxland BE. New York State's landmark policies on oversight and compensation for egg donation to stem cell research. Regen Med 2012; 7:397-408. [PMID: 22458727 DOI: 10.2217/rme.12.20] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In 2009, New York became the first US state to implement a policy permitting researchers to use public funds to reimburse women who donate oocytes directly and solely to stem cell research, not only for the woman's out-of-pocket expenses, but also for the time, burden and discomfort associated with the donation process. The debate about the propriety of such compensation was recently renewed with the publication of a stem cell study in which women were provided with compensation for donating their eggs. This article explores the scientific and ethical rationales that led to New York's decision to allow donor compensation. The multifaceted deliberation process and comprehensive policies may serve as a model for other states and countries considering the issue of oocyte donor compensation.
Collapse
Affiliation(s)
- Beth E Roxland
- New York State Task Force on Life & the Law, 90 Church Street, New York, NY 10007, USA.
| |
Collapse
|
19
|
Nowak-Imialek M, Kues W, Carnwath JW, Niemann H. Pluripotent stem cells and reprogrammed cells in farm animals. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2011; 17:474-497. [PMID: 21682936 DOI: 10.1017/s1431927611000080] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pluripotent cells are unique because of their ability to differentiate into the cell lineages forming the entire organism. True pluripotent stem cells with germ line contribution have been reported for mice and rats. Human pluripotent cells share numerous features of pluripotentiality, but confirmation of their in vivo capacity for germ line contribution is impossible due to ethical and legal restrictions. Progress toward derivation of embryonic stem cells from domestic species has been made, but the derived cells were not able to produce germ line chimeras and thus are termed embryonic stem-like cells. However, domestic animals, in particular the domestic pig (Sus scrofa), are excellent large animals models, in which the clinical potential of stem cell therapies can be studied. Reprogramming technologies for somatic cells, including somatic cell nuclear transfer, cell fusion, in vitro culture in the presence of cell extracts, in vitro conversion of adult unipotent spermatogonial stem cells into germ line derived pluripotent stem cells, and transduction with reprogramming factors have been developed with the goal of obtaining pluripotent, germ line competent stem cells from domestic animals. This review summarizes the present state of the art in the derivation and maintenance of pluripotent stem cells in domestic animals.
Collapse
Affiliation(s)
- Monika Nowak-Imialek
- Institute of Farm Animal Genetics (FLI), Biotechnology, Mariensee, 31535 Neustadt, Germany
| | | | | | | |
Collapse
|
20
|
Lasiene K, Lasys V, Glinskyte S, Valanciute A, Vitkus A. Relevance and Methodology for the Morphological Analysis of Oocyte Quality in IVF and ICSI. ACTA ACUST UNITED AC 2011. [DOI: 10.1177/205891581100200102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oocytes collected from patients following ovarian stimulation exhibit varying qualities. The quality of oocytes has an effect on its subsequent fertilization, developmental competence post-fertilization and the viability of resultant embryos. The aim of this article was to review the morphological criteria devised for assessment of oocyte quality by ordinary light and polarized light microscopy before IVF or ICSI. The parameters employed in the evaluation of oocyte morphology include the appearance of: structure of the cumulus–oocyte complex, oocyte cytoplasm, perivitelline space, zona pellucida, polar body and meiotic spindle.
Collapse
Affiliation(s)
- Kristina Lasiene
- Department of Histology and Embryology, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vidmantas Lasys
- Department of Anatomy and Physiology, Veterinary Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Sandra Glinskyte
- Department of Anatomy and Physiology, Veterinary Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Angelija Valanciute
- Department of Histology and Embryology, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Aleksandras Vitkus
- Department of Histology and Embryology, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
21
|
Fan Y, Jiang Y, Chen X, Ou Z, Yin Y, Huang S, Kou Z, Li Q, Long X, Liu J, Luo Y, Liao B, Gao S, Sun X. Derivation of cloned human blastocysts by histone deacetylase inhibitor treatment after somatic cell nuclear transfer with β-thalassemia fibroblasts. Stem Cells Dev 2011; 20:1951-9. [PMID: 21322785 DOI: 10.1089/scd.2010.0451] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Derivation of embryonic stem cells from patient-specific cloned blastocysts by somatic cell nuclear transfer (SCNT) holds promise for both regenerative medicine and cell-based drug discovery. However, the efficiency of blastocyst formation after human SCNT is very low. The developmental competence of SCNT embryos has been previously demonstrated in several species to be enhanced by treatment with histone deacetylase inhibitors, such as trichostatin A (TSA), to increase histone acetylation. In this study, we report that treatment of SCNT embryos with 5 nM TSA for 10 h following activation incubation increased the developmental competence of human SCNT embryos constructed from β-thalassemia fibroblast cells. The efficiency of blastocyst formation from SCNT human embryos treated with TSA was approximately 2 times greater than that from untreated embryos. Cloned blastocysts were confirmed to be generated through SCNT by DNA and mitochondrial DNA fingerprinting analyses. Further, treatment of SCNT embryos with TSA improved the acetylation of histone H3 at lysine 9 in a manner similar to that observed in in vitro fertilized embryos.
Collapse
Affiliation(s)
- Yong Fan
- Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical College, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Xu X, Duan X, Lu C, Lin G, Lu G. Dynamic distribution of NuMA and microtubules in human fetal fibroblasts, developing oocytes and somatic cell nuclear transferred embryos. Hum Reprod 2011; 26:1052-60. [PMID: 21406448 DOI: 10.1093/humrep/der067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The nuclear mitotic apparatus (NuMA) plays a central role in the assembly and maintenance of spindle poles. Somatic cell nuclear transfer (SCNT) studies on non-human primates have shown that meiotic spindle removal during enucleation causes depletion of NuMA and the minus-end-directed motor protein (HSET) from the ooplasm, and this in turn leads to failure of embryo development. To determine whether NuMA from somatic cells could compensate for NuMA loss during enucleation, the distribution of NuMA and microtubule organization were investigated in human fibroblasts, developing oocytes and SCNT embryos. METHODS Human fetal fibroblasts, oocytes at various maturation stages and human embryos reconstructed by different SCNT methods were analyzed for NuMA and α-tubulin using immunofluorescent confocal microscopy. RESULTS NuMA was detected in interphase nuclei of fibroblasts and oocytes. During mitosis and meiosis, NuMA relocated to the domain surrounding the two spindle poles. During the enucleation process, NuMA was removed along with the meiotic spindle. At 2 h after injection into a donor cell, transitory bipolar spindles were organized and NuMA was detected in the reformed poles. NuMA could be detected spreading uniformly across the nucleoplasm of one pseudo-pronucleus in SCNT embryos but was excluded from the nucleolus. Regardless of the method used for SCNT (enucleation-injection or injection-pronuclei enucleation), NuMA aggregated and relocated to the reformed spindle poles at metaphase of the first mitotic event. At interphase, NuMA relocated throughout the nucleus in developmentally arrested SCNT embryos. CONCLUSIONS Our results show that donor cell nuclei contain NuMA, which might contribute to the maintenance of spindle morphology in SCNT embryos. Normal spindle and NuMA expression were found in human SCNT embryos at different developmental stages.
Collapse
Affiliation(s)
- Xiaoming Xu
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha 410078, People's Republic of China
| | | | | | | | | |
Collapse
|
23
|
Versieren K, Heindryckx B, Lierman S, Gerris J, De Sutter P. Developmental competence of parthenogenetic mouse and human embryos after chemical or electrical activation. Reprod Biomed Online 2010; 21:769-75. [PMID: 21051286 DOI: 10.1016/j.rbmo.2010.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 06/24/2010] [Accepted: 07/01/2010] [Indexed: 10/19/2022]
Abstract
Parthenogenetic reconstruction is one major strategy to create patient-specific stem cells. The aim of this study was to find the best artificial activation protocol for parthenogenetic activation of mouse and human oocytes comparing different methods. In a first set of experiments, in-vivo matured mouse oocytes and human failed-fertilized, in-vitro and in-vivo matured oocytes were artificially activated by a chemical (ionomycin) or electrical stimulus. In a second set of experiments, a combination of activating agents (electrical pulses followed by ionomycin or SrCl(2)) was applied in an aim to improve developmental competence. All embryos were evaluated daily until day 6 after activation. Mouse blastocysts were differentially stained to evaluate blastocyst quality. For mouse oocytes and human failed-fertilized oocytes, blastocyst development was significantly higher after electrical activation (P<0.05). For human in-vitro and in-vivo matured oocytes, blastocyst formation was only obtained after electrical activation of in-vitro matured oocytes. After combining activating agents, no differences in development could be observed. In conclusion, this study revealed that for both mouse and human oocytes development to the blastocyst stage was significantly better after electrical activation compared with chemical activation. Combining activating agents had no further positive effect on developmental potential.
Collapse
Affiliation(s)
- Karen Versieren
- Department of Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | | | | | | | | |
Collapse
|
24
|
Assidi M, Montag M, Van der Ven K, Sirard MA. Biomarkers of human oocyte developmental competence expressed in cumulus cells before ICSI: a preliminary study. J Assist Reprod Genet 2010; 28:173-88. [PMID: 20953827 DOI: 10.1007/s10815-010-9491-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 09/28/2010] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To identify reliable genomic biomarkers expressed in cumulus cells that accurately and non-invasively predict the oocyte developmental competence and reinforce the already used morphological criteria. METHODS Eight consenting patients were selected for ovarian stimulation and ICSI procedures. Cumulus-oocyte complexes were transvaginally punctured and individually selected based on both good morphological criteria and high zona pellucida birefringence. Following ICSI, two 3-day embryos per patient were transferred. Pregnancy outcome was recorded and proven implantation was thereafter confirmed. Differential gene expression was assessed using two microarray platforms. Further real-time PCR validation, Ingenuity pathways analysis and intra-patient analysis were performed on 17 selected candidates. RESULTS Seven genes were differentially (p ≤ 0.05) associated to successful pregnancy and implantation. These biomarkers could be used to predict the oocyte developmental competence. CONCLUSIONS These genomic markers are a powerful reinforcement of morphological approaches of oocyte selection. Their large-scale validation could increase pregnancy outcome and single embryo transfer efficiency.
Collapse
Affiliation(s)
- Mourad Assidi
- Centre de recherche en biologie de la reproduction, Département des Sciences Animales, Laval University, Ste-Foy, Québec, Canada, G1K 7P4
| | | | | | | |
Collapse
|
25
|
Kashir J, Heindryckx B, Jones C, De Sutter P, Parrington J, Coward K. Oocyte activation, phospholipase C zeta and human infertility. Hum Reprod Update 2010; 16:690-703. [PMID: 20573804 DOI: 10.1093/humupd/dmq018] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Mammalian oocytes are activated by intracellular calcium (Ca(2+)) oscillations following gamete fusion. Recent evidence implicates a sperm-specific phospholipase C zeta, PLCζ, which is introduced into the oocyte following membrane fusion, as the responsible factor. This review summarizes the current understanding of human oocyte activation failure and describes recent discoveries linking certain cases of male infertility with defects in PLCζ expression and activity. How these latest findings may influence future diagnosis and treatment options are also discussed. METHODS Systematic literature searches were performed using PubMed, ISI-Web of Knowledge and The Cochrane Library. We also scrutinized material from the United Nations and World Health Organization databases (UNWHO) and the Human Fertilization and Embryology Authority (HFEA). RESULTS AND CONCLUSIONS Although ICSI results in average fertilization rates of 70%, complete or virtually complete fertilization failure still occurs in 1-5% of ICSI cycles. While oocyte activation failure can, in some cases, be overcome by artificial oocyte activators such as calcium ionophores, a more physiological oocyte activation agent might release Ca(2+) within the oocyte in a more efficient and controlled manner. As PLCζ is now widely considered to be the physiological agent responsible for activating mammalian oocytes, it represents both a novel diagnostic biomarker of oocyte activation capability and a possible mode of treatment for certain types of male infertility.
Collapse
Affiliation(s)
- J Kashir
- Nuffield Department of Obstetrics and Gynaecology, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | | | | | | | | | | |
Collapse
|
26
|
Human parthenogenetic embryonic stem cells: one potential resource for cell therapy. ACTA ACUST UNITED AC 2009; 52:599-602. [PMID: 19641863 DOI: 10.1007/s11427-009-0096-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 06/16/2009] [Indexed: 01/10/2023]
Abstract
Pluripotent stem cells derived from somatic cells through such processes as nuclear transfer or induced pluripotent stem (iPS) cells present an important model for biomedical research and provide potential resources for cell replacement therapies. However, the overall efficiency of the conversional nuclear transfer is very low and the safety issue remains a major concern for iPS cells. Embryonic stem cells (ESCs) generated from parthenogenetic embryos are one attractive alternative as a source of histocompatible cells and tissues for cell therapy. Recent studies on human parthenogenetic embryonic stem cells (hPG ESCs) have revealed that these ESCs are very similar to the hESCs derived from IVF or in vivo produced blastocysts in gene expression and other characteristics, but full differentiation and development potential of these hPG ESCs have to be further investigated before clinical research and therapeutic interventions. To generate various pluripotent stem cells, diverse reprogramming techniques and approaches will be developed and integrated. This may help elucidate the fundamental mechanisms underlying reprogramming and stem cell biology, and ultimately benefit cell therapy and regenerative medicine.
Collapse
|
27
|
Fan Y, Chen X, Luo Y, Chen X, Li S, Huang Y, Sun X. Developmental potential of human oocytes reconstructed by transferring somatic cell nuclei into polyspermic zygote cytoplasm. Biochem Biophys Res Commun 2009; 382:119-23. [DOI: 10.1016/j.bbrc.2009.02.143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Accepted: 02/26/2009] [Indexed: 12/31/2022]
|