1
|
Jiménez-Cortegana C, Sánchez-Jiménez F, De La Cruz-Merino L, Sánchez-Margalet V. Role of Sam68 in different types of cancer (Review). Int J Mol Med 2025; 55:3. [PMID: 39450529 PMCID: PMC11537268 DOI: 10.3892/ijmm.2024.5444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Src‑associated in mitosis 68 kDa protein (Sam68) is a protein encoded by the heteronuclear ribonucleoprotein particle K homology (KH) single domain‑containing, RNA‑binding, signal transduction‑associated protein 1 (known as KHDRBS1) gene in humans. This protein contains binding sites for critical components in a variety of cellular processes, including the regulation of gene expression, RNA processing and cell signaling. Thus, Sam68 may play a role in a variety of diseases, including cancer. Sam68 has been widely demonstrated to participate in tumor cell proliferation, progression and metastasis to be involved in the regulation of cancer stem cell self‑renewal. Based on the body of evidence available, Sam68 emerges as a promising target for this disease. The objectives of the present included summarizing the role of Sam68 in cancer murine models and cancer patients, unraveling the molecular mechanisms underlying its oncogenic potential and discussing the effectiveness of antitumor agents in reducing the malignant effects of Sam68 during tumorigenesis.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Flora Sánchez-Jiménez
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Department of Laboratory Medicine, Virgen Macarena University Hospital, 41009 Seville, Spain
| | - Luis De La Cruz-Merino
- Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
- Medical Oncology Service, Virgen Macarena University Hospital, 41009 Seville, Spain
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, 41013 Seville, Spain
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Department of Laboratory Medicine, Virgen Macarena University Hospital, 41009 Seville, Spain
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, 41013 Seville, Spain
| |
Collapse
|
2
|
Guadix P, Corrales I, Vilariño-García T, Rodríguez-Chacón C, Sánchez-Jiménez F, Jiménez-Cortegana C, Dueñas JL, Sánchez-Margalet V, Pérez-Pérez A. Expression of nutrient transporters in placentas affected by gestational diabetes: role of leptin. Front Endocrinol (Lausanne) 2023; 14:1172831. [PMID: 37497352 PMCID: PMC10366688 DOI: 10.3389/fendo.2023.1172831] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/14/2023] [Indexed: 07/28/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is the most frequent pathophysiological state of pregnancy, which in many cases produces fetuses with macrosomia, requiring increased nutrient transport in the placenta. Recent studies by our group have demonstrated that leptin is a key hormone in placental physiology, and its expression is increased in placentas affected by GDM. However, the effect of leptin on placental nutrient transport, such as transport of glucose, amino acids, and lipids, is not fully understood. Thus, we aimed to review literature on the leptin effect involved in placental nutrient transport as well as activated leptin signaling pathways involved in the expression of placental transporters, which may contribute to an increase in placental nutrient transport in human pregnancies complicated by GDM. Leptin appears to be a relevant key hormone that regulates placental transport, and this regulation is altered in pathophysiological conditions such as gestational diabetes. Adaptations in the placental capacity to transport glucose, amino acids, and lipids may underlie both under- or overgrowth of the fetus when maternal nutrient and hormone levels are altered due to changes in maternal nutrition or metabolic disease. Implementing new strategies to modulate placental transport may improve maternal health and prove effective in normalizing fetal growth in cases of intrauterine growth restriction and fetal overgrowth. However, further studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Pilar Guadix
- Obstetrics and Gynecology Service, Virgen Macarena University Hospital, School of Medicine, University of Seville, Seville, Spain
| | - Isabel Corrales
- Obstetrics and Gynecology Service, Virgen Macarena University Hospital, School of Medicine, University of Seville, Seville, Spain
| | - Teresa Vilariño-García
- Clinical Biochemistry Service, Virgen del Rocio University Hospital, School of Medicine, University of Seville, Seville, Spain
| | - Carmen Rodríguez-Chacón
- Clinical Biochemistry Service, Virgen Macarena University Hospital and Department of Medical Biochemistry and Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Flora Sánchez-Jiménez
- Clinical Biochemistry Service, Virgen Macarena University Hospital and Department of Medical Biochemistry and Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Carlos Jiménez-Cortegana
- Clinical Biochemistry Service, Virgen Macarena University Hospital and Department of Medical Biochemistry and Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - José L. Dueñas
- Obstetrics and Gynecology Service, Virgen Macarena University Hospital, School of Medicine, University of Seville, Seville, Spain
| | - Víctor Sánchez-Margalet
- Clinical Biochemistry Service, Virgen Macarena University Hospital and Department of Medical Biochemistry and Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Antonio Pérez-Pérez
- Clinical Biochemistry Service, Virgen Macarena University Hospital and Department of Medical Biochemistry and Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
3
|
Vilariño-García T, Guadix P, Dorado-Silva M, Sánchez-Martín P, Pérez-Pérez A, Sánchez-Margalet V. Decreased Expression of Sam68 Is Associated with Insulin Resistance in Granulosa Cells from PCOS Patients. Cells 2022; 11:cells11182821. [PMID: 36139396 PMCID: PMC9496917 DOI: 10.3390/cells11182821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Polycystic ovary syndrome (PCOS) is a complex metabolic disorder associated with ovulatory dysfunction, hyperandrogenism, obesity, and insulin resistance, which leads to subfertility. PCOS is the most frequent metabolic disorder in women and the major cause of infertility. Susceptibility to developing PCOS is determined by a complex interaction between environmental and genetic factors. Although different mechanisms have been proposed to explain PCOS manifestations, defects in insulin actions or in the insulin signaling pathways are central in the pathogenesis of the syndrome. However, the mechanisms (molecular players and signaling pathways) underlying its primary origin still remain an unsolved issue. Current research is increasingly focusing on the discovery of novel biomarkers to further elucidate the complex pathophysiology of PCOS. Sam68, an RNA-binding protein, is recruited to insulin signaling, mediating different insulin actions. We aimed to investigate the role of Sam68 in insulin signaling and the possible implications of Sam68 in the insulin resistance in PCOS. MATERIALS AND METHODS Granulosa cells were taken from women with PCOS (n = 25) and healthy donors (n = 25) and, within the age range of 20 to 42 years, from GINEMED, Assisted Reproduction Centre, Seville, Spain. The Sam68 expression level was analyzed both by qPCR and immunoblot. Statistical significance was assessed by one-way ANOVA, followed by a post-hoc test. A p value of < 0.05 was considered statistically significant. RESULTS We found that insulin stimulation increases the phosphorylation and expression level of Sam68 in granulosa cells from normal donors. The downregulation of Sam68 expression resulted in a lower activation of both the MAPK and the PI3K pathways in response to insulin. Moreover, the granulosa cells from the women with PCOS presented a lower expression of Sam68, as well as insulin receptor and insulin receptor substrate-1 (IRS-1). In these cells, the overexpression of Sam68 resulted in an increased activation of both the MAPK and the PI3K pathways in response to insulin. CONCLUSIONS These results suggest the participation of Sam68 in insulin receptor signaling, mediating the insulin effect in granulosa cells, and they suggest the possible role of Sam68 in the insulin resistance of PCOS.
Collapse
Affiliation(s)
- Teresa Vilariño-García
- Department of Medical Biochemistry and Molecular Biology and Immunology, Virgen Macarena University Hospital, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Pilar Guadix
- Obstetrics and Gynecology Department, Virgen Macarena University Hospital, School of Medicine, University of Seville, 41009 Seville, Spain
| | | | | | - Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology and Immunology, Virgen Macarena University Hospital, School of Medicine, University of Seville, 41009 Seville, Spain
- Correspondence: (A.P.-P.); (V.S.-M.); Tel.: +95-4559-850 (A.P.-P.)
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology and Immunology, Virgen Macarena University Hospital, School of Medicine, University of Seville, 41009 Seville, Spain
- Correspondence: (A.P.-P.); (V.S.-M.); Tel.: +95-4559-850 (A.P.-P.)
| |
Collapse
|
4
|
Arroyo-Jousse V, Jaramillo A, Castaño-Moreno E, Lépez M, Carrasco-Negüe K, Casanello P. Adipokines underlie the early origins of obesity and associated metabolic comorbidities in the offspring of women with pregestational obesity. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165558. [PMID: 31654701 DOI: 10.1016/j.bbadis.2019.165558] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023]
Abstract
Maternal pregestational obesity is a well-known risk factor for offspring obesity, metabolic syndrome, cardiovascular disease and type 2 diabetes. The mechanisms by which maternal obesity can induce alterations in fetal and later neonatal metabolism are not fully elucidated due to its complexity and multifactorial causes. Two adipokines, leptin and adiponectin, are involved in fetal and postnatal growth trajectories, and both are altered in women with pregestational obesity. The placenta synthesizes leptin, which goes mainly to the maternal circulation and in lesser amount to the developing fetus. Maternal pregestational obesity and hyperleptinemia are associated with placental dysfunction and changes in nutrient transporters which directly affect fetal growth and development. By the other side, the embryo can produce its own leptin from early in development, which is associated to fetal weight and adiposity. Adiponectin, an insulin-sensitizing adipokine, is downregulated in maternal obesity. High molecular weight (HMW) adiponectin is the most abundant form and with most biological actions. In maternal obesity lower total and HMW adiponectin levels have been described in the mother, paralleled with high levels in the umbilical cord. Several studies have found that cord blood adiponectin levels are related with postnatal growth trajectories, and it has been suggested that low adiponectin levels in women with pregestational obesity enhance placental insulin sensitivity and activation of placental amino acid transport systems, supporting fetal overgrowth. The possible mechanisms by which maternal pregestational obesity, focusing in the actions of leptin and adiponectin, affects the fetal development and postnatal growth trajectories in their offspring are discussed.
Collapse
Affiliation(s)
| | | | | | - M Lépez
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - K Carrasco-Negüe
- Department of Obstetrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - P Casanello
- Department of Obstetrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Neonatology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
5
|
Pérez‐Pérez A, Toro A, Vilariño‐García T, Maymó J, Guadix P, Dueñas JL, Fernández‐Sánchez M, Varone C, Sánchez‐Margalet V. Leptin action in normal and pathological pregnancies. J Cell Mol Med 2018; 22:716-727. [PMID: 29160594 PMCID: PMC5783877 DOI: 10.1111/jcmm.13369] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022] Open
Abstract
Leptin is now considered an important signalling molecule of the reproductive system, as it regulates the production of gonadotrophins, the blastocyst formation and implantation, the normal placentation, as well as the foeto-placental communication. Leptin is a peptide hormone secreted mainly by adipose tissue, and the placenta is the second leptin-producing tissue in humans. Placental leptin is an important cytokine which regulates placental functions in an autocrine or paracrine manner. Leptin seems to play a crucial role during the first stages of pregnancy as it modulates critical processes such as proliferation, protein synthesis, invasion and apoptosis in placental cells. Furthermore, deregulation of leptin levels has been correlated with the pathogenesis of various disorders associated with reproduction and gestation, including polycystic ovary syndrome, recurrent miscarriage, gestational diabetes mellitus, pre-eclampsia and intrauterine growth restriction. Due to the relevant incidence of the mentioned diseases and the importance of leptin, we decided to review the latest information available about leptin action in normal and pathological pregnancies to support the idea of leptin as an important factor and/or predictor of diverse disorders associated with reproduction and pregnancy.
Collapse
Affiliation(s)
- Antonio Pérez‐Pérez
- Department of Medical Biochemistry and Molecular BiologyVirgen Macarena University HospitalUniversity of SevilleSevilleSpain
| | - Ayelén Toro
- Laboratory of Placental Molecular PhysiologyDepartment of Biological ChemistrySchool of SciencesUniversity of Buenos AiresIQUIBICEN‐CONICETBuenos AiresArgentina
| | - Teresa Vilariño‐García
- Department of Medical Biochemistry and Molecular BiologyVirgen Macarena University HospitalUniversity of SevilleSevilleSpain
| | - Julieta Maymó
- Laboratory of Placental Molecular PhysiologyDepartment of Biological ChemistrySchool of SciencesUniversity of Buenos AiresIQUIBICEN‐CONICETBuenos AiresArgentina
| | - Pilar Guadix
- Department of Obstetrics and GynecologyVirgen Macarena University HospitalUniversity of SevilleSevilleSpain
| | - José L. Dueñas
- Department of Obstetrics and GynecologyVirgen Macarena University HospitalUniversity of SevilleSevilleSpain
| | | | - Cecilia Varone
- Laboratory of Placental Molecular PhysiologyDepartment of Biological ChemistrySchool of SciencesUniversity of Buenos AiresIQUIBICEN‐CONICETBuenos AiresArgentina
| | - Víctor Sánchez‐Margalet
- Department of Medical Biochemistry and Molecular BiologyVirgen Macarena University HospitalUniversity of SevilleSevilleSpain
| |
Collapse
|
6
|
Sam68 Mediates the Activation of Insulin and Leptin Signalling in Breast Cancer Cells. PLoS One 2016; 11:e0158218. [PMID: 27415018 PMCID: PMC4944952 DOI: 10.1371/journal.pone.0158218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 06/13/2016] [Indexed: 12/23/2022] Open
Abstract
Obesity is a well-known risk factor for breast cancer development in postmenopausal women. High insulin and leptin levels seem to have a role modulating the growth of these tumours. Sam68 is an RNA-binding protein with signalling functions that has been found to be overexpressed in breast cancer. Moreover, Sam68 may be recruited to insulin and leptin signalling pathways, mediating its effects on survival, growth and proliferation in different cellular types. We aimed to study the expression of Sam68 and its phosphorylation level upon insulin and leptin stimulation, and the role of Sam68 in the proliferative effect and signalling pathways that are activated by insulin or leptin in human breast adenocarcinoma cells. In the human breast adenocarcinoma cell lines MCF7, MDA-MB-231 and BT-474, Sam68 protein quantity and gene expression were increased upon leptin or insulin stimulation, as it was checked by qPCR and immunoblot. Moreover, both insulin and leptin stimulation promoted an increase in Sam68 tyrosine phosphorylation and negatively regulated its RNA binding capacity. siRNA was used to downregulate Sam68 expression, which resulted in lower proliferative effects of both insulin and leptin, as well as a lower activation of MAPK and PI3K pathways promoted by both hormones. These effects may be partly explained by the decrease in IRS-1 expression by down-regulation of Sam68. These results suggest the participation of Sam68 in both leptin and insulin receptor signaling in human breast cancer cells, mediating the trophic effects of these hormones in proliferation and cellular growth.
Collapse
|
7
|
Pérez-Pérez A, Sánchez-Jiménez F, Maymó J, Dueñas JL, Varone C, Sánchez-Margalet V. Role of leptin in female reproduction. Clin Chem Lab Med 2015; 53:15-28. [PMID: 25014521 DOI: 10.1515/cclm-2014-0387] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/16/2014] [Indexed: 12/26/2022]
Abstract
Reproductive function is dependent on energy resources. The role of weight, body composition, fat distribution and the effect of diet have been largely investigated in experimental female animals as well as in women. Any alteration in diet and/or weight may induce abnormalities in timing of sexual maturation and fertility. However, the cellular mechanisms involved in the fine coordination of energy balance and reproduction are largely unknown. The brain and hypothalamic structures receive endocrine and/or metabolic signals providing information on the nutritional status and the degree of fat stores. Adipose tissue acts both as a store of energy and as an active endocrine organ, secreting a large number of biologically important molecules termed adipokines. Adipokines have been shown to be involved in regulation of the reproductive functions. The first adipokine described was leptin. Extensive research over the last 10 years has shown that leptin is not only an adipose tissue-derived messenger of the amount of energy stores to the brain, but also a crucial hormone/cytokine for a number of diverse physiological processes, such as inflammation, angiogenesis, hematopoiesis, immune function, and most importantly, reproduction. Leptin plays an integral role in the normal physiology of the reproductive system with complex interactions at all levels of the hypothalamic-pituitary gonadal (HPG) axis. In addition, leptin is also produced by placenta, where it plays an important autocrine function. Observational studies have demonstrated that states of leptin excess, deficiency, or resistance can be associated with abnormal reproductive function. This review focuses on the leptin action in female reproduction.
Collapse
|
8
|
Wilson BT, Omer M, Hellens SW, Zwolinski SA, Yates LM, Lynch SA. Microdeletion 1p35.2: a recognizable facial phenotype with developmental delay. Am J Med Genet A 2015; 167A:1916-20. [PMID: 25900906 DOI: 10.1002/ajmg.a.37114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/02/2015] [Indexed: 11/08/2022]
Abstract
We describe two patients with microdeletion 1p35.2, intrauterine growth retardation, small stature, hypermetropia, hearing impairment and developmental delay. Both patients have long, myopathic facies, with fine eyebrows, small mouths and micrognathia. We postulate a role for the histone deacetylase HDAC1 in the facial phenotype and suggest that deletion of KPNA6 may prevent transmission of the 1p35.2 deletion from affected girls to any offspring through impaired zygotic genome activation.
Collapse
Affiliation(s)
- Brian T Wilson
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK.,Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, International Centre for Life, Newcastle upon Tyne, UK
| | - Murwan Omer
- National Centre for Medical Genetics, Our Lady's Children's Hospital, Crumlin, Ireland
| | - Stephen W Hellens
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, International Centre for Life, Newcastle upon Tyne, UK
| | - Simon A Zwolinski
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, International Centre for Life, Newcastle upon Tyne, UK
| | - Laura M Yates
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK.,Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, International Centre for Life, Newcastle upon Tyne, UK
| | - Sally Ann Lynch
- National Centre for Medical Genetics, Our Lady's Children's Hospital, Crumlin, Ireland
| |
Collapse
|
9
|
Sánchez-Jiménez F, Sánchez-Margalet V. Role of Sam68 in post-transcriptional gene regulation. Int J Mol Sci 2013; 14:23402-19. [PMID: 24287914 PMCID: PMC3876053 DOI: 10.3390/ijms141223402] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 01/10/2023] Open
Abstract
The STAR family of proteins links signaling pathways to various aspects of post-transcriptional regulation and processing of RNAs. Sam68 belongs to this class of heteronuclear ribonucleoprotein particle K (hnRNP K) homology (KH) single domain-containing family of RNA-binding proteins that also contains some domains predicted to bind critical components in signal transduction pathways. In response to phosphorylation and other post-transcriptional modifications, Sam68 has been shown to have the ability to link signal transduction pathways to downstream effects regulating RNA metabolism, including transcription, alternative splicing or RNA transport. In addition to its function as a docking protein in some signaling pathways, this prototypic STAR protein has been identified to have a nuclear localization and to take part in the formation of both nuclear and cytosolic multi-molecular complexes such as Sam68 nuclear bodies and stress granules. Coupling with other proteins and RNA targets, Sam68 may play a role in the regulation of differential expression and mRNA processing and translation according to internal and external signals, thus mediating important physiological functions, such as cell death, proliferation or cell differentiation.
Collapse
Affiliation(s)
- Flora Sánchez-Jiménez
- Department of Medical Biochemistry and Molecular Biology and Immunology, UGC Clinical Biochemistry, Virgen Macarena University Hospital, Avenue. Sánchez Pizjuan 4, Medical School, University of Seville, Seville 41009, Spain.
| | | |
Collapse
|
10
|
Mendieta Zerón H, García Solorio VJ, Nava Díaz PM, Garduño Alanís A, Santillán Benítez JG, Domínguez García V, Escobar Briones C, Denova Gutiérrez E. Hyperleptinemia as a prognostic factor for preeclampsia: a cohort study. ACTA MEDICA (HRADEC KRÁLOVÉ) 2013; 55:165-71. [PMID: 23631287 DOI: 10.14712/18059694.2015.41] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Leptin is an adipokine which has a direct relationship to obesity. Our aim was to measure this hormone in pregnant women at three months intervals throughout their pregnancies to determine the serum value of those who developed preeclampsia. MATERIAL AND METHODS We followed 19 women (median age 24.8 +/- 5.7 years) with pre-gestational Body Mass Index (BMI) less than 25 kg/m2, 21 (median age 26.1 +/- 4.6 years) with BMI higher than 25 kg/m2 and 16 (median age 30.9 +/- 5.8 years) with Gestational Diabetes Mellitus (GDM) (median age 30.9 +/- 5.8 years), recruited in the 1st trimester of pregnancy. Serum levels of leptin were measured with radioimmunoassay (RIA) technique. RESULTS In the first trimester of pregnancy leptin levels showed statistically significant differences between normal weight and overweight-obese women (p < 0.001), diabetic women (p < 0.05) and the subgroup of preeclamptic women (p < 0.001). For those women with PGBMI > or = 40 kg/m2 and leptin > or = 40 ng/ml in the second trimester, the Odds Ratio (OR) to develop preeclampsia was of 47.95% CI (4.1-527.2). Analyzing leptin values with ROC curves, the greatest area under the curve (AUC) was for leptin in the second trimester (0.773, CI: 0.634-0.911). CONCLUSION Women with morbid obesity (BMI > or = 40 kg/m2) had significantly higher levels of serum leptin (p < 0.01) and a value of 40 ng/ml of this hormone seems to be predictive of developing preeclampsia in this group of patients.
Collapse
Affiliation(s)
- Hugo Mendieta Zerón
- Molecular Biology Laboratory, Medical Research Center (CICMED), Autonomous University of the State of Mexico (UAEMex), Toluca, México.
| | | | | | | | | | | | | | | |
Collapse
|