1
|
Benn P, Merrion K. Chromosome segregation of human nonhomologous Robertsonian translocations: insights from preimplantation genetic testing. Eur J Hum Genet 2024:10.1038/s41431-024-01693-w. [PMID: 39341985 DOI: 10.1038/s41431-024-01693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/15/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Robertsonian translocations (robs) are associated with a high risk for unbalanced segregations. Preimplantation Genetic Testing (PGT) offers an early opportunity to evaluate segregation patterns and selection against chromosome imbalances. The objective of this study was to evaluate the chromosome complements in blastocysts for male and female rob carriers and provide information useful in PGT counseling for rob carriers. PGT results were reviewed for 296 couples where a balanced and nonhomologous rob was present in one member of the couple. All embryos had day 5/6 trophectoderm biopsy and SNP-based PGT. The study included 2235 blastocysts, of which 2151 (96.2%) had results. Significantly fewer blastocysts were available for female rob carriers (mean 4.60/IVF cycle) compared to males (5.49/cycle). Male carriers were more likely to have blastocysts with a normal/balanced chromosome complement; 84.8% versus 62.8% (P < 0.00001). Male carriers had fewer blastocysts with monosomy (60/152, 39.5%) compared to female carriers (218/396, 55.1%) (P = 0.001). Twenty-one (1%) blastocysts showed 3:0 segregation; these were mostly double trisomies and derived from female carriers. Differences between chromosome complements for male versus female carriers suggest that selection against unbalanced forms may occur during spermatogenesis. Six blastocyst samples showed an unexpected ("noncanonical") combination of trisomy and monosomy. One case of uniparental disomy was identified. For female carriers, there was no association between unbalanced segregation and parental age but for male carriers, there was an inverse association. PGT is a highly beneficial option for rob carriers and patients can be counseled using our estimates for the chance of at least one normal/balanced embryo.
Collapse
Affiliation(s)
- Peter Benn
- University of Connecticut Health Center, Farmington, CT, 06030, USA.
| | | |
Collapse
|
2
|
Wang C, Peng Y, Chen H, Wang Q, Dong Y, Liu H, Yao Y, Zhang S, Li Y, Cai S, Li X, Lin G, Gong F. Early GnRH-agonist therapy does not negatively impact the endometrial repair process or live birth rate. Front Endocrinol (Lausanne) 2024; 15:1343176. [PMID: 38742200 PMCID: PMC11089162 DOI: 10.3389/fendo.2024.1343176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Study objective To investigate whether different timings of GnRH-a downregulation affected assisted reproductive outcomes in infertile women with moderate-to-severe intrauterine adhesions (IUAs) accompanied by adenomyosis. Design A retrospective case series. Setting An assisted reproductive technology center. Patients The study reviewed 123 infertile women with moderate-to-severe IUAs accompanied by adenomyosis undergoing their first frozen-thawed embryo transfer (FET) cycles between January 2019 and December 2021. Measurements and main results The majority of patients had moderate IUA (n=116, 94.31%). The average Basal uterine volume was 73.58 ± 36.50 cm3. The mean interval from operation to the first downregulation was 21.07 ± 18.02 days (range, 1-79 days). The mean duration of hormone replacement therapy (HRT) was 16.93 ± 6.29 days. The average endometrial thickness on the day before transfer was 10.83 ± 1.75 mm. A total of 70 women achieved clinical pregnancy (56.91%). Perinatal outcomes included live birth (n=47, 67.14%), early miscarriage (n=18, 25.71%), and late miscarriage (n=5, 7.14%). The time interval between uterine operation and the first downregulation was not a significant variable affecting live birth. Maternal age was the only risk factor associated with live birth (OR:0.89; 95% CI: 0.79-0.99, P=0.041). Conclusions The earlier initiation of GnRH-a to suppress adenomyosis prior to endometrial preparation for frozen embryo transfer did not negatively impact repair of the endometrium after resection.
Collapse
Affiliation(s)
- Chen Wang
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yangqin Peng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Hui Chen
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Qinmei Wang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Yu Dong
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Huimin Liu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Yaoshan Yao
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Shunji Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Yuan Li
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Sufen Cai
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Xihong Li
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Key Laboratory of Stem Cells and Reproductive Engineering, National Health and Family Planning Commission, Changsha, China
| | - Fei Gong
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
| |
Collapse
|
3
|
Cheng D, Lu CF, Gong F, Du J, Yuan S, Luo KL, Tan YQ, Lu GX, Lin G. A case report of a normal fertile woman with 46,XX/46,XY somatic chimerism reveals a critical role for germ cells in sex determination. Hum Reprod 2024; 39:849-855. [PMID: 38420683 DOI: 10.1093/humrep/deae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/16/2024] [Indexed: 03/02/2024] Open
Abstract
Individuals with 46,XX/XY chimerism can display a wide range of characteristics, varying from hermaphroditism to complete male or female, and can display sex chromosome chimerism in multiple tissues, including the gonads. The gonadal tissues of females contain both granulosa and germ cells. However, the specific sex chromosome composition of the granulosa and germ cells in 46,XX/XY chimeric female is currently unknown. Here, we reported a 30-year-old woman with secondary infertility who displayed a 46,XX/46,XY chimerism in the peripheral blood. FISH testing revealed varying degrees of XX/XY chimerism in multiple tissues of the female patient. Subsequently, the patient underwent preimplantation genetic testing (PGT) treatment, and 26 oocytes were retrieved. From the twenty-four biopsied mature oocytes, a total of 23 first polar bodies (PBs) and 10 second PBs were obtained. These PBs and two immature metaphase I (MI) oocytes only displayed X chromosome signals with no presence of the Y, suggesting that all oocytes in this chimeric female were of XX germ cell origin. On the other hand, granulosa cells obtained from individual follicles exhibited varied proportions of XX/XY cell types, and six follicles possessed 100% XX or XY granulosa cells. A total of 24 oocytes were successfully fertilized, and 12 developed into blastocysts, where 5 being XY and 5 were XX. Two blastocysts were transferred with one originating from an oocyte aspirated from a follicle containing 100% XY granulosa cells. This resulted in a twin pregnancy. Subsequent prenatal diagnosis confirmed normal male and female karyotypes. Ultimately, healthy boy-girl twins were delivered at full term. In summary, this 46,XX/XY chimerism with XX germ cells presented complete female, suggesting that germ cells may exert a significant influence on the sexual determination of an individual, which provide valuable insights into the intricate processes associated with sexual development and reproduction.
Collapse
Affiliation(s)
- Dehua Cheng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Chang-Fu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
| | - Fei Gong
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
| | - Juan Du
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
| | - Shimin Yuan
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Ke-Li Luo
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Yue-Qiu Tan
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
| | - Guang-Xiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
| |
Collapse
|
4
|
Tian Z, Lian W, Xu L, Long Y, Tang L, Wang H. Robust evidence reveals the reliable rate of normal/balanced embryos for identifying reciprocal translocation and Robertsonian translocation carriers. ZYGOTE 2024; 32:58-65. [PMID: 38083872 DOI: 10.1017/s0967199423000606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
We aimed to evaluate the reliable rate of normal/balanced embryos for reciprocal translocation and Robertsonian translocation carriers and to provide convincing evidence for clinical staff to conduct genetic counselling regarding common structural rearrangements to alleviate patient anxiety. The characteristics of 39,459 embryos that were sourced from unpublished data and literature were analyzed. The samples consisted of 17,536 embryo karyotypes that were not published and 21,923 embryo karyotypes obtained from the literature. Using the PubMed, Cochrane Library, Web of Science, and Embase databases, specific keywords were used to screen the literature for reciprocal translocation and Robertsonian translocation. The ratio of normal/balanced embryos in the overall data was calculated and analyzed, and we grouped the results according to gender to confirm if there were gender differences. We also divided the data into the cleavage stage and blastocyst stage according to the biopsy period to verify if there was a difference in the ratio of normal/balanced embryos. By combining the unpublished data and data derived from the literature, the average rates of normal/balanced embryos for reciprocal translocation and Robertsonian translocation carriers were observed to be 26.96% (7953/29,495) and 41.59% (4144/9964), respectively. Reciprocal translocation and Robertson translocation exhibited higher rates in male carriers than they did in female carriers (49.60% vs. 37.44%; 29.84% vs. 27.67%). Additionally, the data for both translocations exhibited differences in the normal/balanced embryo ratios between the cleavage and blastocyst stages of carriers for both Robertsonian translocation and reciprocal translocation (36.07% vs 43.43%; 24.88% vs 27.67%). The differences between the two location types were statistically significant (P < 0.05). The normal/balanced ratio of embryos in carriers of reciprocal and RobT was higher than the theoretical ratio, and the values ranged from 26.96% to 41.59%. Moreover, the male carriers possessed a higher number of embryos that were normal or balanced. The ratio of normal/balanced embryos in the blastocyst stage was higher than that in the cleavage stage. The results of this study provide a reliable suggestion for future clinic genetic consulting regarding the rate of normal/balanced embryos of reciprocal translocation and Robertsonian translocation carriers.
Collapse
Affiliation(s)
- Zhihua Tian
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, Kunming650032, China
| | - Wenchang Lian
- Department of Medical Genetics, Yikon Genomics Company, Ltd, Jiangsu Suzhou215021, China
| | - Li Xu
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, Kunming650032, China
| | - Yanxi Long
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, Kunming650032, China
| | - Li Tang
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, Kunming650032, China
| | - Huawei Wang
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, Kunming650032, China
| |
Collapse
|
5
|
Xiao Y, Cheng D, Luo K, Li M, Tan Y, Lin G, Hu L. Evaluation of genetic risk of apparently balanced chromosomal rearrangement carriers by breakpoint characterization. J Assist Reprod Genet 2024; 41:147-159. [PMID: 37993578 PMCID: PMC10789712 DOI: 10.1007/s10815-023-02986-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023] Open
Abstract
PURPOSE To report genetic characteristics and associated risk of chromosomal breaks due to chromosomal rearrangements in large samples. METHODS MicroSeq, a technique that combines chromosome microdissection and next-generation sequencing, was used to identify chromosomal breakpoints. Long-range PCR and Sanger sequencing were used to precisely characterize 100 breakpoints in 50 ABCR carriers. RESULTS In addition to the recurrent regions of balanced rearrangement breaks in 8q24.13, 11q11.23, and 22q11.21 that had been documented, we have discovered a 10-Mb region of 12q24.13-q24.3 that could potentially be a sparse region of balanced rearrangement breaks. We found that 898 breakpoints caused gene disruption and a total of 188 breakpoints interrupted genes recorded in OMIM. The percentage of breakpoints that disrupted autosomal dominant genes recorded in OMIM was 25.53% (48/188). Fifty-four of the precisely characterized breakpoints had 1-8-bp microhomologous sequences. CONCLUSION Our findings provide a reference for the evaluation of the pathogenicity of mutations in related genes that cause protein truncation in clinical practice. According to the characteristics of breakpoints, non-homologous end joining and microhomology-mediated break-induced replication may be the main mechanism for ABCRs formation.
Collapse
Affiliation(s)
- Yanqin Xiao
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan, China
| | - Dehua Cheng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410023, Hunan, China
| | - Keli Luo
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410023, Hunan, China
| | - Mengge Li
- National Engineering and Research Center of Human Stem Cells, Changsha, 410023, Hunan, China
- Hunan Guangxiu Hospital, Changsha, 410023, Hunan, China
| | - Yueqiu Tan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410023, Hunan, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410023, Hunan, China
- National Engineering and Research Center of Human Stem Cells, Changsha, 410023, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, 410008, Hunan, China
| | - Liang Hu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan, China.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410023, Hunan, China.
- National Engineering and Research Center of Human Stem Cells, Changsha, 410023, Hunan, China.
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, 410008, Hunan, China.
| |
Collapse
|
6
|
Chen L, Ma S, Xie M, Gong F, Lu C, Zhang S, Lin G. Oxygen concentration from days 1 to 3 after insemination affects the embryo culture quality, cumulative live birth rate, and perinatal outcomes. J Assist Reprod Genet 2023; 40:2609-2618. [PMID: 37728792 PMCID: PMC10643741 DOI: 10.1007/s10815-023-02943-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023] Open
Abstract
PURPOSE We aimed to compare embryo development, cumulative live birth rate (CLBR), and perinatal outcomes of embryos cultured in 20% and 5% oxygen from days 1 to 3 after insemination. METHODS This retrospective study included patients who received in vitro fertilization (IVF) treatment between January 2015 and November 2019. Embryos of each patient were cultured at 20% or 5% oxygen from days 1-3 after insemination. The primary outcome was CLBR. Propensity score matching (PSM) was used to balance patients' baseline data in both oxygen groups. RESULTS In total, 31,566 patients were enrolled. After PSM, the rate of high-quality day 3 embryos was significantly lower in the 20% than in the 5% oxygen group (0.49 ± 0.33 vs 0.51 ± 0.33; adjusted β = -0.03; 95% confidence interval [CI], -0.03 to -0.02). The CLBR was significantly lower in the 20% than in the 5% oxygen group (58.6% vs. 62.4%; adjusted odds ratio = 0.85; 95% CI, 0.81-0.90). The birthweight and Z score of singletons were significantly higher in the 20% than in the 5% oxygen group (birthweight: 3.30 ± 0.50 vs. 3.28 ± 0.48; adjusted β = 0.022; 95% CI, 0.004-0.040; Z score: 0.26 ± 1.04 vs. 0.22 ± 1.01; adjusted β = 0.037; 95% CI, 0.001-0.074). CONCLUSION Culturing embryos at atmospheric oxygen concentrations from days 1 to 3 compromises embryo quality, reduces CLBR, and affects birthweight. The 5% oxygen concentration is more suitable for embryo culture in IVF laboratories to achieve successful outcomes.
Collapse
Affiliation(s)
- Longbin Chen
- Institute of Reproductive and Stem Cells, School of Basic Medicine, Central South University, Changsha, China
| | - Shujuan Ma
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Menghan Xie
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Fei Gong
- Institute of Reproductive and Stem Cells, School of Basic Medicine, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- Key Laboratory of Reproductive and Stem Cell Engineering, Ministry of Health, Changsha, China
| | - Changfu Lu
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Shuoping Zhang
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.
| | - Ge Lin
- Institute of Reproductive and Stem Cells, School of Basic Medicine, Central South University, Changsha, China.
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.
- Key Laboratory of Reproductive and Stem Cell Engineering, Ministry of Health, Changsha, China.
| |
Collapse
|
7
|
Wang X, Cai S, Tang S, Yang L, Tan J, Sun X, Gong F. Effect of lifestyle or metformin interventions before IVF/ICSI treatment on infertile women with overweight/obese and insulin resistance: a factorial design randomised controlled pilot trial. Pilot Feasibility Stud 2023; 9:160. [PMID: 37700375 PMCID: PMC10496164 DOI: 10.1186/s40814-023-01388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND For infertile women with overweight/obesity and insulin resistance (IR), it is uncertain whether intervention before infertility treatment can improve live birth rate (LBR). We implemented a factorial-design study to explore the effectiveness of lifestyle and metformin interventions. This pilot study aimed to evaluate the feasibility of a definitive study. METHODS We randomised 80 women without polycystic ovarian syndrome (PCOS) who planned to start their first or second IVF/ICSI treatment with a body mass index ≥ 25 kg/m2 and IR. Participants were randomised (1:1:1:1) into four groups: (A) lifestyle intervention, (B) metformin intervention, (C) lifestyle + metformin intervention, or (D) no intervention. All interventions were performed before IVF/ICSI treatment. RESULTS During 10 months, 114 women were screened and eligible; 80 were randomised, and 72 received the assigned treatment. The recruitment rate was 70.18% (80/114, 95% CI 61.65%-78.70%). An average of 10 participants were randomised each month. None of the participants crossed over from one group to another. Approximately 93.15% (68/73) of the participants achieved good intervention compliance. Only 77.78% (56/72) of the recruited participants started infertility treatment after achieving the goal of the intervention. All randomised participants completed the follow-up. Mild adverse events after metformin administration were reported in 43.24% (16/37) of the cases, although no serious adverse events related to the interventions occurred. The LBR for groups A + C and B + D were 33.33% (12/36) and 33.33% (12/36) (RR = 1.00, 95%CI:0.52-1.92) (lifestyle intervention effect). The LBR for groups B + C and A + D were 43.24% (16/37) and 22.86% (8/35) (RR = 1.89, 95% CI:0.93-3.86) (metformin intervention effect). There was no evidence for an intervention interaction between lifestyle and metformin. We cannot yet confirm the effects of lifestyle, metformin, or their interaction owing to the insufficient sample size in this pilot study. CONCLUSIONS Instituting a 2 × 2 factorial design randomized controlled trial (RCT) is feasible, as the pilot study showed a high recruitment rate and compliance. There is no evidence that lifestyle or metformin improves live birth, and adequately powered clinical trials are required. TRIAL REGISTRATION clinicaltrials.gov NCT03898037. Registered: April 1, 2019.
Collapse
Affiliation(s)
- Xiaojuan Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, 410008 Hunan China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410008 Hunan China
| | - Sufen Cai
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410008 Hunan China
| | - Sha Tang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410008 Hunan China
| | - Lanlin Yang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410008 Hunan China
| | - Jing Tan
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China
- NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, 610041 Sichuan China
| | - Xin Sun
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China
- NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, 610041 Sichuan China
| | - Fei Gong
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410008 Hunan China
- Laboratory of Reproductive and Stem Cell Engineering, Key Laboratory of National Health and Family Planning Commission, Central South University, Changsha, 410008 Hunan China
| |
Collapse
|
8
|
Chen S, Zhang S, Liu G, Wang X, Peng Y, Chen Y, Gong F, Yang Z, Lin G. Embryo development, pregnancy and live birth outcomes following IVF treatment were not compromised during the COVID-19 pandemic. J Assist Reprod Genet 2023; 40:1949-1959. [PMID: 37428430 PMCID: PMC10371922 DOI: 10.1007/s10815-023-02863-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
Abstract
PURPOSE To evaluate whether outcomes of in vitro fertilization (IVF) are affected during the coronavirus disease-19 (COVID-19) pandemic. METHODS This was a single-center, retrospective study. Embryo development, pregnancy, and live birth outcomes were compared between COVID-19 and pre-COVID-19 groups. Blood samples from patients during the COVID-19 pandemic were tested for COVID-19. RESULTS After 1:1 random matching, 403 cycles for each group were included in the study. The rates of fertilization, normal fertilization, and blastocyst formation were higher in the COVID-19 group than in the pre-COVID-19 group. No difference was observed in the rates of day 3 good-quality embryos and good-quality blastocysts between the groups. A multivariate analysis showed that the live birth rate in the COVID-19 group was higher than that in the pre-COVID-19 group (51.4% vs. 41.4%, P = 0.010). In fresh cleavage-stage embryo and blastocyst transfer cycles, there were no differences between the groups in terms of pregnancy, obstetric, and perinatal outcomes. In the freeze-all cycles, the live birth rate was higher during the COVID-19 pandemic (58.0% vs. 34.5%, P = 0.006) than during the pre-COVID-19 period following frozen cleavage stage embryo transfer. The rate of gestational diabetes during the COVID-19 pandemic was higher than that during the pre-COVID-19 period (20.3% vs. 2.4%, P = 0.008) following frozen blastocyst transfer. All the serological results of the patients during the COVID-19 pandemic were negative. CONCLUSION Our results indicate that embryo development, pregnancy, and live birth outcomes in uninfected patients were not compromised during the COVID-19 pandemic at our center.
Collapse
Affiliation(s)
- Su Chen
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Shuoping Zhang
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Gang Liu
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, Central South University, No. 88 Xiangya Road, Changsha, 410008, China
| | - Xiaojuan Wang
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yangqin Peng
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yongzhe Chen
- The First Affiliated Hospital of University of South China, Hengyang, China
| | - Fei Gong
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, Central South University, No. 88 Xiangya Road, Changsha, 410008, China
| | - Zhihong Yang
- California Excellent Fertility, 1808 W Lincoln Ave, Anaheim, CA, 92801, USA.
| | - Ge Lin
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.
- Institute of Reproductive and Stem Cell Engineering, Central South University, No. 88 Xiangya Road, Changsha, 410008, China.
| |
Collapse
|
9
|
Wang X, Zhang S, Gu Y, Ma S, Peng Y, Gong F, Tan H, Lin G. The impact of blastocyst freezing and biopsy on the association of blastocyst morphological parameters with live birth and singleton birthweight. Fertil Steril 2023; 119:56-66. [PMID: 36404157 DOI: 10.1016/j.fertnstert.2022.09.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To explore whether the associations of 3 blastocyst morphological parameters, namely, degree of blastocyst expansion (expansion), appearance of trophectoderm (TE) and inner cell mass, with live birth and singleton birth weight are influenced by blastocyst freezing and biopsy. DESIGN A retrospective study. SETTING An assisted reproductive technology center. PATIENT(S) 28,515 single blastocyst transfer cycles between January 2014 and August 2019. INTERVENTION(S) Not applicable. MAIN OUTCOME MEASURE(S) Live birth and singleton birth weight. RESULT(S) Blastocyst transfer cycles were divided into 4 groups: biopsied blastocyst cycles (biopsied-blast), thawed blastocyst cycles (thawed-blast), blastocyst from thawed cleavage embryo cycles (blast-thawed-D3), and fresh blastocyst cycles (fresh-blast). Subgroup analyses by blastocyst stage (day 5 and day 6) were performed in thawed-blast and blast-thawed-D3. Because almost all blastocysts were biopsied on day 6 and fresh blastocysts were transferred on day 5, the biopsied-blast and fresh-blast were not divided into subgroups. First, the associations between blastocyst morphological parameters and live birth were analyzed. To explore the effect of freezing, we compared day-5 frozen cycles (thawed-blast) vs. day-5 fresh cycles (including fresh-blast and blast-thawed-D3) and day 6 frozen cycles (thawed-blast) vs. day-6 fresh cycles (blast-thawed-D3). Inner cell mass and TE were associated with live birth for day 5 embryos, and only TE affected live birth for day-6 embryos. The associations were the same in frozen cycles and fresh cycles. To explore the effect of biopsy, we compared day-6 biopsied cycles (biopsied-blast) vs. day-6 nonbiopsied cycles (including thawed-blast and blast-thawed-D3). All the 3 parameters were associated with live birth in biopsied-blast, whereas only TE was associated with live birth in nonbiopsied cycles. In addition, the associations between blastocyst morphological parameters and singleton birthweight were analyzed. In the 6 subgroups, expansion stage of day-6 embryos in biopsied-blast and TE grade of day-6 embryos in thawed-blast were associated with birth weight, and there are no associations in other subgroups. CONCLUSION(S) The association of blastocyst morphological parameters with live birth may be affected by blastocyst biopsy and/or genetic testing, and its association with birth weight may be affected by blastocyst freezing and biopsy and/or genetic testing.
Collapse
Affiliation(s)
- Xiaojuan Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, Hunan, People's Republic of China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, People's Republic of China
| | - Shuoping Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, People's Republic of China
| | - Yifan Gu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, People's Republic of China
| | - Shujuan Ma
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, People's Republic of China
| | - Yangqin Peng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, People's Republic of China
| | - Fei Gong
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, People's Republic of China; Laboratory of Reproductive and Stem Cell Engineering, Key Laboratory of National Health and Family Planning Commission, Central South University, Changsha, Hunan, People's Republic of China
| | - Hongzhuan Tan
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, Hunan, People's Republic of China
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, People's Republic of China; Laboratory of Reproductive and Stem Cell Engineering, Key Laboratory of National Health and Family Planning Commission, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
10
|
Segmental aneuploidies with 1 Mb resolution in human preimplantation blastocysts. Genet Med 2022; 24:2285-2295. [PMID: 36107168 DOI: 10.1016/j.gim.2022.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022] Open
Abstract
PURPOSE This study aimed to investigate the spectrum and characteristics of segmental aneuploidies (SAs) of <10 megabase (Mb) length in human preimplantation blastocysts. METHODS Preimplantation genetic testing for aneuploidy was performed in 15,411 blastocysts from 5171 patients using a validated 1 Mb resolution platform. The characteristics and spectrum of SAs, including the incidence, sizes, type, inheritance pattern, clinical significance, and embryo distribution, were studied. RESULTS In total, 6.4% of the 15,411 blastocysts carried SAs of >10 Mb, 4.9% of embryos had SAs ranging between 1 to 10 Mb, and 84.3% of 1 to 10 Mb SAs were <5 Mb in size. Inheritance pattern analysis indicated that approximately 63.8% of 1 to 10 Mb SAs were inherited and were predominantly 1 to 3 Mb in size. Furthermore, 18.4% of inherited SAs and 51.9% de novo 1 to 10 Mb SAs were pathogenic or likely pathogenic (P/LP). Different from whole-chromosome aneuploidies, reanalysis indicated that 50% of the de novo 1 to 10 Mb SAs and 70% of the >10 Mb SAs arose from mitotic errors. CONCLUSION Based on the established platform, 1 to 10 Mb SAs are common in blastocysts and include a subset of P/LP SAs. Inheritance pattern analysis and clinical interpretation based on the American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines contributed to determine the P/LP SAs.
Collapse
|
11
|
Ogur C, Kahraman S, Griffin DK, Cinar Yapan C, Tufekci MA, Cetinkaya M, Temel SG, Yilmaz A. PGT for structural chromosomal rearrangements in 300 couples reveals specific risk factors but an interchromosomal effect is unlikely. Reprod Biomed Online 2022; 46:713-727. [PMID: 36803887 DOI: 10.1016/j.rbmo.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022]
Abstract
RESEARCH QUESTION What factors affect the proportion of chromosomally balanced embryos in structural rearrangement carriers? Is there any evidence for an interchromosomal effect (ICE)? DESIGN Preimplantation genetic testing outcomes of 300 couples (198 reciprocal, 60 Robertsonian, 31 inversion and 11 complex structural rearrangement carriers) were assessed retrospectively. Blastocysts were analysed either by array-comparative genomic hybridization or next-generation sequencing techniques. ICE was investigated using a matched control group and sophisticated statistical measurement of effect size (φ). RESULTS 300 couples underwent 443 cycles; 1835 embryos were analysed and 23.8% were diagnosed as both normal/balanced and euploid. The overall cumulative clinical pregnancy and live birth rates were 69.5% and 55.8%, respectively. Complex translocations and female age (≥35) were found to be risk factors associated with lower chance of having a transferable embryo (P < 0.001). Based on analysis of 5237 embryos, the cumulative de-novo aneuploidy rate was lower in carriers compared to controls (45.6% versus 53.4%, P < 0.001) but this was a 'negligible' association (φ < 0.1). A further assessment of 117,033 chromosomal pairs revealed a higher individual chromosome error rate in embryos of carriers compared to controls (5.3% versus 4.9%), which was also a 'negligible' association (φ < 0.1), despite a P-value of 0.007. CONCLUSIONS These findings suggest that rearrangement type, female age and sex of the carrier have significant impacts on the proportion of transferable embryos. Careful examination of structural rearrangement carriers and controls indicated little or no evidence for an ICE. This study helps to provide a statistical model for investigating ICE and an improved personalized reproductive genetics assessment for structural rearrangement carriers.
Collapse
Affiliation(s)
- Cagri Ogur
- Yildiz Technical University, Department of Bioengineering, Istanbul, Turkey; Igenomix Avrupa Laboratories, Istanbul, Turkey.
| | - Semra Kahraman
- Istanbul Memorial Hospital, ART and Reproductive Genetics Center, Istanbul, Turkey
| | - Darren Karl Griffin
- School of Biosciences, Centre for Interdisciplinary Studies of Reproduction, University of Kent, Canterbury CT2 7NJ, UK
| | - Cigdem Cinar Yapan
- Istanbul Memorial Hospital, ART and Reproductive Genetics Center, Istanbul, Turkey
| | - Mehmet Ali Tufekci
- Istanbul Memorial Hospital, ART and Reproductive Genetics Center, Istanbul, Turkey
| | - Murat Cetinkaya
- Istanbul Memorial Hospital, ART and Reproductive Genetics Center, Istanbul, Turkey
| | - Sehime Gulsun Temel
- Uludag University, Faculty of Medicine, Department of Medical Genetics, Bursa, Turkey.
| | - Alper Yilmaz
- Yildiz Technical University, Department of Bioengineering, Istanbul, Turkey.
| |
Collapse
|
12
|
Xie P, Hu L, Peng Y, Tan YQ, Luo K, Gong F, Lu G, Lin G. Risk Factors Affecting Alternate Segregation in Blastocysts From Preimplantation Genetic Testing Cycles of Autosomal Reciprocal Translocations. Front Genet 2022; 13:880208. [PMID: 35719400 PMCID: PMC9201810 DOI: 10.3389/fgene.2022.880208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Reciprocal translocations are the most common structural chromosome rearrangements and may be associated with reproductive problems. Therefore, the objective of this study was to analyze factors that can influence meiotic segregation patterns in blastocysts for reciprocal translocation carriers. Segregation patterns of quadrivalents in 10,846 blastocysts from 2,871 preimplantation genetic testing cycles of reciprocal translocation carriers were analyzed. The percentage of normal/balanced blastocysts was 34.3%, and 2:2 segregation was observed in 90.0% of the blastocysts. Increased TAR1 (ratio of translocated segment 1 over the chromosome arm) emerged as an independent protective factor associated with an increase in alternate segregation (p = 0.004). Female sex and involvement of an acrocentric chromosome (Acr-ch) were independent risk factors that reduced alternate segregation proportions (p < 0.001). Notably, a higher TAR1 reduced the proportion of adjacent-1 segregation (p < 0.001); a longer translocated segment and female sex increased the risk of adjacent-2 segregation (p = 0.009 and p < 0.001, respectively). Female sex and involvement of an Acr-ch enhanced the ratio of 3:1 segregation (p < 0.001 and p = 0.012, respectively). In conclusion, autosomal reciprocal translocation carriers have reduced proportions of alternate segregation in blastocysts upon the involvement of an Acr-ch, female sex, and lower TAR1. These results may facilitate more appropriate genetic counseling for couples with autosomal reciprocal translocation regarding their chances of producing normal/balanced blastocysts.
Collapse
Affiliation(s)
- Pingyuan Xie
- Hunan Normal University School of Medicine, Changsha, China
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
| | - Liang Hu
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yangqin Peng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yue-qiu Tan
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Keli Luo
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Fei Gong
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Guangxiu Lu
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Ge Lin
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- *Correspondence: Ge Lin,
| |
Collapse
|
13
|
Zhai F, Wang Y, Li H, Wang Y, Zhu X, Kuo Y, Guan S, Li J, Song S, He Q, An J, Zhi X, Lian Y, Huang J, Li R, Qiao J, Yan L, Yan Z. Low-coverage NGS-based PGT-SR accurately discriminate normal/carrier embryos for patients with translocations in IVF. Reprod Biomed Online 2022; 45:473-480. [DOI: 10.1016/j.rbmo.2022.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/09/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022]
|
14
|
Li Y, Wen Q, Liao J, Ma S, Zhang S, Gu Y, Tang Y, Luo K, Yang X, Lu GX, Lin G, Gong F. Trophectoderm Biopsy Differentially Influences the Level of Serum β-Human Chorionic Gonadotropin With Different Embryonic Trophectoderm Scores in Early Pregnancy From 7847 Single-Blastocyst Transfer Cycles. Front Endocrinol (Lausanne) 2022; 13:794720. [PMID: 35250858 PMCID: PMC8894721 DOI: 10.3389/fendo.2022.794720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE To evaluate whether trophectoderm (TE) biopsy differentially influence the level of serum β-human chorionic gonadotropin (β-hCG) with different TE-scored blastocysts transferred in early pregnancy. METHODS This retrospective cohort study contained 7847 single-blastocyst transfer cycles executed between January 2019 and June 2020, including 2657 preimplantation genetic testing (PGT) cycles and 5190 in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) cycles. All cycles were classified into biopsy and control groups, and further stratified based on the TE morphological scores into three subgroups: grades A, B, and C for TE scores, respectively. Intra-group and inter-group analyses were performed on serum β-hCG levels on the 12th day after blastocyst transfer (HCG12), and obstetric and neonatal outcomes. RESULTS For cycles with a live birth, in grade A TE score subgroups, the HCG12 level did not exhibit statistical significance between the control and biopsy groups after adjustment (769 mIU/mL vs. 753 mIU/mL, P=0.631). In contrast, in grade B and C TE score subgroups, the control group showed a significantly higher level of HCG12 relative to the biopsy group (690 mIU/mL vs. 649 mIU/mL, P=0.001; 586 mIU/mL vs. 509 mIU/mL, P<0.001, respectively). We observed no statistically significant differences in obvious adverse obstetric and neonatal outcomes between the same TE-score subgroups of the biopsy group and control group. CONCLUSIONS While blastocysts with higher TE grades produced higher serum β-hCG levels in early pregnancy, TE biopsy might exert a negative impact on serum β-hCG levels by blastocysts with a grade-B TE score and below. TE biopsy did not increase the risk for adverse obstetric and neonatal outcomes.
Collapse
Affiliation(s)
- Yuan Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
| | - Quan Wen
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
| | - Jingnan Liao
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
| | - Shujuan Ma
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
| | - Shuoping Zhang
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
| | - Yifan Gu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
| | - Yi Tang
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
| | - Keli Luo
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
| | - Xiaoyi Yang
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
| | - Guang-Xiu Lu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
| | - Fei Gong
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- *Correspondence: Fei Gong,
| |
Collapse
|
15
|
Hou W, Shi G, Ma Y, Liu Y, Lu M, Fan X, Sun Y. Impact of preimplantation genetic testing on obstetric and neonatal outcomes: a systematic review and meta-analysis. Fertil Steril 2021; 116:990-1000. [PMID: 34373103 DOI: 10.1016/j.fertnstert.2021.06.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate whether preimplantation genetic testing (PGT) increases the risk of adverse obstetric and neonatal outcomes. DESIGN Systematic review and meta-analysis. SETTING Not applicable. PATIENT(S) Pregnancies achieved after PGT or in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI). INTERVENTION(S) Systematic search of databases until December 2020 with cross-checking of references from relevant articles in English. MAIN OUTCOME MEASURE(S) Obstetric and neonatal outcomes after PGT and IVF/ICSI, including mean birth weight, low birth weight, very low birth weight (VLBW), mean gestational age at birth, preterm birth, very preterm birth, birth defects, intrauterine growth retardation (IUGR), sex ratio, cesarean section, hypertensive disorders of pregnancy, gestational diabetes mellitus, placenta disorder (placenta previa, placenta abruption, placenta accreta), and preterm premature rupture of membranes. RESULT(S) Ultimately, a total of 785,445 participants were enrolled in this meta-analysis, and these participants were divided into a PGT group (n = 54,294) and an IVF/ICSI group (n = 731,151). The PGT pregnancies had lower rates of low birth weight (risk ratio [RR] 0.85, 95% confidence interval [CI] 0.75 to 0.98), VLBW (RR 0.52, 95% CI 0.33 to 0.81), and very preterm births (RR 0.55, 95% CI 0.42 to 0.70) than those of IVF/ICSI pregnancies. However, the PGT group had a higher rate of the obstetric outcome of hypertensive disorders of pregnancy (RR 1.30, 95% CI 1.08 to 1.57). The PGT did not increase the risk of other adverse obstetric and neonatal outcomes, such as those associated with mean birth weight, mean gestational age at birth, birth defects, IUGR, sex ratio, cesarean section, gestational diabetes mellitus, placental disorder (placenta previa, placenta abruption, placenta accreta), or preterm premature rupture of membranes. We performed subgroup analysis with only blastocyst biopsies and found that PGT with blastocyst biopsies was associated with a lower rate of VLBW (RR 0.55, 95% CI 0.31 to 0.95). The PGT with blastocyst biopsies did not increase the risk of other adverse obstetric and neonatal outcomes. Additionally, we performed subgroup analysis with only frozen-thawed embryo transfer cycles, and we found that PGT pregnancies were associated with a lower rate of VLBW (RR 0.55, 95% CI 0.31 to 0.97), a lower rate of cesarean birth (RR 0.90, 95% CI 0.82 to 0.99), a higher rate of preterm birth (RR 1.10, 95% CI 1.02 to 1.18), and a higher rate of IUGR (RR 1.21, 95% CI 1.06 to 1.38) than those of IVF/ICSI pregnancies. The PGT with frozen-thawed embryo transfer did not increase the risk of other adverse obstetric and neonatal outcomes. CONCLUSION(S) The pooled analysis suggested that PGT did not increase the risk of adverse obstetric outcomes. The association between PGT and a higher risk of IUGR requires further investigation.
Collapse
Affiliation(s)
- Wenhui Hou
- Reproductive Medical Center, Henan Province Key Laboratory for Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Gaohui Shi
- Reproductive Medicine Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yuanlin Ma
- Reproductive Medicine Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yongxiang Liu
- Reproductive Medicine Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Manman Lu
- Reproductive Medical Center, Henan Province Key Laboratory for Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiuli Fan
- Obstetric Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yingpu Sun
- Reproductive Medical Center, Henan Province Key Laboratory for Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China.
| |
Collapse
|
16
|
Papas RS, Kutteh WH. Genetic Testing for Aneuploidy in Patients Who Have Had Multiple Miscarriages: A Review of Current Literature. Appl Clin Genet 2021; 14:321-329. [PMID: 34326658 PMCID: PMC8315809 DOI: 10.2147/tacg.s320778] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
Recurrent pregnancy loss (RPL) is an obstetrical complication that affects about 3% of reproductive age couples. Genetic and non-genetic causes of RPL are multiple; however, aneuploidy is the most common obstetrical complication that can explain single and recurrent pregnancy loss (present in about 60% of recognized clinical pregnancies which result in a miscarriage). Parental karyotyping will only be of potential benefit for 2 to 5 percentage of RPL couples who are translocation carriers. Products of conception (POC) karyotype analysis has been used to direct management in RPL and has been shown to be cost-effective, but the technique has many limitations including high culture failure rate and maternal cell contamination. These limitations can be significantly reduced using POC chromosomal microarray (CMA) technology. We believe that POC genetic testing should be performed after the second and subsequent pregnancy loss using CMA. Although the results will not generally alter the course of treatment, the knowledge of the reason for the loss is of great emotional comfort to many patients. In addition, POC CMA performed in conjunction with a regular complete maternal RPL work-up will identify the group of truly unexplained RPL. Thus, only 10% of patients with RPL will complete an evaluation having a euploid loss and an otherwise normal work-up. This group of "truly unexplained RPL" would be ideal for new research trials and therapies. Pre-implantation genetic testing (PGT) technology has improved recently with day 5 trophectoderm biopsy as compared to biopsy on day 3 as well as with the addition of CMA and next-generation sequencing technologies. The most recent studies on PGT-SR (PGT-Structural rearrangement) show improved clinical and live birth rates per pregnancy, as well as decreased miscarriage rate for translocation carriers. PGT-A (PGT-aneuploidy) may have a limited role in RPL in cases with documented recurrent POC aneuploidy.
Collapse
Affiliation(s)
- Ralph S Papas
- Department of Obstetrics and Gynecology, Saint George Hospital - University Medical Center, Beirut, Lebanon
| | - William H Kutteh
- Department of Obstetrics and Gynecology, Baptist Memorial Hospital, Memphis, TN, USA
- Recurrent Pregnancy Loss Center, Fertility Associates of Memphis, Memphis, TN, USA
| |
Collapse
|
17
|
Snider AC, Darvin T, Spor L, Akinwole A, Cinnioglu C, Kayali R. Criteria to evaluate patterns of segmental and complete aneuploidies in preimplantation genetic testing for aneuploidy results suggestive of an inherited balanced translocation or inversion. F S Rep 2021; 2:72-79. [PMID: 34223276 PMCID: PMC8244368 DOI: 10.1016/j.xfre.2020.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/19/2020] [Accepted: 12/12/2020] [Indexed: 11/01/2022] Open
Abstract
Objective To define criteria for determining when preimplantation genetic testing for aneuploidy (PGT-A) results are suggestive of a potential balanced chromosomal rearrangement in the egg or sperm source and warrant karyotyping. Design Performance evaluation of criteria developed to assess PGT-A results for patterns of imbalances suggestive of a balanced chromosomal rearrangement in the egg or sperm source. Setting A single PGT-A laboratory and multiple in vitro fertilization centers. Patients Reproductive couples who underwent routine PGT-A testing. Interventions Karyotyping of reproductive couples for whom patterns of imbalances observed in PGT-A results suggested a balanced chromosomal rearrangement in the egg or sperm source. Main Outcome Measures Correct or incorrect flagging of predicted translocation in either the egg or sperm source based on chromosome analysis. Results Proposed criteria correctly predicted a balanced reciprocal translocation in 97% of cases (n = 33), a (13;14) Robertsonian translocation in all cases (n = 3), and an inversion in all cases (n = 2). Other criteria evaluated were determined to be ineffective because of relatively low occurrences that met the criteria and/or low predictive value. Conclusions Our results showed that the proposed criteria were effective for evaluating patterns of imbalances observed in PGT-A results suggestive of a potential chromosomal rearrangement in the egg or sperm source. Our proposed criteria can be employed by clinicians in the in vitro fertilization setting in combination with a patient's reproductive history to identify PGT-A patients who are likely carriers of balanced chromosomal rearrangements.
Collapse
|
18
|
Chen S, Yin X, Zhang S, Xia J, Liu P, Xie P, Yan H, Liang X, Zhang J, Chen Y, Fei H, Zhang L, Hu Y, Jiang H, Lin G, Chen F, Xu C. Comprehensive preimplantation genetic testing by massively parallel sequencing. Hum Reprod 2021; 36:236-247. [PMID: 33306794 DOI: 10.1093/humrep/deaa269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 09/15/2020] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Can whole genome sequencing (WGS) offer a relatively cost-effective approach for embryonic genome-wide haplotyping and preimplantation genetic testing (PGT) for monogenic disorders (PGT-M), aneuploidy (PGT-A) and structural rearrangements (PGT-SR)? SUMMARY ANSWER Reliable genome-wide haplotyping, PGT-M, PGT-A and PGT-SR could be performed by WGS with 10× depth of parental and 4× depth of embryonic sequencing data. WHAT IS KNOWN ALREADY Reduced representation genome sequencing with a genome-wide next-generation sequencing haplarithmisis-based solution has been verified as a generic approach for automated haplotyping and comprehensive PGT. Several low-depth massively parallel sequencing (MPS)-based methods for haplotyping and comprehensive PGT have been developed. However, an additional family member, such as a sibling, or a proband, is required for PGT-M haplotyping using low-depth MPS methods. STUDY DESIGN, SIZE, DURATION In this study, 10 families that had undergone traditional IVF-PGT and 53 embryos, including 13 embryos from two PGT-SR families and 40 embryos from eight PGT-M families, were included to evaluate a WGS-based method. There were 24 blastomeres and 29 blastocysts in total. All embryos were used for PGT-A. Karyomapping validated the WGS results. Clinical outcomes of the 10 families were evaluated. PARTICIPANTS/MATERIALS, SETTING, METHODS A blastomere or a few trophectoderm cells from the blastocyst were biopsied, and multiple displacement amplification (MDA) was performed. MDA DNA and bulk DNA of family members were used for library construction. Libraries were sequenced, and data analysis, including haplotype inheritance deduction for PGT-M and PGT-SR and read-count analysis for PGT-A, was performed using an in-house pipeline. Haplotyping with a proband and parent-only haplotyping without additional family members were performed to assess the WGS methodology. Concordance analysis between the WGS results and traditional PGT methods was performed. MAIN RESULTS AND THE ROLE OF CHANCE For the 40 PGT-M and 53 PGT-A embryos, 100% concordance between the WGS and single-nucleotide polymorphism (SNP)-array results was observed, regardless of whether additional family members or a proband was included for PGT-M haplotyping. For the 13 embryos from the two PGT-SR families, the embryonic balanced translocation was detected and 100% concordance between WGS and MicroSeq with PCR-seq was demonstrated. LIMITATIONS, REASONS FOR CAUTION The number of samples in this study was limited. In some cases, the reference embryo for PGT-M or PGT-SR parent-only haplotyping was not available owing to failed direct genotyping. WIDER IMPLICATIONS OF THE FINDINGS WGS-based PGT-A, PGT-M and PGT-SR offered a comprehensive PGT approach for haplotyping without the requirement for additional family members. It provided an improved complementary method to PGT methodologies, such as low-depth MPS- and SNP array-based methods. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by the research grant from the National Key R&D Program of China (2018YFC0910201 and 2018YFC1004900), the Guangdong province science and technology project of China (2019B020226001), the Shenzhen Birth Defect Screening Project Lab (JZF No. [2016] 750) and the Shenzhen Municipal Government of China (JCYJ20170412152854656). This work was also supported by the National Natural Science Foundation of China (81771638, 81901495 and 81971344), the National Key R&D Program of China (2018YFC1004901 and 2016YFC0905103), the Shanghai Sailing Program (18YF1424800), the Shanghai Municipal Commission of Science and Technology Program (15411964000) and the Shanghai 'Rising Stars of Medical Talent' Youth Development Program Clinical Laboratory Practitioners Program (201972). The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Songchang Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Xuyang Yin
- MGI, BGI-Shenzhen, Shenzhen, China.,BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | | | - Jun Xia
- MGI, BGI-Shenzhen, Shenzhen, China.,BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Ping Liu
- MGI, BGI-Shenzhen, Shenzhen, China.,BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Pingyuan Xie
- CITIC-Xiangya Reproductive & Genetic Hospital, Changsha, China
| | | | | | - Junyu Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yiyao Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Hongjun Fei
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Lanlan Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yuting Hu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Jiang
- MGI, BGI-Shenzhen, Shenzhen, China.,BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Ge Lin
- CITIC-Xiangya Reproductive & Genetic Hospital, Changsha, China
| | - Fang Chen
- MGI, BGI-Shenzhen, Shenzhen, China.,BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Chenming Xu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| |
Collapse
|
19
|
Yang X, Li D, Tu C, He W, Meng L, Tan YQ, Lu G, Du J, Zhang Q. Novel variants of the PCCB gene in Chinese patients with propionic acidemia. Clin Chim Acta 2021; 519:18-25. [PMID: 33798502 DOI: 10.1016/j.cca.2021.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND AIMS Propionic acidemia (PA) is an autosomal recessive metabolic disorder caused by a deficiency of propionyl-CoA carboxylase and mutations in the PCCA and PCCB genes. In this study, we investigated the clinical characteristics of individuals with PA and conducted genetic analyses to provide new genetic evidence for the diagnosis of PA. MATERIALS AND METHODS We conducted whole-exome sequencing and Sanger sequencing in four individuals with PA from three unrelated Chinese families. We also performed a structural analysis of the PCCB protein variants. Couples from the three families included in our study underwent in vitro fertilization with preimplantation genetic testing. RESULTS We found five variants of PCCB. These biallelic variants were inherited from heterozygous parental carriers and were located in the functional domain, absent in human population genome datasets, and predicted to be deleterious. These findings indicate that the variants might be responsible for the clinical features observed in these particular patients with PA. Through successful embryo transfer and implantation, one of the couples fortunately gave birth to a healthy child. CONCLUSION Overall, our study can expand the mutation spectrum of PCCB and provide useful information for the prenatal diagnosis of PA and genetic counseling for affected individuals.
Collapse
Affiliation(s)
- Xiaoxuan Yang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Dongyan Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Wenbing He
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Lanlan Meng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Guangxiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Juan Du
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.
| | - Qianjun Zhang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.
| |
Collapse
|
20
|
Dahdouh EM, Kutteh WH. Genetic testing of products of conception in recurrent pregnancy loss evaluation. Reprod Biomed Online 2021; 43:120-126. [PMID: 33926784 DOI: 10.1016/j.rbmo.2021.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/04/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
Genetic testing of products of conception (POC) has been proposed as a tool to be used in the evaluation of patients with recurrent pregnancy loss (RPL). Following a complete RPL evaluation, POC results may reveal an aneuploidy and provide an explanation for the miscarriage in more than 55% of cases. When the cytogenetic result of the pregnancy loss reveals a euploid pregnancy, management should be directed towards the identification of treatable abnormalities. Furthermore, the results of POC testing might better define a subgroup of patients with unexplained RPL who may benefit from expectant management versus preimplantation genetics (aneuploid unexplained RPL) or investigational therapy (euploid unexplained RPL).
Collapse
Affiliation(s)
- Elias M Dahdouh
- Assisted Reproduction Technology Centre, Department of Obstetrics and Gynecology, CHU Sainte-Justine, Montreal QC, Canada; Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Montreal, Montreal QC, Canada.
| | - William H Kutteh
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville TN, USA; Recurrent Pregnancy Loss Center, Fertility Associates of Memphis, Memphis TN, USA
| |
Collapse
|
21
|
Scriven PN. PGT-SR: the red-herring and the siren; interchromosomal effect and screening for unrelated aneuploidy. J Assist Reprod Genet 2021; 38:1015-1018. [PMID: 33730300 DOI: 10.1007/s10815-021-02152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022] Open
|
22
|
Benn P. Uniparental disomy: Origin, frequency, and clinical significance. Prenat Diagn 2021; 41:564-572. [PMID: 33179335 DOI: 10.1002/pd.5837] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/28/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023]
Abstract
Uniparental disomy (UPD) is defined as two copies of a whole chromosome derived from the same parent. There can be multiple mechanisms that lead to UPD; these are reviewed in the context of contemporary views on the mechanism leading to aneuploidy. Recent studies indicate that UPD is rare in an apparently healthy population and also rare in spontaneous abortion tissues. The most common type of UPD is a maternal heterodisomy (both maternal allele sets present). Isodisomy (a duplicated single set of alleles) or segmental loss of heterozygosity is sometimes encountered in SNP-based microarray referrals. Decisions regarding the most appropriate follow-up testing should consider the possibility of consanguinity (that will generally involve multiple regions), an imprinted gene disorder (chromosomes 6, 7, 11, 14, 15, 20), expression of an autosomal recessive disorder, and an occult aneuploid cell line that may be confined to the placenta. Upd(16)mat, per se, does not appear to be associated with an abnormal phenotype. UPD provides an insight into the history of early chromosome segregation error and understanding the rates and fate of these events are of key importance in the provision of fertility management and prenatal healthcare.
Collapse
Affiliation(s)
- Peter Benn
- Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
23
|
Li R, Wang J, Gu A, Xu Y, Guo J, Pan J, Zeng Y, Ma Y, Zhou C, Xu Y. Feasibility study of using unbalanced embryos as a reference to distinguish euploid carrier from noncarrier embryos by single nucleotide polymorphism array for reciprocal translocations. Prenat Diagn 2021; 41:681-689. [PMID: 33411373 DOI: 10.1002/pd.5897] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES To study the feasibility of using unbalanced embryos as a reference in distinguishing euploid carrier and noncarrier embryos by single nucleotide polymorphism (SNP) array-based preimplantation genetic testing (PGT) for reciprocal translocations. METHODS After comprehensive chromosome screening (CCS), euploid embryos were identified as normal or carriers using a family member as a reference. Next, unbalanced embryos were used as a reference, and the results were compared with the previous ones. Karyotypes of transferred embryos were validated by prenatal diagnosis. RESULTS Of 995 embryos from 110 couples, 288 were found to be euploid. Using a family member as a reference, 142 and 144 embryos were tested to be euploid noncarrier and carrier respectively, and the remaining 2 embryos were undetermined. When unbalanced embryos were selected as references, all the results were consistent with the previous ones. A total of 107 embryos were transferred, resulting in 66 clinical pregnancies. Karyotypes of prenatal diagnosis were all in accordance with the results of tested embryos. CONCLUSIONS SNP array-based haplotyping is a rapid and effective way to distinguish between euploid carrier and noncarrier embryos. In case no family member is available as a reference, unbalanced embryos can be used for identification of euploid carrier and noncarrier embryos.
Collapse
Affiliation(s)
- Rong Li
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Jing Wang
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Ailing Gu
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Xu
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Jing Guo
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Jiafu Pan
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Yanhong Zeng
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Yuanlin Ma
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Canquan Zhou
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Yanwen Xu
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
24
|
Clinical outcomes following preimplantation genetic testing and microdissecting junction region in couples with balanced chromosome rearrangement. J Assist Reprod Genet 2021; 38:735-742. [PMID: 33432423 PMCID: PMC7910386 DOI: 10.1007/s10815-020-02052-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/28/2020] [Indexed: 10/27/2022] Open
Abstract
PURPOSE The purpose of this study is to summarize the clinical outcomes of apparently balanced chromosome rearrangement (ABCR) carriers in preimplantation genetic testing (PGT) cycles by next-generation sequencing following microdissecting junction region (MicroSeq) to distinguish non-carrier embryos from balanced carriers. METHODS A retrospective study of 762 ABCR carrier couples who requested PGT for structural rearrangements combined with MicroSeq at the Reproductive and Genetic Hospital of CITIC-Xiangya was conducted between October 2014 and October 2019. RESULTS Trophectoderm biopsy was performed in 4122 blastocysts derived from 917 PGT-SR cycles and 3781 blastocysts were detected. Among the 3781 blastocysts diagnosed, 1433 (37.9%, 1433/3781) were balanced, of which 739 blastocysts were carriers (51.57%, 739/1433) and 694 blastocysts were normal (48.43%, 694/1433). Approximately 26.39% of cycles had both carrier and normal embryo transfer, and the average number of biopsied blastocysts was 6.7. In the cumulative 223 biopsied cycles with normal embryo transfer, all couples chose to transfer the normal embryos. In the 225 cycles with only carrier embryos, the couples chose to transfer the carrier embryos in 169/225 (75.11%) cycles. A total of 732 frozen embryo transfer cycles were performed, resulting in 502 clinical pregnancies. Cumulatively, 326 babies were born; all of these babies were healthy and free of any developmental issues. CONCLUSION Our study provides the first evaluation of the clinical outcomes of a large sample with ABCR carrier couples undergoing the MicroSeq-PGT technique and reveals its powerful ability to distinguish between carrier and non-carrier balanced embryos.
Collapse
|
25
|
Flowers NJ, Burgess T, Giouzeppos O, Shi G, Love CJ, Hunt CE, Scarff KL, Archibald AD, Pertile MD. Genome-wide noninvasive prenatal screening for carriers of balanced reciprocal translocations. Genet Med 2020; 22:1944-1955. [PMID: 32807973 DOI: 10.1038/s41436-020-0930-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Balanced reciprocal translocation carriers are at increased risk of producing gametes with unbalanced forms of the translocation leading to miscarriage, fetal anomalies, and birth defects. We sought to determine if genome-wide cell-free DNA based noninvasive prenatal screening (gw-NIPS) could provide an alternative to prenatal diagnosis for carriers of these chromosomal rearrangements. METHODS This pilot series comprises a retrospective analysis of gw-NIPS and clinical outcome data from 42 singleton pregnancies where one parent carried a balanced reciprocal translocation. Gw-NIPS was performed between August 2015 and March 2018. Inclusion criteria required at least one translocation segment to be ≥15 Mb in size. RESULTS Forty samples (95%) returned an informative result; 7 pregnancies (17.5%) were high risk for an unbalanced translocation and confirmed after diagnostic testing. The remaining 33 informative samples were low risk and confirmed after diagnostic testing or normal newborn physical exam. Test sensitivity of 100% (95% confidence interval [CI]: 64.6-100%) and specificity of 100% (95% CI: 89.6-100%) were observed for this pilot series. CONCLUSION We demonstrate that gw-NIPS is a potential option for a majority of reciprocal translocation carriers. Further confirmation of this methodology could lead to adoption of this noninvasive alternative.
Collapse
Affiliation(s)
- Nicola Jane Flowers
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Trent Burgess
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Olivia Giouzeppos
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Grace Shi
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Clare Jane Love
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Clare Elizabeth Hunt
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Katrina Louise Scarff
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Alison Dalton Archibald
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Mark Domenic Pertile
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia. .,Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
26
|
Niu W, Wang L, Xu J, Li Y, Shi H, Li G, Jin H, Song W, Wang F, Sun Y. Improved clinical outcomes of preimplantation genetic testing for aneuploidy using MALBAC-NGS compared with MDA-SNP array. BMC Pregnancy Childbirth 2020; 20:388. [PMID: 32620095 PMCID: PMC7333433 DOI: 10.1186/s12884-020-03082-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND To assess whether preimplantation genetic testing for aneuploidy with next generation sequencing (NGS) outweighs single nucleotide polymorphism (SNP) array in improving clinical outcomes. METHODS A retrospective analysis of the clinical outcomes of patients who underwent PGT-A treatment in a single center from January 2013 to December 2017.A total of 1418 couples who underwent PGT-A treatment were enrolled, of which 805 couples used NGS for PGT-A, while the remaining 613 couples used SNP array for PGT-A. Clinical pregnancy rate, miscarriage rate and healthy baby rate were compared between the MALBAC-NGS-PGT-A and MDA-SNP-PGT-A groups. RESULTS After testing karyotypes of 5771 biopsied blastocysts, 32.2% (1861/5771) were identified as chromosomally normal, while 67.8% were chromosomally abnormal. In terms of clinical outcomes, women in the MALBAC-NGS-PGT-A group had a significantly higher clinical pregnancy rate (50.5% vs 41.7%, p = 0.002) and healthy baby rate (39.6% vs 31.4%, p = 0.003), and a lower miscarriage rate (15.5% vs 22.8%, p = 0.036). CONCLUSION This is the largest study reporting the extensive application of NGS-based PGT-A, whilst comparing the clinical outcomes of MALBAC-NGS-PGT-A and MDA-SNP-PGT-A. The results provide greater evidence supporting the wider use of NGS in PGT-A, not only for its lower cost but also for its improved clinical outcomes compared to SNP-based PGT-A.
Collapse
Affiliation(s)
- Wenbin Niu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Eastern Jianshe Road, Erqi District, Zhengzhou City, Henan Province, People's Republic of China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Eastern Jianshe Road, Erqi District, Zhengzhou City, Henan Province, People's Republic of China
| | - Linlin Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Eastern Jianshe Road, Erqi District, Zhengzhou City, Henan Province, People's Republic of China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Eastern Jianshe Road, Erqi District, Zhengzhou City, Henan Province, People's Republic of China
| | - Jiawei Xu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Eastern Jianshe Road, Erqi District, Zhengzhou City, Henan Province, People's Republic of China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Eastern Jianshe Road, Erqi District, Zhengzhou City, Henan Province, People's Republic of China
| | - Ying Li
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Eastern Jianshe Road, Erqi District, Zhengzhou City, Henan Province, People's Republic of China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Eastern Jianshe Road, Erqi District, Zhengzhou City, Henan Province, People's Republic of China
| | - Hao Shi
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Eastern Jianshe Road, Erqi District, Zhengzhou City, Henan Province, People's Republic of China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Eastern Jianshe Road, Erqi District, Zhengzhou City, Henan Province, People's Republic of China
| | - Gang Li
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Eastern Jianshe Road, Erqi District, Zhengzhou City, Henan Province, People's Republic of China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Eastern Jianshe Road, Erqi District, Zhengzhou City, Henan Province, People's Republic of China
| | - Haixia Jin
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Eastern Jianshe Road, Erqi District, Zhengzhou City, Henan Province, People's Republic of China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Eastern Jianshe Road, Erqi District, Zhengzhou City, Henan Province, People's Republic of China
| | - Wenyan Song
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Eastern Jianshe Road, Erqi District, Zhengzhou City, Henan Province, People's Republic of China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Eastern Jianshe Road, Erqi District, Zhengzhou City, Henan Province, People's Republic of China
| | - Fang Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Eastern Jianshe Road, Erqi District, Zhengzhou City, Henan Province, People's Republic of China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Eastern Jianshe Road, Erqi District, Zhengzhou City, Henan Province, People's Republic of China
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Eastern Jianshe Road, Erqi District, Zhengzhou City, Henan Province, People's Republic of China. .,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Eastern Jianshe Road, Erqi District, Zhengzhou City, Henan Province, People's Republic of China.
| |
Collapse
|
27
|
Lai S, Gopalakrishnan G, Li J, Liu X, Chen Y, Wen Y, Zhang S, Huang B, Phornphutkul C, Liu S, Kuang J. Familial Dysalbuminemic Hyperthyroxinemia (FDH), Albumin Gene Variant (R218S), and Risk of Miscarriages in Offspring. Am J Med Sci 2020; 360:566-574. [PMID: 32665066 DOI: 10.1016/j.amjms.2020.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/08/2020] [Accepted: 05/20/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Familial dysalbuminemic hyperthyroxinemia (FDH) is a rare autosomal dominant disorder whose clinical characteristics remain incompletely understood, we investigated the role of albumin gene mutation in relation to miscarriage rate in a large pedigree of FDH followed up for 4 years. PATIENTS AND METHODS The proband and extended family with unexplained miscarriage and hyperthyroxinemia were identified and genotypes in candidate genes and thyroid function tests (TFTs), including changes in TFTs during pregnancy were comprehensively assessed. We also evaluated the development and growth of children in this large FDH pedigree during four years follow-up. RESULT The R218S variant in the albumin gene was identified in the proband and her relatives with hyperthyroxinemia who were diagnosed as FDH. Among the family members who underwent TFTs, 11 of 17 (65%) had similar changes in levels of thyroid hormone, with an estimated FDH heritability of 86%. Moreover, 32% (95% CI 16-54%) of FDH women experienced miscarriages at a rate that was substantially higher than the spontaneous abortion rate reported in the general population in China (7-14%). During the follow-up, results revealed that free triiodothyronine (fT3) and thyroid stimulating hormone (TSH) levels were normal during the entire gestational period; comparing to their age-adjusted peers, both FDH affected and FDH unaffected children in this pedigree appeared to have lower body weight and height. CONCLUSIONS Albumin gene variant (R218S) not only causes FDH but also may be associated with a higher risk of miscarriages, although the growth of their children appears not to be affected by the age of 2 years.
Collapse
Affiliation(s)
- Shuiqing Lai
- Department of Endocrinology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China; Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island; Center for Global Cardio-metabolic Health, Brown University, Providence, Rhode Island
| | - Geetha Gopalakrishnan
- Departments of Medicine (Endocrinology) and Surgery, The Warren Alpert Medical School, Providence, Rhode Island
| | - Jie Li
- Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island; Center for Global Cardio-metabolic Health, Brown University, Providence, Rhode Island; Departments of Medicine (Endocrinology) and Surgery, The Warren Alpert Medical School, Providence, Rhode Island
| | - Xin Liu
- Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island; Center for Global Cardio-metabolic Health, Brown University, Providence, Rhode Island
| | - Yuancheng Chen
- Department of Endocrinology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuqiong Wen
- Department of Endocrinology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shuting Zhang
- Department of Endocrinology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bizhu Huang
- Department of Endocrinology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chanika Phornphutkul
- Departments of Pediatric and Pathology, The Warren Alpert Medical School, Providence, Rhode Island
| | - Simin Liu
- Department of Endocrinology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China; Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island; Center for Global Cardio-metabolic Health, Brown University, Providence, Rhode Island; Departments of Medicine (Endocrinology) and Surgery, The Warren Alpert Medical School, Providence, Rhode Island.
| | - Jian Kuang
- Department of Endocrinology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
28
|
Toft CLF, Ingerslev HJ, Kesmodel US, Diemer T, Degn B, Ernst A, Okkels H, Kjartansdóttir KR, Pedersen IS. A systematic review on concurrent aneuploidy screening and preimplantation genetic testing for hereditary disorders: What is the prevalence of aneuploidy and is there a clinical effect from aneuploidy screening? Acta Obstet Gynecol Scand 2020; 99:696-706. [PMID: 32039470 DOI: 10.1111/aogs.13823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 11/29/2022]
Abstract
INTRODUCTION In assisted reproductive technology, aneuploidy is considered a primary cause of failed embryo implantation. This has led to the implementation of preimplantation genetic testing for aneuploidy in some clinics. The prevalence of aneuploidy and the use of aneuploidy screening during preimplantation genetic testing for inherited disorders has not previously been reviewed. Here, we systematically review the literature to investigate the prevalence of aneuploidy in blastocysts derived from patients carrying or affected by an inherited disorder, and whether screening for aneuploidy improves clinical outcomes. MATERIAL AND METHODS PubMed and Embase were searched for articles describing preimplantation genetic testing for monogenic disorders and/or structural rearrangements in combination with preimplantation genetic testing for aneuploidy. Original articles reporting aneuploidy rates at the blastocyst stage and/or clinical outcomes (positive human chorionic gonadotropin, gestational sacs/implantation rate, fetal heartbeat/clinical pregnancy, ongoing pregnancy, miscarriage, or live birth/delivery rate on a per transfer basis) were included. Case studies were excluded. RESULTS Of the 26 identified studies, none were randomized controlled trials, three were historical cohort studies with a reference group not receiving aneuploidy screening, and the remaining were case series. In weighted analysis, 34.1% of 7749 blastocysts were aneuploid. Screening for aneuploidy reduced the proportion of embryos suitable for transfer, thereby increasing the risk of experiencing a cycle without transferable embryos. In pooled analysis the percentage of embryos suitable for transfer was reduced from 57.5% to 37.2% following screening for aneuploidy. Among historical cohort studies, one reported significantly improved pregnancy and birth rates but did not control for confounding, one did not report any statistically significant difference between groups, and one properly designed study concluded that preimplantation genetic testing for aneuploidy enhanced the chance of achieving a pregnancy while simultaneously reducing the chance of miscarriage following single embryo transfer. CONCLUSIONS On average, aneuploidy is detected in 34% of embryos when performing a single blastocyst biopsy derived from patients carrying or affected by an inherited disorder. Accordingly, when screening for aneuploidy, the risk of experiencing a cycle with no transferable embryos increases. Current available data on the clinical effect of preimplantation genetic testing for aneuploidy performed concurrently with preimplantation genetic testing for inherited disorders are sparse, rendering the clinical effect from preimplantation genetic testing for aneuploidy difficult to access.
Collapse
Affiliation(s)
- Christian Liebst Frisk Toft
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | - Ulrik Schiøler Kesmodel
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Fertility Unit, Aalborg University Hospital, Aalborg, Denmark
| | - Tue Diemer
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark
| | - Birte Degn
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
| | - Anja Ernst
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
| | - Henrik Okkels
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
| | | | - Inge Søkilde Pedersen
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
29
|
Interchromosomal effect in carriers of translocations and inversions assessed by preimplantation genetic testing for structural rearrangements (PGT-SR). J Assist Reprod Genet 2019; 36:2547-2555. [PMID: 31696386 DOI: 10.1007/s10815-019-01593-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Balanced carriers of structural rearrangements have an increased risk of unbalanced embryos mainly due to the production of unbalanced gametes during meiosis. Aneuploidy for other chromosomes not involved in the rearrangements has also been described. The purpose of this work is to know if the incidence of unbalanced embryos, interchromosomal effect (ICE) and clinical outcomes differ in carriers of different structural rearrangements. METHODS Cohort retrospective study including 359 preimplantation genetic testing cycles for structural rearrangements from 304 couples was performed. Comparative genomic hybridisation arrays were used for chromosomal analysis. The results were stratified and compared according to female age and carrier sex. The impact of different cytogenetic features of chromosomal rearrangements was evaluated. RESULTS In carriers of translocations, we observed a higher percentage of abnormal embryos from day 3 biopsies compared with day 5/6 biopsies and for reciprocal translocations compared with other rearrangements. We observed a high percentage of embryos with aneuploidies for chromosomes not involved in the rearrangement that could be attributed to total ICE (aneuploid balanced and unbalanced embryos). No significant differences were observed in these percentages between types of rearrangements. Pure ICE (aneuploid balanced embyos) was independent of female age only for Robertsonian translocations, and significantly increased in day 3 biopsies for all types of abnormalities. Furthermore, total ICE for carriers of Robertsonian translocations and biopsy on day 3 was independent of female age too. High ongoing pregnancy rates were observed for all studied groups, with higher pregnancy rate for male carriers. CONCLUSION We observed a higher percentage of abnormal embryos for reciprocal translocations. No significant differences for total ICE was found among the different types of rearrangements, with higher pure ICE only for Robertsonian translocations. There was a sex effect for clinical outcome for carriers of translocations, with higher pregnancy rate for male carriers. The higher incidence of unbalanced and aneuploid embryos should be considered for reproductive counselling in carriers of structural rearrangements.
Collapse
|
30
|
Leng L, Sun J, Huang J, Gong F, Yang L, Zhang S, Yuan X, Fang F, Xu X, Luo Y, Bolund L, Peters BA, Lu G, Jiang T, Xu F, Lin G. Single-Cell Transcriptome Analysis of Uniparental Embryos Reveals Parent-of-Origin Effects on Human Preimplantation Development. Cell Stem Cell 2019; 25:697-712.e6. [DOI: 10.1016/j.stem.2019.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 06/27/2019] [Accepted: 09/03/2019] [Indexed: 11/16/2022]
|
31
|
Huang C, Jiang W, Zhu Y, Li H, Lu J, Yan J, Chen ZJ. Pregnancy outcomes of reciprocal translocation carriers with two or more unfavorable pregnancy histories: before and after preimplantation genetic testing. J Assist Reprod Genet 2019; 36:2325-2331. [PMID: 31522368 DOI: 10.1007/s10815-019-01585-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/06/2019] [Indexed: 10/26/2022] Open
Abstract
PURPOSE To report the normal live birth and birth defect rates pre- and post- preimplantation genetic testing for chromosomal structural rearrangements (PGT-SR) in reciprocal translocation carriers who have experienced two or more unfavorable pregnancy histories. METHODS We conducted a retrospective cohort study of 194 couples who underwent 265 PGT-SR cycles between January 2013 and August 2016. The rates of miscarriage, normal live birth, and birth defect pre- and post- PGT-SR treatment were recorded. The types of birth defect were also categorized. RESULTS Before PGT-SR treatment, the 194 couples with reciprocal translocation had a previous reproductive history consisting of 592 pregnancies in total: 496 (83.8%) were miscarriages; 29 (4.9%) ended by induced abortion due to unintended pregnancy; 36 (6.1%) had birth defects; and 17 (2.9%) were normal live births. After PGT-SR treatment, there were 118 clinical pregnancies. Of these pregnancies, 13 (11.0%) were miscarriages, 101 (85.6%) were normal live births, and 4 (3.4%) had birth defects. In total, 14 different disorders were noted in the prenatal and postnatal examinations. Before the PGT-SR treatment, multiple birth defects, central nervous system abnormalities, and congenital heart defects were the three most common congenital malformations. Excluding for methylmalonic acidemia, there were only single and mild birth defects after the PGT-SR treatment. CONCLUSIONS After the PGT-SR treatment, the reciprocal translocation carriers who had previously experienced two or more unfavorable pregnancy outcomes had a low risk of miscarriages and birth defects. The rate of normal live births per pregnancy was higher after PGT-SR treatment.
Collapse
Affiliation(s)
- Caiyi Huang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200000, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200000, China.,Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, No. 157 Jingliu Road, Jinan, 250021, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China.,The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, 250001, China
| | - Wenjie Jiang
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, No. 157 Jingliu Road, Jinan, 250021, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China.,The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, 250001, China
| | - Yueting Zhu
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, No. 157 Jingliu Road, Jinan, 250021, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China.,The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, 250001, China
| | - Hongchang Li
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, No. 157 Jingliu Road, Jinan, 250021, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China.,The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, 250001, China
| | - Juanjuan Lu
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, No. 157 Jingliu Road, Jinan, 250021, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China.,The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, 250001, China
| | - Junhao Yan
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, No. 157 Jingliu Road, Jinan, 250021, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China. .,The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, 250001, China.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200000, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200000, China.,Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, No. 157 Jingliu Road, Jinan, 250021, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China.,The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Jinan, 250001, China
| |
Collapse
|
32
|
Next-generation sequencing analysis of embryos from mosaic patients undergoing in vitro fertilization and preimplantation genetic testing. Fertil Steril 2019; 112:291-297.e3. [PMID: 31133385 DOI: 10.1016/j.fertnstert.2019.03.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the effects of parental mosaicism on their preimplantation embryos. DESIGN Case series. SETTING An institute for reproductive and stem cell engineering. PATIENT(S) Sixty-eight mosaic couples. INTERVENTION(S) Assisted reproduction with preimplantation genetic testing (PGT). MAIN OUTCOME MEASURE(S) Karyotypes, embryo-related chromosomal abnormalities, and PGT results. RESULT(S) A total of 209 embryos were obtained from 68 mosaic couples, and 153 (73.21%) of 209 of the total embryos were obtained from 55 mosaic couples with abnormal sex chromosome numbers. Of these 153 embryos, 2 (1.31%) had an abnormal copy number of X chromosome, 1 had mosaicism with 46,XN,+X(mosaic, 40%), 1 (0.65%) had an extra Y chromosome, 3 (1.96%) exhibited both X chromosomal and autosomal abnormalities, and 4 (2.61%) exhibited de novo X chromosome structural abnormalities. A total of 56 (26.79%) of 209 embryos were obtained from mosaic couples (n = 13) with abnormal autosomal structures. Notably, of these 56 embryos, 5 (8.93%) had a 16q21-q24.3 copy number abnormality related to the parental karyotype, with a fragile site at 16q22; 5 (7.14%) exhibited 46,XX,dup(8p23.1-8p11.21) and 46,XY,del(8p22-8p11.21), which were related to the parental karyotype; and 10 (17.86%) were de novo chromosome abnormalities. CONCLUSION(S) Our data demonstrate that the risk of embryo-related chromosome abnormalities in mosaic patients with abnormal sex chromosomes is very low. Therefore, PGT may not need to be recommended for mosaic patients with abnormal copy numbers of sex chromosomes, especially for patients with financial difficulties. By contrast, the mosaic patients with structural abnormalities of autosomes may have a relatively high risk of abnormal embryos with an unbalanced segment of the involved chromosomes. Thus, PGT is highly recommended for mosaic patients with autosomal structure abnormalities, especially those with a fragile site at 16q22.
Collapse
|
33
|
Xie P, Hu L, Tan Y, Gong F, Zhang S, Xiong B, Peng Y, Lu GX, Lin G. Retrospective analysis of meiotic segregation pattern and interchromosomal effects in blastocysts from inversion preimplantation genetic testing cycles. Fertil Steril 2019; 112:336-342.e3. [PMID: 31103288 DOI: 10.1016/j.fertnstert.2019.03.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/26/2019] [Accepted: 03/28/2019] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To determine factors affecting unbalanced chromosomal rearrangement originating from parental inversion and interchromosomal effect occurrence in blastocysts from inversion carriers. DESIGN Retrospective study. SETTING University-affiliated center. PATIENT(S) Couples with one partner carrying inversion underwent preimplantation genetic testing for chromosomal structural rearrangement cycles. INTERVENTION(S) Not applicable. MAIN OUTCOME MEASURE(S) Unbalanced rearrangement embryo rate, normal embryo rate, interchromosomal effect. RESULT(S) Preimplantation genetic testing was performed for 576 blastocysts from 57 paracentric (PAI) and 94 pericentric (PEI) inversion carriers. The percentage of normal/balanced blastocysts was significantly higher in PAI than PEI carriers (70.4% vs. 57.5%). Logistic regression indicated the inverted segment size ratio was a statistically significant risk factor for abnormality from parental inversion in both PEI and PAI. The optimal cutoff values to predict unbalanced rearrangement risk were 35.7% and 57%. In PAI, rates of abnormality from parental inversion were 0% and 12.1% in the <35.7% and ≥35.7% groups, respectively, with no gender difference. For PEI, the rates of abnormality from parental inversion were 7.9% and 33.1% in the <57% and ≥57% groups, respectively. In the ≥57% group, the rate of unbalanced rearrangement was significantly higher from paternal than maternal inversion (43.3% vs. 23.6%). In inversion carriers, 21,208 chromosomes were examined, and 187 (0.88%) malsegregations were identified from structurally normal chromosomes. In controls, 56,488 chromosomes were assessed, and 497 (0.88%) aneuploidies were identified, indicating no significant difference. CONCLUSION(S) The risk of unbalanced rearrangement is affected by the ratio of inverted segment size in both PAI and PEI carriers and is associated with gender.
Collapse
Affiliation(s)
- PingYuan Xie
- Hunan Normal University School of Medicine, Changsha, Hunan, China; National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Liang Hu
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China; Key Laboratory of Reproductive and Stem Cell Engineering, Ministry of Health, Changsha, China; Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, People's Republic of China
| | - Yueqiu Tan
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China; Key Laboratory of Reproductive and Stem Cell Engineering, Ministry of Health, Changsha, China; Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, People's Republic of China
| | - Fei Gong
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China; Key Laboratory of Reproductive and Stem Cell Engineering, Ministry of Health, Changsha, China; Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, People's Republic of China
| | - ShuoPing Zhang
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Bo Xiong
- National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Yangqin Peng
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Guang Xiu Lu
- National Engineering and Research Center of Human Stem Cells, Changsha, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China; Key Laboratory of Reproductive and Stem Cell Engineering, Ministry of Health, Changsha, China; Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, People's Republic of China
| | - Ge Lin
- National Engineering and Research Center of Human Stem Cells, Changsha, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China; Key Laboratory of Reproductive and Stem Cell Engineering, Ministry of Health, Changsha, China; Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, People's Republic of China.
| |
Collapse
|
34
|
Zhang S, Lei C, Wu J, Sun H, Zhou J, Zhu S, Wu J, Fu J, Sun Y, Lu D, Sun X, Zhang Y. Analysis of segregation patterns of quadrivalent structures and the effect on genome stability during meiosis in reciprocal translocation carriers. Hum Reprod 2019; 33:757-767. [PMID: 29579270 DOI: 10.1093/humrep/dey036] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/12/2018] [Indexed: 01/30/2023] Open
Abstract
STUDY QUESTION Do specific factors affect the segregation patterns of a quadrivalent structure and can the quadrivalent affect genome stability during meiosis? SUMMARY ANSWER Meiotic segregation patterns can be affected by the carrier's gender and age, location of breakpoints and chromosome type, and the quadrivalent structure can increase genome instability during meiosis. WHAT IS KNOWN ALREADY Carriers of reciprocal translocations have an increased genetic reproductive risk owing to the complex segregation patterns of a quadrivalent structure. However, the results of previous studies on the factors that affect segregation patterns seem to be contradictory, and the effect of a quadrivalent on genome stability during meiosis is unknown. STUDY DESIGN, SIZE, DURATION We designed a retrospective study to analyze the segregation patterns of 24 chromosomes from reciprocal translocation and non-translocation patients. Data for 356 reciprocal translocation carriers and 53 patients with the risk to transmit monogenic inherited disorders (RTMIDs) undergoing PGD-single nucleotide polymorphism array analysis were collected. The study was performed between March 2014 and July 2017. PARTICIPANTS/MATERIALS, SETTING, METHODS Segregation patterns of a quadrivalent in 1842 blastocysts from 466 assisted reproduction cycles of reciprocal translocation carriers were analyzed according to the location of chromosome breakpoints, the carrier's gender and age, and chromosome type. In addition, to analyze the effect of quadrivalent structure on genome stability, segregation products of chromosomes which are not involved in the translocation from translocation carriers were compared with those of 23 pairs of chromosomes in 318 blastocysts from 72 assisted reproduction cycles of patients with RTMIDs. MAIN RESULTS AND THE ROLE OF CHANCE The percentage of adjacent-2 products with severe asymmetric quadrivalent was significantly higher than those with mild asymmetric quadrivalent (P = 0.020) while, in contrast, the incidence of 4:0/others was lower (P = 0.030). The frequencies of adjacent-1, adjacent-2 and 3:1 products differed between male and female carriers (P < 0.001, P = 0.015 and P = 0.001, respectively), and also for adjacent-1 and 4:0/others products in young versus older carriers (P = 0.04 and P = 0.002, respectively). In addition, adjacent-1 products of a quadrivalent with an acrocentric chromosome were significantly higher than those of a quadrivalent without an acrocentric chromosome (P = 0.001). Moreover, a quadrivalent could significantly increase the frequencies of abnormal chromosomes compared to patients with RTMIDs (P = 0.048, odds ratio (OR) = 1.43, 95% CI = 1.01-2.43), especially for the male carriers (P = 0.018, OR = 1.58, 95% CI = 1.08-2.25). In contrast, for older carriers, no difference was found in both aneuploidy and segmental anomalies compared to patients with RTMIDs. LIMITATIONS, REASONS FOR CAUTION The study contained appropriate controls, yet the analysis was limited by a small number of control patients and embryos. WIDER IMPLICATIONS OF THE FINDINGS Until now, there had been no definite report about the effect of quadrivalents on genome stability in reciprocal translocation carriers compared with control samples, and in the present study the large sample size ensured a detailed analysis of factors with a possible impact on segregation patterns. These data provide a better insight into the meiotic mechanisms involved in non-disjunction events in gametes from reciprocal translocation carriers. In addition, our results will help to provide each reciprocal translocation carrier couple undergoing PGD with more appropriate genetic counseling and a better understanding of the large numbers of abnormal embryos with chromosome aneuploidy. STUDY FUNDING/COMPETING INTEREST(S) The research was supported by the Research Funding of Shanghai Ji Ai Genetics & IVF Institute and the authors declare a lack of competing interests in this study.
Collapse
Affiliation(s)
- Shuo Zhang
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Science, Fudan University, Shanghai 200438, China
| | - Caixia Lei
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Junping Wu
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Haiyan Sun
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Jing Zhou
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Saijuan Zhu
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Jialong Wu
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Jing Fu
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Yijuan Sun
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Science, Fudan University, Shanghai 200438, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China.,Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Yueping Zhang
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| |
Collapse
|
35
|
Zhang X, Yang L, Wang F, Liu Z, Liu R, Ying Q, Fan C, Wu X. Development of a Simple and Cost-Effective Method Based on T7 Endonuclease Cleavage for Detection of Single Nucleotide Polymorphisms. Genet Test Mol Biomarkers 2018; 22:719-723. [PMID: 30484704 DOI: 10.1089/gtmb.2018.0181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIMS Single nucleotide polymorphisms (SNP) can be used as genetic markers and for risk assessment of allele-linked diseases, which can provide information for clinical diagnosis. Large-scale microarray and next-generation sequencing methods have made genome-wide SNP genotyping possible. However, in addition to their high cost, these techniques are dependent on having specialized equipment. Thus, there is a need for a simple genotyping method that can be implemented in a resource-limited environment. METHODS We developed a strategy for SNP genotyping based on T7 Endonuclease I cleavage and an enzyme-linked microparticle immune assay. Using this method, we genotyped two common SNP sites (rs11526468 and rs12979860). The quality of the genotyping process was validated. RESULTS Although a 70% false-negative rate was observed, no false-positive reactions were found. Therefore, multiple parallel repeat reactions can offset the possibility of mutation detection failure. DISCUSSION This method employs a duplicate reagent-dependent procedure, and therefore has the potential for integration into a portable kit for field utilization.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- 1 Department of Microbiology, Fourth Military Medical University, Xi'an, China
| | - Lina Yang
- 2 Institute for Hygiene of Ordernance Industry, Xi'an, China
| | - Fang Wang
- 1 Department of Microbiology, Fourth Military Medical University, Xi'an, China
| | - Ziyu Liu
- 1 Department of Microbiology, Fourth Military Medical University, Xi'an, China
| | - Rongrong Liu
- 1 Department of Microbiology, Fourth Military Medical University, Xi'an, China
| | - Qikang Ying
- 1 Department of Microbiology, Fourth Military Medical University, Xi'an, China
| | - Chao Fan
- 3 Department of Infectious Diseases and Center of Liver Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xingan Wu
- 1 Department of Microbiology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
36
|
Zhou QW, Jing S, Xu L, Guo H, Lu CF, Gong F, Lu GX, Lin G, Gu YF. Clinical and neonatal outcomes of patients of different ages following transfer of thawed cleavage embryos and blastocysts cultured from thawed cleavage-stage embryos. PLoS One 2018; 13:e0207340. [PMID: 30475822 PMCID: PMC6261106 DOI: 10.1371/journal.pone.0207340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/30/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Frozen-thawed embryo transfer (FET) has become a routine procedure in assisted reproductive technology (ART). In FET, although blastocysts cultured from thawed cleavage-stage embryos are associated with better perinatal outcomes. it may increase cycle cancellation due to no suitable embryo to transfer. The overall clinical outcomes following transfer of thawed cleavage-stage FET and blastocysts cultured from thawed cleavage-stage embryos in young and advanced age patients remains unclear. Therefore, we aimed to identify the optimal FET strategy in young and advanced age women who undergo FET. METHODS This retrospective study included 16,387 thaw cycles. We retrospectively analyzed data of couples who had completed the first FET cycle. Two FET strategies were studied: transfer of thawed cleavage-stage embryos (strategy A) or blastocysts cultured from thawed cleavage-stage embryos (strategy B). The clinical and neonatal outcomes of two FET strategies were compared in young (<35 years) and advanced (≥35 years) age women. RESULTS In young women, the clinical outcomes per transfer cycle were better in strategy B than strategy A. While the clinical pregnancy (59.29%, 52.60%) and live birth rates (49.37%, 43.88%) per thaw cycle were significantly higher in strategy A than in B. In women of advanced age, the clinical outcomes per transfer cycle were still better in strategy B than in A, and the clinical pregnancy (36.44%, 39.66%) and live birth rates (25.70%, 30.00%) per thaw cycle were significantly higher in strategy B than in A. CONCLUSIONS FET of blastocysts cultured from cleavage-stage embryos showed higher efficiency for per transfer cycle whether in younger or advanced age women. Whereas, when cycle cancellations due to no suitable embryo to transfer were considered, cleavage-stage FET was found to be more suitable for younger women, while FET of blastocysts cultured from cleavage-stage embryos was better suited for women of advanced age.
Collapse
Affiliation(s)
- Qin-Wei Zhou
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha City, Hunan Province, China
| | - Shuang Jing
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha City, Hunan Province, China
| | - Li Xu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha City, Hunan Province, China
| | - Hui Guo
- Reproductive & Genetic Hospital of CITIC-XIANGYA, Changsha City, Hunan Province, China
| | - Chang-Fu Lu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha City, Hunan Province, China.,Reproductive & Genetic Hospital of CITIC-XIANGYA, Changsha City, Hunan Province, China
| | - Fei Gong
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha City, Hunan Province, China.,Reproductive & Genetic Hospital of CITIC-XIANGYA, Changsha City, Hunan Province, China
| | - Guang-Xiu Lu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha City, Hunan Province, China.,Reproductive & Genetic Hospital of CITIC-XIANGYA, Changsha City, Hunan Province, China.,National Engineering and Research Center of Human Stem Cell, Changsha City, Hunan Province, China.,Key Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha City, Hunan Province, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha City, Hunan Province, China.,Reproductive & Genetic Hospital of CITIC-XIANGYA, Changsha City, Hunan Province, China.,National Engineering and Research Center of Human Stem Cell, Changsha City, Hunan Province, China.,Key Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha City, Hunan Province, China
| | - Yi-Fan Gu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha City, Hunan Province, China.,Reproductive & Genetic Hospital of CITIC-XIANGYA, Changsha City, Hunan Province, China
| |
Collapse
|
37
|
Xie PY, Tang Y, Hu L, Ouyang Q, Gu YF, Gong F, Leng LZ, Zhang SP, Xiong B, Lu GX, Lin G. Identification of biparental and diploid blastocysts from monopronuclear zygotes with the use of a single-nucleotide polymorphism array. Fertil Steril 2018; 110:545-554.e5. [DOI: 10.1016/j.fertnstert.2018.04.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 04/06/2018] [Accepted: 04/24/2018] [Indexed: 01/09/2023]
|
38
|
Novel biallelic PCNT deletion causing microcephalic osteodysplastic primordial dwarfism type II with congenital heart defect. SCIENCE CHINA-LIFE SCIENCES 2018; 62:144-147. [PMID: 29961235 DOI: 10.1007/s11427-018-9329-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/06/2018] [Indexed: 10/28/2022]
|
39
|
Wang J, Zeng Y, Ding C, Cai B, Lu B, Li R, Xu Y, Xu Y, Zhou C. Preimplantation genetic testing of Robertsonian translocation by SNP array-based preimplantation genetic haplotyping. Prenat Diagn 2018; 38:547-554. [PMID: 29799617 DOI: 10.1002/pd.5258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 11/10/2022]
Abstract
OBJECTIVES The present study attempted to confirm a method that distinguishes a balanced Robertsonian translocation carrier embryo from a truly normal embryo in parallel with comprehensive chromosome screening (CCS). METHODS Comprehensive chromosome screening was performed in 107 embryos from 11 couples carrying Robertsonian translocations. Among them, embryos from 2 families had been transferred before the diagnosis of translocation, which resulted in successful pregnancies; embryos from the remaining families were transferred after the identification of translocations. The single nucleotide polymorphism (SNP) genotypes were acquired on a genome-wide basis, and breakpoint regions and flanking were assessed by establishing haplotypes. The predicted karyotypes from the transferred embryos were confirmed by prenatal diagnosis. RESULTS Among the 9 families finally undergoing translocation diagnosis, the amniotic cell karyotypes of 3 families were concordant with the results predicted by preimplantation genetic haplotyping, revealing a good consistency rate. After CCS, the euploid embryos from 2 other families could not be further detected because of the absence of abnormal embryos as probands. CONCLUSIONS Molecular karyotypes and haplotypes could be established with SNP microarray simultaneously in each embryo. SNP array-based PGT can simultaneously complete the CCS and identify Robertsonian translocation carriers, thus making it possible to prevent Robertsonian translocations from being passed to subsequent generations.
Collapse
Affiliation(s)
- Jing Wang
- Center for Reproductive Medicine and Department of Gynecology & Obstetrics, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Yanhong Zeng
- Center for Reproductive Medicine and Department of Gynecology & Obstetrics, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Chenhui Ding
- Center for Reproductive Medicine and Department of Gynecology & Obstetrics, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Bin Cai
- Center for Reproductive Medicine and Department of Gynecology & Obstetrics, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Baomin Lu
- Center for Reproductive Medicine and Department of Gynecology & Obstetrics, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Rong Li
- Center for Reproductive Medicine and Department of Gynecology & Obstetrics, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Yan Xu
- Center for Reproductive Medicine and Department of Gynecology & Obstetrics, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Yanwen Xu
- Center for Reproductive Medicine and Department of Gynecology & Obstetrics, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Canquan Zhou
- Center for Reproductive Medicine and Department of Gynecology & Obstetrics, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| |
Collapse
|
40
|
Luo A, Cheng D, Yuan S, Li H, Du J, Zhang Y, Yang C, Lin G, Zhang W, Tan YQ. Maternal interchromosomal insertional translocation leading to 1q43-q44 deletion and duplication in two siblings. Mol Cytogenet 2018; 11:24. [PMID: 29636822 PMCID: PMC5883343 DOI: 10.1186/s13039-018-0371-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/08/2018] [Indexed: 12/05/2022] Open
Abstract
Background 1q43-q44 deletion syndrome is a well-defined chromosomal disorder which is characterized by moderate to severe mental retardation, and variable but characteristic facial features determined by the size of the segment and the number of genes involved. However, patients with 1q43-q44 duplication with a clinical phenotype comparable to that of 1q43-q44 deletion are rarely reported. Moreover, pure 1q43-q44 deletions and duplications derived from balanced insertional translocation within the same family with precisely identified breakpoints have not been reported. Case presentation The proband is a 6-year-old girl with profound developmental delay, mental retardation, microcephaly, epilepsy, agenesis of the corpus callosum and hearing impairment. Her younger brother is a 3-month-old boy with macrocephaly and mild developmental delay in gross motor functions. G-banding analysis of the subjects at the 400-band level did not reveal any subtle structural changes in their karyotypes. However, single-nucleotide polymorphism (SNP) array analysis showed a deletion and a duplication of approximately 6.0 Mb at 1q43-q44 in the proband and her younger brother, respectively. The Levicare analysis pipeline of whole-genome sequencing (WGS) further demonstrated that a segment of 1q43-q44 was inserted at 14q23.1 in the unaffected mother, which indicated that the mother was a carrier of a 46,XX,ins(14;1)(q23.1;q43q44) insertional translocation. Moreover, Sanger sequencing was used to assist the mapping of the breakpoints and the final validation of those breakpoints. The breakpoint on chromosome 1 disrupted the EFCAB2 gene in the first intron, and the breakpoint on chromosome 14 disrupted the PRKCH gene within the 12th intron. In addition, fluorescence in situ hybridization (FISH) further confirmed that the unaffected older sister of the proband carried the same karyotype as the mother. Conclusion Here, we describe a rare family exhibiting pure 1q43-q44 deletion and duplication in two siblings caused by a maternal balanced insertional translocation. Our study demonstrates that WGS with a carefully designed analysis pipeline is a powerful tool for identifying cryptic genomic balanced translocations and mapping the breakpoints at the nucleotide level and could be an effective method for explaining the relationship between karyotype and phenotype. Electronic supplementary material The online version of this article (10.1186/s13039-018-0371-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aixiang Luo
- 1Institute of Reproduction and Stem Cell Engineering, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078 People's Republic of China
| | - Dehua Cheng
- 1Institute of Reproduction and Stem Cell Engineering, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078 People's Republic of China.,2Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan 410078 People's Republic of China
| | - Shimin Yuan
- 2Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan 410078 People's Republic of China
| | - Haiyu Li
- 1Institute of Reproduction and Stem Cell Engineering, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078 People's Republic of China
| | - Juan Du
- 1Institute of Reproduction and Stem Cell Engineering, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078 People's Republic of China.,2Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan 410078 People's Republic of China
| | - Yang Zhang
- 3School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, 999077 People's Republic of China
| | - Chuanchun Yang
- Cheerland Precision Biomed Co., Ltd., Shenzhen, Guangdong 518055 People's Republic of China
| | - Ge Lin
- 1Institute of Reproduction and Stem Cell Engineering, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078 People's Republic of China.,2Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan 410078 People's Republic of China
| | - Wenyong Zhang
- Southern University of Science and Technology, Shenzhen, Guangdong 518055 People's Republic of China
| | - Yue-Qiu Tan
- 1Institute of Reproduction and Stem Cell Engineering, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078 People's Republic of China.,2Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan 410078 People's Republic of China
| |
Collapse
|
41
|
Xu J, Niu W, Peng Z, Bao X, Zhang M, Wang L, Du L, Zhang N, Sun Y. Comparative study of single-nucleotide polymorphism array and next generation sequencing based strategies on triploid identification in preimplantation genetic diagnosis and screen. Oncotarget 2018; 7:81839-81848. [PMID: 27833086 PMCID: PMC5348434 DOI: 10.18632/oncotarget.13247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/14/2016] [Indexed: 11/25/2022] Open
Abstract
Triploidy occurred about 2-3% in human pregnancies and contributed to approximately 15% of chromosomally caused human early miscarriage. It is essential for preimplantation genetic diagnosis and screen to distinct triploidy sensitively. Here, we performed comparative investigations between MALBAC-NGS and MDA-SNP array sensitivity on triploidy detection. Self-correction and reference-correction algorism were used to analyze the NGS data. We identified 5 triploid embryos in 1198 embryos of 218 PGD and PGS cycles using MDA-SNP array, the rate of tripoidy was 4.17‰ in PGS and PGD patients. Our results indicated that the MDA-SNP array was sensitive to digyny and diandry triploidy, MALBAC-NGS combined with self and reference genome correction strategies analyze were not sensitive to detect triploidy. Our study demonstrated that triploidy occurred at 4.17‰ in PGD and PGS, MDA-SNP array could successfully identify triploidy in PGD and PGS and genomic DNA. MALBAC-NGS combined with self and reference genome correction strategies were not sensitive to triploidy.
Collapse
Affiliation(s)
- Jiawei Xu
- The First Affiliated Hospital of Zhengzhou University, Centre for Reproductive Medicine, Zhengzhou, Henan 450000, China
| | - Wenbin Niu
- The First Affiliated Hospital of Zhengzhou University, Centre for Reproductive Medicine, Zhengzhou, Henan 450000, China
| | - Zhaofeng Peng
- The First Affiliated Hospital of Zhengzhou University, Centre for Reproductive Medicine, Zhengzhou, Henan 450000, China
| | - Xiao Bao
- The First Affiliated Hospital of Zhengzhou University, Centre for Reproductive Medicine, Zhengzhou, Henan 450000, China
| | - Meixiang Zhang
- The First Affiliated Hospital of Zhengzhou University, Centre for Reproductive Medicine, Zhengzhou, Henan 450000, China
| | - Linlin Wang
- The First Affiliated Hospital of Zhengzhou University, Centre for Reproductive Medicine, Zhengzhou, Henan 450000, China
| | - Linqing Du
- The First Affiliated Hospital of Zhengzhou University, Centre for Reproductive Medicine, Zhengzhou, Henan 450000, China
| | - Nan Zhang
- The First Affiliated Hospital of Zhengzhou University, Centre for Reproductive Medicine, Zhengzhou, Henan 450000, China
| | - Yingpu Sun
- The First Affiliated Hospital of Zhengzhou University, Centre for Reproductive Medicine, Zhengzhou, Henan 450000, China
| |
Collapse
|
42
|
Gu YF, Zhou QW, Zhang SP, Lu CF, Gong F, Tan YQ, Lu GX, Lin G. Inner cell mass incarceration in 8-shaped blastocysts does not increase monozygotic twinning in preimplantation genetic diagnosis and screening patients. PLoS One 2018; 13:e0190776. [PMID: 29315321 PMCID: PMC5760060 DOI: 10.1371/journal.pone.0190776] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/20/2017] [Indexed: 12/26/2022] Open
Abstract
Background The use of assisted reproductive technology (ART) has been reported to increase the incidence of monozygotic twinning (MZT) compared with the incidence following natural conception. It has been hypothesized that splitting of the inner cell mass (ICM) through a small zona hole may result in MZT. In this study, using a cohort of patients undergoing preimplantation genetic diagnosis/screening (PGD/PGS), we compared the clinical and neonatal outcomes of human 8-shaped blastocysts hatching with ICM incarceration with partially or fully hatched blastocysts, and attempted to verify whether this phenomenon increases the incidence of MZT pregnancy or negatively impact newborns. Methods This retrospective study included 2059 patients undergoing PGD/PGS between March 1, 2013, and December 31, 2015. Clinical and neonatal outcomes were only collected from patients who received a single blastocyst transfer after PGD/PGS (n = 992). A 25- to 30-μm hole was made in the zona of day 3 embryos by laser. The blastocysts were biopsied and vitrified on day 6. The biopsied trophectoderm (TE) cells were analyzed using different genetic methods. One tested blastocyst was thawed and transferred to each patient in the subsequent frozen embryo transfer cycle. All the biopsied blastocysts were divided into three types: 8-shaped with ICM incarceration (type I), partially hatched without ICM incarceration (type II), and fully hatched (type III). ICM/TE grading, clinical and neonatal outcomes were compared between the groups. Results The percentage of grade A ICMs in type I blastocysts (22.2%) was comparable to that in type III blastocysts (20.1%) but higher than that in type II blastocysts (4.5%). The percentage of grade A TEs in type I blastocysts (4.2%) was comparable to that in type II (3.6%) but lower than that in type III (13.5%). There were no significant differences in clinical pregnancy, MZT pregnancy, miscarriage, live birth, MZT births, and neonatal outcomes between the groups. Conclusions Compared to partially and fully hatched blastocysts, 8-shaped blastocysts with ICM incarceration showed relatively higher ICM and lower TE grades. ICM incarceration in 8-shaped blastocysts does not increase the incidence of MZT and has no negative effects on newborns in PGD/PGS patients.
Collapse
Affiliation(s)
- Yi-Fan Gu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive & Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Qin-Wei Zhou
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Shuo-Ping Zhang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive & Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Chang-Fu Lu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive & Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Fei Gong
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive & Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive & Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Guang-Xiu Lu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive & Genetic Hospital of CITIC-XIANGYA, Changsha, China
- National Engineering and Research Center of Human Stem Cell, Changsha, China
- Key Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive & Genetic Hospital of CITIC-XIANGYA, Changsha, China
- National Engineering and Research Center of Human Stem Cell, Changsha, China
- Key Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
- * E-mail:
| |
Collapse
|
43
|
Zhang S, Lei C, Wu J, Zhou J, Sun H, Fu J, Sun Y, Sun X, Lu D, Zhang Y. The establishment and application of preimplantation genetic haplotyping in embryo diagnosis for reciprocal and Robertsonian translocation carriers. BMC Med Genomics 2017; 10:60. [PMID: 29041973 PMCID: PMC5646120 DOI: 10.1186/s12920-017-0294-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 10/02/2017] [Indexed: 01/11/2023] Open
Abstract
Background Preimplantation genetic diagnosis (PGD) is now widely used to select embryos free of chromosomal copy number variations (CNV) from chromosome balanced translocation carriers. However, it remains a difficulty to distinguish in embryos between balanced and structurally normal chromosomes efficiently. Methods For this purpose, genome wide preimplantation genetic haplotyping (PGH) analysis was utilized based on single nucleotide polymorphism (SNP) microarray. SNPs that are heterozygous in the carrier and, homozygous in the carrier’s partner and carrier’s family member are defined as informative SNPs. The haplotypes including the breakpoint regions, the whole chromosomes involved in the translocation and the corresponding homologous chromosomes are established with these informative SNPs in the couple, reference and embryos. In order to perform this analysis, a reference either a translocation carrier’s family member or one unbalanced embryo is required. The positions of translocation breakpoints are identified by molecular karyotypes of unbalanced embryos. The recombination of breakpoint regions in embryos could be identified. Results Eleven translocation families were enrolled. 68 blastocysts were analyzed, in which 42 were unbalanced or aneuploid and the other 26 were balanced or normal chromosomes. Thirteen embryos were transferred back to patients. Prenatal cytogenetic analysis of amniotic fluid cells was performed. The results predicted by PGH and karyotypes were totally consistent. Conclusions With the successful clinical application, we demonstrate that PGH was a simple, efficient, and popularized method to distinguish between balanced and structurally normal chromosome embryos. Electronic supplementary material The online version of this article (10.1186/s12920-017-0294-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuo Zhang
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 588 Fangxie Rd, Shanghai, 200011, China.,Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Rd, Shanghai, 200438, China
| | - Caixia Lei
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 588 Fangxie Rd, Shanghai, 200011, China.,Obstetrics and Gynecology Hospital, Fudan University, 588 Fangxie Rd, Shanghai, 200011, China
| | - Junping Wu
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 588 Fangxie Rd, Shanghai, 200011, China.,Obstetrics and Gynecology Hospital, Fudan University, 588 Fangxie Rd, Shanghai, 200011, China
| | - Jing Zhou
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 588 Fangxie Rd, Shanghai, 200011, China
| | - Haiyan Sun
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 588 Fangxie Rd, Shanghai, 200011, China
| | - Jing Fu
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 588 Fangxie Rd, Shanghai, 200011, China.,Obstetrics and Gynecology Hospital, Fudan University, 588 Fangxie Rd, Shanghai, 200011, China
| | - Yijuan Sun
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 588 Fangxie Rd, Shanghai, 200011, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 588 Fangxie Rd, Shanghai, 200011, China. .,Obstetrics and Gynecology Hospital, Fudan University, 588 Fangxie Rd, Shanghai, 200011, China.
| | - Daru Lu
- Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Rd, Shanghai, 200438, China.
| | - Yueping Zhang
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 588 Fangxie Rd, Shanghai, 200011, China. .,Obstetrics and Gynecology Hospital, Fudan University, 588 Fangxie Rd, Shanghai, 200011, China.
| |
Collapse
|
44
|
Preliminary analysis of numerical chromosome abnormalities in reciprocal and Robertsonian translocation preimplantation genetic diagnosis cases with 24-chromosomal analysis with an aCGH/SNP microarray. J Assist Reprod Genet 2017; 35:177-186. [PMID: 28921398 DOI: 10.1007/s10815-017-1045-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022] Open
Abstract
PURPOSE The aim of this study was to determine whether an interchromosomal effect (ICE) occurred in embryos obtained from reciprocal translocation (rcp) and Robertsonian translocation (RT) carriers who were following a preimplantation genetic diagnosis (PGD) with whole chromosome screening with an aCGH and SNP microarray. We also analyzed the chromosomal numerical abnormalities in embryos with aneuploidy in parental chromosomes that were not involved with a translocation and balanced in involved parental translocation chromosomes. METHODS This retrospective study included 832 embryos obtained from rcp carriers and 382 embryos from RT carriers that were biopsied in 139 PGD cycles. The control group involved embryos obtained from age-matched patient karyotypes who were undergoing preimplantation genetic screening (PGS) with non-translocation, and 579 embryos were analyzed in the control group. A single blastomere at the cleavage stage or trophectoderm from a blastocyst was biopsied, and 24-chromosomal analysis with an aCGH/SNP microarray was conducted using the PGD/PGS protocols. Statistical analyses were implemented on the incidences of cumulative aneuploidy rates between the translocation carriers and the control group. RESULTS Reliable results were obtained from 138 couples, among whom only one patient was a balanced rcp or RT translocation carrier, undergoing PGD testing in our center from January 2012 to June 2014. For day 3 embryos, the aneuploidy rates were 50.7% for rcp carriers and 49.1% for RT carriers, compared with the control group, with 44.8% at a maternal age < 36 years. When the maternal age was ≥ 36 years, the aneuploidy rates were increased to 61.1% for rcp carriers, 56.7% for RT carriers, and 60.3% for the control group. There were no significant differences. In day 5 embryos, the aneuploidy rates were 24.5% for rcp carriers and 34.9% for RT carriers, compared with the control group with 53.6% at a maternal age < 36 years. When the maternal age was ≥ 36 years, the aneuploidy rates were 10.7% for rcp carriers, 26.3% for RT carriers, and 57.1% for the control group. The cumulative aneuploidy rates of chromosome translocation carriers were significantly lower than the control group. No ICE was observed in cleavage and blastocyst stage embryos obtained from these carriers. Additionally, the risk of chromosomal numerical abnormalities was observed in each of the 23 pairs of autosomes or sex chromosomes from day 3 and day 5 embryos. CONCLUSION There was not enough evidence to prove that ICE was present in embryos derived from both rcp and RT translocation carriers, regardless of the maternal age. However, chromosomal numerical abnormalities were noticed in 23 pairs of autosomes and sex chromosomes in parental structurally normal chromosomes. Thus, 24-chromosomal analysis with an aCGH/SNP microarray PGD protocol is required to decrease the risks of failure to diagnose aneuploidy in structurally normal chromosomes.
Collapse
|
45
|
Treff NR, Zimmerman RS. Advances in Preimplantation Genetic Testing for Monogenic Disease and Aneuploidy. Annu Rev Genomics Hum Genet 2017; 18:189-200. [DOI: 10.1146/annurev-genom-091416-035508] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nathan R. Treff
- Reproductive Medicine Associates of New Jersey, Basking Ridge, New Jersey 07920
| | | |
Collapse
|
46
|
Tan YQ, Tu C, Meng L, Yuan S, Sjaarda C, Luo A, Du J, Li W, Gong F, Zhong C, Deng HX, Lu G, Liang P, Lin G. Loss-of-function mutations in TDRD7 lead to a rare novel syndrome combining congenital cataract and nonobstructive azoospermia in humans. Genet Med 2017; 21:1209-1217. [PMID: 31048812 DOI: 10.1038/gim.2017.130] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/19/2017] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Comorbid familial nonobstructive azoospermia (NOA) and congenital cataract (CC) have not been reported previously, and no single human gene has been associated with both diseases in humans. Our purpose was to uncover novel human mutations and genes causing familial NOA and CC. METHODS We performed whole-exome sequencing for two brothers with both NOA and CC from a consanguineous family. Mutation screening of TDRD7 was performed in another similar consanguineous family and 176 patients with azoospermia or CC alone and 520 healthy controls. Histological analysis was performed for the biopsied testicle sample in one patient, and knockout mice were constructed to verify the phenotype of the mutation in TDRD7. RESULTS Two novel loss-of-function mutations (c.324_325insA (T110Nfs*30) and c.688_689insA (p.Y230X), respectively) of TDRD7 were found in the affected patients from the two unrelated consanguineous families. Histological analysis demonstrated a lack of mature sperm in the male patient's seminiferous tubules. The mutations were not detected in patients with CC or NOA alone. Mice with Tdrd7 gene disrupted at a similar position precisely replicated the human syndrome. CONCLUSION We identified TDRD7 causing CC as a new pathogenic gene for male azoospermia in human, with an autosomal recessive mode of inheritance.
Collapse
Affiliation(s)
- Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, College of Basic of Medicine, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Key Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
| | - Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, College of Basic of Medicine, Central South University, Changsha, China.,Key Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
| | - Lanlan Meng
- Institute of Reproductive and Stem Cell Engineering, College of Basic of Medicine, Central South University, Changsha, China.,Key Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
| | - Shimin Yuan
- Institute of Reproductive and Stem Cell Engineering, College of Basic of Medicine, Central South University, Changsha, China.,Key Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
| | - Calvin Sjaarda
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Aixiang Luo
- Institute of Reproductive and Stem Cell Engineering, College of Basic of Medicine, Central South University, Changsha, China.,Key Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
| | - Juan Du
- Institute of Reproductive and Stem Cell Engineering, College of Basic of Medicine, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Key Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
| | - Wen Li
- Institute of Reproductive and Stem Cell Engineering, College of Basic of Medicine, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Key Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
| | - Fei Gong
- Institute of Reproductive and Stem Cell Engineering, College of Basic of Medicine, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Key Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
| | - Changgao Zhong
- Institute of Reproductive and Stem Cell Engineering, College of Basic of Medicine, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Key Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
| | - Han-Xiang Deng
- Division of Neuromuscular Medicine, Davee Department of Neurology and Clinical Neurosciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Guangxiu Lu
- Key Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada.
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, College of Basic of Medicine, Central South University, Changsha, China. .,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China. .,Key Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China.
| |
Collapse
|
47
|
Natural selection between day 3 and day 5/6 PGD embryos in couples with reciprocal or Robertsonian translocations. J Assist Reprod Genet 2017; 34:1483-1492. [PMID: 28756497 DOI: 10.1007/s10815-017-1009-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/21/2017] [Indexed: 10/19/2022] Open
Abstract
PURPOSE For translocation carriers, preimplantation genetic diagnosis (PGD) provides the opportunity to distinguish between normal/balanced and unbalanced embryos prior to implantation and, as such, increases the likelihood of a successful ongoing pregnancy. The data presented here compares autosomal reciprocal and Robertsonian translocation segregation patterns in day 3 versus day 5/6 IVF-PGD embryos to determine if there is a difference in the chromosome segregation patterns observed at these developmental time points. METHODS A retrospective analysis on PGD translocation carriers at Monash IVF was performed. Segregation patterns were compared between day 3 and day 5/6 embryos to ascertain whether selection against malsegregants exists. RESULTS For reciprocal translocations, 1649 day 3 embryos (139 translocations) from 144 couples and 128 day 5/6 embryos (59 translocations) from 60 couples were analysed. Day 3 segregation analysis showed that 22.3% of embryos were normal/balanced (consistent with 2:2 alternate segregation) and 77.7% were unbalanced (malsegregation). Day 5/6 segregation analysis showed that 53.1% of embryos were normal/balanced and 46.9% were unbalanced. For Robertsonian translocations, 847 day 3 embryos (8 translocations) from 54 couples and 193 day 5/6 embryos (6 translocations) from 31 couples were analysed. Day 3 segregation analysis showed that 38.7% of embryos were normal/balanced (consistent with 2:1 alternate segregation) and 61.3% were unbalanced. Day 5/6 segregation analysis showed that 74.1% of embryos were normal/balanced and 25.9% were unbalanced. CONCLUSIONS This data demonstrates an increase in the proportion of genetically normal/balanced embryos at day 5/6 of development. This suggests a strong natural selection process between day 3 and day 5/6 in favour of normal/balanced embryos. These findings support performing PGD testing on day 5/6 of embryo development.
Collapse
|
48
|
Minasi MG, Fiorentino F, Ruberti A, Biricik A, Cursio E, Cotroneo E, Varricchio MT, Surdo M, Spinella F, Greco E. Genetic diseases and aneuploidies can be detected with a single blastocyst biopsy: a successful clinical approach. Hum Reprod 2017. [DOI: 10.1093/humrep/dex215] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
49
|
Marin D, Wang Y, Tao X, Scott RT, Treff NR. Comprehensive chromosome screening and gene expression analysis from the same biopsy in human preimplantation embryos. Mol Hum Reprod 2017; 23:330-338. [PMID: 28369516 PMCID: PMC5420574 DOI: 10.1093/molehr/gax014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/07/2017] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION Can simultaneous comprehensive chromosome screening (CCS) and gene expression analysis be performed on the same biopsy of preimplantation human embryos? SUMMARY ANSWER For the first time, CCS and reliable gene expression analysis have been performed on the same human preimplantation embryo biopsy. WHAT IS KNOWN ALREADY A single trophectoderm (TE) biopsy is routinely used for many IVF programs offering CCS for selection of only chromosomally normal embryos for transfer. Although the gene expression profiling of human preimplantation embryos has been described, to date no protocol allows for simultaneous CCS and gene expression profiling from a single TE biopsy. STUDY DESIGN, SIZE AND DURATION This is a proof of concept and validation study structured in two phases. In Phase 1, cell lines were subjected to a novel protocol for combined CCS and gene expression analysis so as to validate the accuracy and reliability of the proposed protocol. In Phase 2, 20 donated human blastocysts were biopsied and processed with the proposed protocol in order to obtain an accurate CCS result and characterize their gene expression profiles using the same starting material. PARTICIPANTS/MATERIALS, SETTING AND METHOD A novel protocol coupling quantitative real-time PCR-based CCS and gene expression analysis using RT-PCR was designed for this study. Phase 1: six-cell aliquots of well-characterized fibroblast cell lines (GM00323, 46,XY and GM04435, 48,XY,+16,+21) were subjected to the proposed protocol. CCS results were compared with the known karyotypes for consistency, and gene expression levels were compared with levels of purified RNA from same cell lines for validation of reliable gene expression profiling. Phase 2: four biopsies were performed on 20 frozen human blastocysts previously diagnosed as trisomy 21 (10 embryos) and monosomy 21 (10 embryos) by CCS. All samples were processed with the proposed protocol and re-evaluated for concordance with the original CCS result. Their gene expression profiles were characterized and differential gene expression among embryos and early embryonic cell lineages was also evaluated. MAIN RESULTS AND THE ROLE OF CHANCE CCS results from cell lines showed 100% consistency with their known karyotypes. ΔΔCt values of differential gene expression of four selected target genes from the cell lines GM4435 and GM0323 were comparable between six-cell aliquots and purified RNA (Collagen type I alpha-1 (COL1A1), P = 0.54; Fibroblast growth factor-5 (FGF5), P = 0.11; Laminin subunit beta-1 (LAMB1), P = 1.00 and Atlastin-1 (ATL1), P = 0.23). With respect to human blastocysts, 92% consistency was reported after comparing embryonic CCS results with previous diagnosis. A total of 30 genes from a human stem cell pluripotency panel were selected to evaluate gene expression in human embryos. Correlation coefficients of expression profiles from biopsies of the same embryo (r = 0.96 ± 0.03 (standard deviation), n = 45) were significantly higher than when biopsies from unrelated embryos were evaluated (r = 0.93 ± 0.03, n = 945) (P < 0.0001). Growth differentiation factor 3 (GDF3) was found to be significantly up-regulated in the inner cell mass (ICM), whereas Caudal type homebox protein-2 (CDX2), Laminin subunit alpha-1 (LAMA1) and DNA methyltransferase 3-beta (DNMT3B) showed down-regulation in ICM compared with TE. Trisomy 21 embryos showed significant up-regulation of markers of cell differentiation (Cadherin-5 (CDH5) and Laminin subunit gamma-1 (LAMC1)), whereas monosomy 21 blastocysts showed higher expression of genes reported to be expressed in undifferentiated cells (Gamma-Aminobutyric Acid Type-A Receptor Beta3 Subunit (GABRB3) and GDF3). LARGE SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION Gene expression profiles of chromosomally normal embryos were not assessed due to restrictive access to euploid embryos for research. Nonetheless, the profile of blastocysts with single aneuploidies was characterized and compared. Only 30 target genes were analyzed for gene expression in this study. Increasing the number of target genes will provide a more comprehensive transcriptomic signature and reveal potential pathways paramount for embryonic competence and correct development. WIDER IMPLICATIONS OF THE FINDINGS This is the first time that CCS and gene expression analysis have been performed on the same human preimplantation embryo biopsy. Further optimization of this protocol with other CCS platforms and inclusion of more target genes will provide innumerable research and clinical applications, such as discovery of biomarkers for embryonic reproductive potential and characterization of the transcriptomic signatures of embryos, potentially allowing for further embryo selection prior to embryo transfer and therefore improving outcomes. STUDY FUNDING AND COMPETING INTERESTS This study was funded by the Foundation for Embryonic Competence, Basking Ridge, NJ, USA. No conflicts of interests declared.
Collapse
Affiliation(s)
- Diego Marin
- Reproductive Medicine Associates of New Jersey, 140 Allen Road, Basking Ridge, NJ 07920, USA.,Thomas Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yujue Wang
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Xin Tao
- The Foundation for Embryonic Competence, Basking Ridge, NJ 07920, USA
| | - Richard T Scott
- Reproductive Medicine Associates of New Jersey, 140 Allen Road, Basking Ridge, NJ 07920, USA
| | - Nathan R Treff
- Reproductive Medicine Associates of New Jersey, 140 Allen Road, Basking Ridge, NJ 07920, USA.,Thomas Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
50
|
Mise à jour technique : Diagnostic et dépistage génétiques préimplantatoires. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2017; 38:S629-S645. [PMID: 28063571 DOI: 10.1016/j.jogc.2016.09.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|