1
|
Adelizzi A, Giri A, Di Donfrancesco A, Boito S, Prigione A, Bottani E, Bollati V, Tiranti V, Persico N, Brunetti D. Fetal and obstetrics manifestations of mitochondrial diseases. J Transl Med 2024; 22:853. [PMID: 39313811 PMCID: PMC11421203 DOI: 10.1186/s12967-024-05633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
During embryonic and neonatal development, mitochondria have essential effects on metabolic and energetic regulation, shaping cell fate decisions and leading to significant short- and long-term effects on embryonic and offspring health. Therefore, perturbation on mitochondrial function can have a pathological effect on pregnancy. Several shreds of evidence collected in preclinical models revealed that severe mitochondrial dysfunction is incompatible with life or leads to critical developmental defects, highlighting the importance of correct mitochondrial function during embryo-fetal development. The mechanism impairing the correct development is unknown and may include a dysfunctional metabolic switch in differentiating cells due to decreased ATP production or altered apoptotic signalling. Given the central role of mitochondria in embryonic and fetal development, the mitochondrial dysfunction typical of Mitochondrial Diseases (MDs) should, in principle, be detectable during pregnancy. However, little is known about the clinical manifestations of MDs in embryonic and fetal development. In this manuscript, we review preclinical and clinical evidence suggesting that MDs may affect fetal development and highlight the fetal and maternal outcomes that may provide a wake-up call for targeted genetic diagnosis.
Collapse
Affiliation(s)
- Alessia Adelizzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Anastasia Giri
- Fetal Medicine and Surgery Service, Ospedale Maggiore Policlinico, Fondazione IRCCS Ca' Granda, Milan, Italy
| | - Alessia Di Donfrancesco
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Simona Boito
- Fetal Medicine and Surgery Service, Ospedale Maggiore Policlinico, Fondazione IRCCS Ca' Granda, Milan, Italy
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Emanuela Bottani
- Department of Diagnostics and Public Health, University of Verona, Verona, 37124, Italy
| | - Valentina Bollati
- Dipartimento di Scienze Cliniche e di Comunità, Dipartimento di Eccellenza, University of Milan, Milan, 2023-2027, Italy
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Nicola Persico
- Fetal Medicine and Surgery Service, Ospedale Maggiore Policlinico, Fondazione IRCCS Ca' Granda, Milan, Italy.
- Dipartimento di Scienze Cliniche e di Comunità, Dipartimento di Eccellenza, University of Milan, Milan, 2023-2027, Italy.
| | - Dario Brunetti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy.
- Dipartimento di Scienze Cliniche e di Comunità, Dipartimento di Eccellenza, University of Milan, Milan, 2023-2027, Italy.
| |
Collapse
|
2
|
Li Y, Cai L, Guo N, Liu C, Wang M, Zhu L, Li F, Jin L, Sui C. Oviductal extracellular vesicles from women with endometriosis impair embryo development. Front Endocrinol (Lausanne) 2023; 14:1171778. [PMID: 37409222 PMCID: PMC10319124 DOI: 10.3389/fendo.2023.1171778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/23/2023] [Indexed: 07/07/2023] Open
Abstract
Objective To investigate the influence of oviductal extracellular vesicles from patients with endometriosis on early embryo development. Design In vitro experimental study. Setting University-affiliated hospital. Patients Women with and without endometriosis who underwent hysterectomy (n = 27 in total). Interventions None. Main outcome measures Oviductal extracellular vesicles from patients with endometriosis (oEV-EMT) or without endometriosis (oEV-ctrl) were isolated and co-cultured with two-cell murine embryos for 75 hours. Blastocyst rates were recorded. RNA sequencing was used to identify the differentially expressed genes in blastocysts cultured either with oEV-EMT or with oEV-ctrl. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed to identify potential biological processes in embryos that oEV-EMT affects. The functions of oEV on early embryo development were determined by reactive oxygen species (ROS) levels, mitochondrial membrane potentials (MMP), total cell numbers, and apoptotic cell proportions. Results Extracellular vesicles were successfully isolated from human Fallopian tubal fluid, and their characterizations were described. The blastocyst rates were significantly decreased in the oEV-EMT group. RNA sequencing revealed that oxidative phosphorylation was down-regulated in blastocysts cultured with oEV-EMT. Analysis of oxidative stress and apoptosis at the blastocysts stage showed that embryos cultured with oEV-EMT had increased ROS levels, decreased MMP, and increased apoptotic index. Total cell numbers were not influenced. Conclusion Oviductal extracellular vesicles from patients with endometriosis negatively influence early embryo development by down-regulating oxidative phosphorylation.
Collapse
Affiliation(s)
- Yuehan Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Cai
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Guo
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Liu
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Meng Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Sui
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Lee SH, Liu X, Jimenez-Morales D, Rinaudo PF. Murine blastocysts generated by in vitro fertilization show increased Warburg metabolism and altered lactate production. eLife 2022; 11:e79153. [PMID: 36107481 PMCID: PMC9519152 DOI: 10.7554/elife.79153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
In vitro fertilization (IVF) has resulted in the birth of over 8 million children. Although most IVF-conceived children are healthy, several studies suggest an increased risk of altered growth rate, cardiovascular dysfunction, and glucose intolerance in this population compared to naturally conceived children. However, a clear understanding of how embryonic metabolism is affected by culture condition and how embryos reprogram their metabolism is unknown. Here, we studied oxidative stress and metabolic alteration in blastocysts conceived by natural mating or by IVF and cultured in physiologic (5%) or atmospheric (20%) oxygen. We found that IVF-generated blastocysts manifest increased reactive oxygen species, oxidative damage to DNA/lipid/proteins, and reduction in glutathione. Metabolic analysis revealed IVF-generated blastocysts display decreased mitochondria respiration and increased glycolytic activity suggestive of enhanced Warburg metabolism. These findings were corroborated by altered intracellular and extracellular pH and increased intracellular lactate levels in IVF-generated embryos. Comprehensive proteomic analysis and targeted immunofluorescence showed reduction of lactate dehydrogenase-B and monocarboxylate transporter 1, enzymes involved in lactate metabolism. Importantly, these enzymes remained downregulated in the tissues of adult IVF-conceived mice, suggesting that metabolic alterations in IVF-generated embryos may result in alteration in lactate metabolism. These findings suggest that alterations in lactate metabolism are a likely mechanism involved in genomic reprogramming and could be involved in the developmental origin of health and disease.
Collapse
Affiliation(s)
- Seok Hee Lee
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California, San FranciscoSan FranciscoUnited States
| | - Xiaowei Liu
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California, San FranciscoSan FranciscoUnited States
| | - David Jimenez-Morales
- Division of Cardiovascular Medicine, Department of Medicine, Stanford UniversityStanfordUnited States
| | - Paolo F Rinaudo
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
4
|
Chu M, Yao F, Xi G, Yang J, Zhang Z, Yang Q, Tian J, An L. Vitamin C Rescues in vitro Embryonic Development by Correcting Impaired Active DNA Demethylation. Front Cell Dev Biol 2021; 9:784244. [PMID: 34869387 PMCID: PMC8640463 DOI: 10.3389/fcell.2021.784244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
During preimplantation development, a wave of genome-wide DNA demethylation occurs to acquire a hypomethylated genome of the blastocyst. As an essential epigenomic event, postfertilization DNA demethylation is critical to establish full developmental potential. Despite its importance, this process is prone to be disrupted due to environmental perturbations such as manipulation and culture of embryos during in vitro fertilization (IVF), and thus leading to epigenetic errors. However, since the first case of aberrant DNA demethylation reported in IVF embryos, its underlying mechanism remains unclear and the strategy for correcting this error remains unavailable in the past decade. Thus, understanding the mechanism responsible for DNA demethylation defects, may provide a potential approach for preventing or correcting IVF-associated complications. Herein, using mouse and bovine IVF embryos as the model, we reported that ten-eleven translocation (TET)-mediated active DNA demethylation, an important contributor to the postfertilization epigenome reprogramming, was impaired throughout preimplantation development. Focusing on modulation of TET dioxygenases, we found vitamin C and α-ketoglutarate, the well-established important co-factors for stimulating TET enzymatic activity, were synthesized in both embryos and the oviduct during preimplantation development. Accordingly, impaired active DNA demethylation can be corrected by incubation of IVF embryos with vitamin C, and thus improving their lineage differentiation and developmental potential. Together, our data not only provides a promising approach for preventing or correcting IVF-associated epigenetic errors, but also highlights the critical role of small molecules or metabolites from maternal paracrine in finetuning embryonic epigenomic reprogramming during early development.
Collapse
Affiliation(s)
- Meiqiang Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fusheng Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guangyin Xi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiajun Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhenni Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qianying Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianhui Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lei An
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Tan K, Song HW, Wilkinson MF. RHOX10 drives mouse spermatogonial stem cell establishment through a transcription factor signaling cascade. Cell Rep 2021; 36:109423. [PMID: 34289349 PMCID: PMC8357189 DOI: 10.1016/j.celrep.2021.109423] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/17/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are essential for male fertility. Here, we report that mouse SSC generation is driven by a transcription factor (TF) cascade controlled by the homeobox protein, RHOX10, which acts by driving the differentiation of SSC precursors called pro-spermatogonia (ProSG). We identify genes regulated by RHOX10 in ProSG in vivo and define direct RHOX10-target genes using several approaches, including a rapid temporal induction assay: iSLAMseq. Together, these approaches identify temporal waves of RHOX10 direct targets, as well as RHOX10 secondary-target genes. Many of the RHOX10-regulated genes encode proteins with known roles in SSCs. Using an in vitro ProSG differentiation assay, we find that RHOX10 promotes mouse ProSG differentiation through a conserved transcriptional cascade involving the key germ-cell TFs DMRT1 and ZBTB16. Our study gives important insights into germ cell development and provides a blueprint for how to define TF cascades.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hye-Won Song
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
6
|
Fu W, Yue Y, Miao K, Xi G, Zhang C, Wang W, An L, Tian J. Repression of FGF signaling is responsible for Dnmt3b inhibition and impaired de novo DNA methylation during early development of in vitro fertilized embryos. Int J Biol Sci 2020; 16:3085-3099. [PMID: 33061820 PMCID: PMC7545699 DOI: 10.7150/ijbs.51607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/12/2020] [Indexed: 12/30/2022] Open
Abstract
Well-orchestrated epigenetic modifications during early development are essential for embryonic survival and postnatal growth. Erroneous epigenetic modifications due to environmental perturbations such as manipulation and culture of embryos during in vitro fertilization (IVF) are linked to various short- or long-term consequences. Among these, DNA methylation defects are of great concern. Despite the critical role of DNA methylation in determining embryonic development potential, the mechanisms underlying IVF-associated DNA methylation defects, however, remains largely elusive. We reported herein that repression of fibroblast growth factor (FGF) signaling as the main reason for IVF-associated DNA methylation defects. Comparative methylome analysis by postimplantation stage suggested that IVF mouse embryos undergo impaired de novo DNA methylation during implantation stage. Further analyses indicated that Dnmt3b, the main de novo DNA methyltransferase, was consistently inhibited during the transition from the blastocyst to postimplantation stage (Embryonic day 7.5, E7.5). Using blastocysts and embryonic stem cells (ESCs) as the model, we showed repression of FGF signaling is responsible for Dnmt3b inhibition and global hypomethylation during early development, and MEK/ERK-SP1 pathway plays an essential mediating role in FGF signaling-induced transcriptional activation of Dnmt3b. Supplementation of FGF2, which was exclusively produced in the maternal oviduct, into embryo culture medium significantly rescued Dnmt3b inhibition. Our study, using mouse embryos as the model, not only identifies FGF signaling as the main target for correcting IVF-associated epigenetic errors, but also highlights the importance of oviductal paracrine factors in supporting early embryonic development and improving in vitro culture system.
Collapse
Affiliation(s)
- Wei Fu
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Yuan Yue
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Kai Miao
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Guangyin Xi
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Chao Zhang
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Wenjuan Wang
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Lei An
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Jianhui Tian
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| |
Collapse
|
7
|
Belli M, Zhang L, Liu X, Donjacour A, Ruggeri E, Palmerini MG, Nottola SA, Macchiarelli G, Rinaudo P. Oxygen concentration alters mitochondrial structure and function in in vitro fertilized preimplantation mouse embryos. Hum Reprod 2020; 34:601-611. [PMID: 30865267 DOI: 10.1093/humrep/dez011] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION Does the oxygen concentration in the culture medium [either physiologic (5%) or atmospheric (20%)] affect mitochondrial ultrastructure and function in preimplantation mouse embryos generated by IVF? SUMMARY ANSWER Embryos cultured in 20% oxygen show increased mitochondrial abnormalities compared to embryos cultured in 5% oxygen. WHAT IS KNOWN ALREADY ART are widely used and have resulted in the birth of more than 8 million children. A variety of media and oxygen concentrations are used to culture embryos. Embryos cultured under physiological O2 tension (5%) reach the blastocyst stage faster and have fewer alterations in gene expression when compared with embryos cultured under atmospheric oxygen conditions (20%). The mechanisms by which oxygen tension affects preimplantation development remain unclear, but mitochondria are believed to play an important role. The aim of this study was to evaluate how mitochondrial ultrastructure and function in IVF embryos were affected by culture under physiologic (5%) or atmospheric (20%) oxygen concentrations. STUDY DESIGN, SIZE, DURATION Zygotes, 2-cell, 4-cell, morula and blastocyst were flushed out of the uterus after natural fertilization and used as controls. IVF was performed in CF1 x B6D2F1 mice and embryos were cultured in Potassium simplex optimized medium (KSOM) with amino acids (KAA) under 5% and 20% O2 until the blastocyst stage. Embryo development with the addition of antioxidants was also tested. PARTICIPANTS/MATERIALS, SETTING, METHODS Mitochondrial function was assessed by measuring mitochondrial membrane potential, reactive oxygen species (ROS) production, ATP levels, and the expression of selected genes involved in mitochondrial function. Mitochondria ultrastructure was evaluated by transmission electron microscopy (TEM). MAIN RESULTS AND THE ROLE OF CHANCE Embryos cultured under 20% O2 had fewer mitochondria and more vacuoles and hooded (abnormal) mitochondria compared to the other groups (P < 0.05). At the blastocyst stage the mitochondria of IVF embryos cultured in 20% O2 had lower mtDNA copy number, a denser matrix and more lamellar cristae than controls. Overall IVF-generated blastocysts had lower mitochondrial membrane potential, higher ROS levels, together with changes in the expression of selected mitochondrial genes (P < 0.05). ATP levels were significantly lower than controls only under 5% O2, with the 20% O2 IVF group having intermediate levels. Unexpectedly, adding antioxidant to the culture medium did not improve development. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Findings in mice embryos might be different from human embryos. WIDER IMPLICATIONS OF THE FINDINGS This study suggests that changes in the mitochondria may be part of the mechanism by which lower oxygen concentration leads to better embryo development and further emphasize the importance of mitochondria as a locus of reprogramming. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by R01 HD 082039 to PFR, the Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy (RIA 2016-2018) and the Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, La Sapienza University of Rome, Italy (University grants 2016-2017). The authors declare no competing interests.
Collapse
Affiliation(s)
- Manuel Belli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA, USA
| | - Ling Zhang
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA, USA.,Family Planning Research Institute and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xiaowei Liu
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA, USA
| | - Annemarie Donjacour
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA, USA
| | - Elena Ruggeri
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA, USA
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Stefania Annarita Nottola
- Deparment of Anatomy, Histology, Forensic Medicine and Orthopaedics, La Sapienza University of Rome, Rome, Italy
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Paolo Rinaudo
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
8
|
Yang Q, Fu W, Wang Y, Miao K, Zhao H, Wang R, Guo M, Wang Z, Tian J, An L. The proteome of IVF-induced aberrant embryo-maternal crosstalk by implantation stage in ewes. J Anim Sci Biotechnol 2020; 11:7. [PMID: 31956410 PMCID: PMC6958772 DOI: 10.1186/s40104-019-0405-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/26/2019] [Indexed: 01/17/2023] Open
Abstract
Background Implantation failure limits the success of in vitro fertilization and embryo transfer (IVF-ET). Well-organized embryo-maternal crosstalk is essential for successful implantation. Previous studies mainly focused on the aberrant development of in vitro fertilized (IVF) embryos. In contrast, the mechanism of IVF-induced aberrant embryo-maternal crosstalk is not well defined. Results In the present study, using ewes as the model, we profiled the proteome that features aberrant IVF embryo-maternal crosstalk following IVF-ET. By comparing in vivo (IVO) and IVF conceptuses, as well as matched endometrial caruncular (C) and intercaruncular (IC) areas, we filtered out 207, 295, and 403 differentially expressed proteins (DEPs) in each comparison. Proteome functional analysis showed that the IVF conceptuses were characterized by the increased abundance of energy metabolism and proliferation-related proteins, and the decreased abundance of methyl metabolism-related proteins. In addition, IVF endometrial C areas showed the decreased abundance of endometrial remodeling and redox homeostasis-related proteins; while IC areas displayed the aberrant abundance of protein homeostasis and extracellular matrix (ECM) interaction-related proteins. Based on these observations, we propose a model depicting the disrupted embryo-maternal crosstalk following IVF-ET: Aberrant energy metabolism and redox homeostasis of IVF embryos, might lead to an aberrant endometrial response to conceptus-derived pregnancy signals, thus impairing maternal receptivity. In turn, the suboptimal uterine environment might stimulate a compensation effect of the IVF conceptuses, which was revealed as enhanced energy metabolism and over-proliferation. Conclusion Systematic proteomic profiling provides insights to understand the mechanisms that underlie the aberrant IVF embryo-maternal crosstalk. This might be helpful to develop practical strategies to prevent implantation failure following IVF-ET.
Collapse
Affiliation(s)
- Qianying Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Wei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Yue Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Kai Miao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Haichao Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Rui Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Min Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Zhilong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Jianhui Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Lei An
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
9
|
El Sheikh M, Mesalam A, Mesalam AA, Idrees M, Lee KL, Kong IK. Melatonin Abrogates the Anti-Developmental Effect of the AKT Inhibitor SH6 in Bovine Oocytes and Embryos. Int J Mol Sci 2019; 20:ijms20122956. [PMID: 31212969 PMCID: PMC6627520 DOI: 10.3390/ijms20122956] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022] Open
Abstract
Melatonin, a nighttime-secreted antioxidant hormone produced by the pineal gland, and AKT, a serine/threonine-specific protein kinase, have been identified as regulators for several cellular processes essential for reproduction. The current study aimed to investigate the potential interplay between melatonin and AKT in bovine oocytes in the context of embryo development. Results showed that the inclusion of SH6, a specific AKT inhibitor, during in vitro maturation (IVM) significantly reduced oocyte maturation, cumulus cell expansion, cleavage, and blastocyst development that were rescued upon addition of melatonin. Oocytes treated with SH6 in the presence of melatonin showed lower levels of reactive oxygen species (ROS) and blastocysts developed exhibited low apoptosis while the mitochondrial profile was significantly improved compared to the SH6-treated group. The RT-qPCR results showed up-regulation of the mRNA of maturation-, mitochondrial-, and cumulus expansion-related genes including GDF-9, BMP-15, MARF1, ATPase, ATP5F1E, POLG2, HAS2, TNFAIP6, and PTGS2 and down-regulation of Bcl-2 associated X apoptosis regulator (BAX), caspase 3, and p21 involved in apoptosis and cell cycle arrest in melatonin-SH6 co-treated group compared to SH6 sole treatment. The immunofluorescence showed high levels of caspase 3 and caspase 9, and low AKT phosphorylation in the SH6-treated group compared to the control and melatonin-SH6 co-treatment. Taken together, our results showed the importance of both melatonin and AKT for overall embryonic developmental processes and, for the first time, we report that melatonin could neutralize the deleterious consequences of AKT inhibition, suggesting a potential role in regulation of AKT signaling in bovine oocytes.
Collapse
Affiliation(s)
- Marwa El Sheikh
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea.
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Ayman Mesalam
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Ahmed Atef Mesalam
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea.
| | - Muhammad Idrees
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea.
| | | | - Il-Keun Kong
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea.
- The King Kong Corp Ltd., Jinju 52828, Korea.
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
10
|
Melatonin Improves the Quality of Inferior Bovine Oocytes and Promoted Their Subsequent IVF Embryo Development: Mechanisms and Results. Molecules 2017; 22:molecules22122059. [PMID: 29186876 PMCID: PMC6149663 DOI: 10.3390/molecules22122059] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 02/02/2023] Open
Abstract
The inferior oocytes (IOs), which are not suitable for embryo development, occupy roughly one-third or more of the collected immature bovine oocytes. The IOs are usually discarded from the in vitro bovine embryo production process. Improving the quality of the inferior oocytes (IOs) and make them available in in vitro embryo production would have important biological, as well as commercial, value. This study was designed to investigate whether melatonin could improve the quality of IOs and make them usable in the in vitro maturation (IVM) and subsequent (in vitro fertilization) IVF embryo development. The results indicated that: the maturation rate of IOs and their subsequent IVF embryo developments were impaired compared to cumulus-oocyte complexes and melatonin treatment significantly improved the quality of IOs, as well as their IVF and embryo developments. The potential mechanisms are that: (1) melatonin reduced reactive oxygen species (ROS) and enhanced glutathione (GSH) levels in the IOs, thereby protecting them from oxidative stress; (2) melatonin improved mitochondrial normal distribution and function to increase ATP level in IOs; and (3) melatonin upregulated the expression of ATPase 6, BMP-15, GDF-9, SOD-1, Gpx-4, and Bcl-2, which are critical genes for oocyte maturation and embryo development and downregulated apoptotic gene expression of caspase-3.
Collapse
|
11
|
Wang M, Huang YP, Wu H, Song K, Wan C, Chi AN, Xiao YM, Zhao XY. Mitochondrial complex I deficiency leads to the retardation of early embryonic development in Ndufs4 knockout mice. PeerJ 2017; 5:e3339. [PMID: 28533980 PMCID: PMC5438584 DOI: 10.7717/peerj.3339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/20/2017] [Indexed: 11/25/2022] Open
Abstract
Background The NDUFS4 gene encodes an 18-kD subunit of mitochondria complex I, and mutations in this gene lead to the development of a severe neurodegenerative disease called Leigh syndrome (LS) in humans. To investigate the disease phenotypes and molecular mechanisms of Leigh syndrome, the Ndufs4 knockout (KO) mouse has been widely used as a novel animal model. Because the homozygotes cannot survive beyond child-bearing age, whether Ndufs4 and mitochondrial complex I influence early embryonic development remains unknown. In our study, we attempted to investigate embryonic development in Ndufs4 KO mice, which can be regarded as a Leigh disease model and were created through the CRISPR (clustered regularly interspaced short palindromic repeat) and Cas9 (CRISPR associated)-mediated genome editing system. Methods We first designed a single guide RNA (sgRNA) targeting exon 2 of Ndufs4 to delete the NDUFS4 protein in mouse embryos to mimic Leigh syndrome. Then, we described the phenotypes of our mouse model by forced swimming and the open-field test as well as by assessing other behavioral characteristics. Intracytoplasmic sperm injection (ICSI) was performed to obtain KO embryos to test the influence of NDUFS4 deletion on early embryonic development. Results In this study, we first generated Ndufs4 KO mice with physical and behavioral phenotypes similar to Leigh syndrome using the CRISPR/Cas9 system. The low developmental rate of KO embryos that were derived from knockout gametes indicated that the absence of NDUFS4 impaired the development of preimplantation embryos. Discussion In this paper, we first obtained Ndufs4 KO mice that could mimic Leigh syndrome using the CRISPR/Cas9 system. Then, we identified the role of NDUFS4 in early embryonic development, shedding light on its roles in the respiratory chain and fertility. Our model provides a useful tool with which to investigate the function of Ndufs4. Although the pathological mechanisms of the disease need to be discovered, it helps to understand the pathogenesis of NDUFS4 deficiency in mice and its effects on human diseases.
Collapse
Affiliation(s)
- Mei Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ya-Ping Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Han Wu
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ke Song
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Cong Wan
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - A-Ni Chi
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ya-Mei Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
| | - Xiao-Yang Zhao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Ren L, Zhang C, Tao L, Hao J, Tan K, Miao K, Yu Y, Sui L, Wu Z, Tian J, An L. High-resolution profiles of gene expression and DNA methylation highlight mitochondrial modifications during early embryonic development. J Reprod Dev 2017; 63:247-261. [PMID: 28367907 PMCID: PMC5481627 DOI: 10.1262/jrd.2016-168] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Well-organized mitochondrial functions and dynamics are critical for early embryonic development and are operated via a large number of mitochondria-related genes (MtGs) encoded by both the nuclear and the mitochondrial genome.
However, the mechanisms underlying mitochondrial modifications during the critical window between blastocyst implantation and postimplantation organogenesis are poorly understood. Herein, we performed high-resolution dynamic
profiling of MtGs to acquire a more detailed understanding of mitochondrial modifications during early development. Our data suggest that the resumption of mitochondrial mass growth is not only facilitated by increased
mitochondrial biogenesis and mitochondrial DNA (mtDNA) replication, but also by the appropriate balance between mitochondrial fission and fusion. In addition, increased levels of reactive oxygen species (ROS) resulting from
enhanced mitochondrial functions may be the critical inducer for activating the glutathione (GSH)-based stress response system in early embryos. The appropriate balance between the mitochondrial stress response and apoptosis
appears to be significant for cell differentiation and early organogenesis. Furthermore, we found that most MtGs undergo de novo promoter methylation, which may have functional consequences on mitochondrial
functions and dynamics during early development. We also report that mtDNA methylation can be observed as early as soon after implantation. DNMT1, the predominant enzyme for maintaining DNA methylation, localized to the
mitochondria and bound to mtDNA by the implantation stage. Our study provides a new insight into the involvement of mitochondria in early mammalian embryogenesis. We also propose that the epigenetic modifications during early
development are significant for modulating mitochondrial functions and dynamics.
Collapse
Affiliation(s)
- Likun Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Chao Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Li Tao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Jing Hao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Kun Tan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Kai Miao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Yong Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Linlin Sui
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Zhonghong Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Jianhui Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Lei An
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
13
|
Tan DX, Manchester LC, Qin L, Reiter RJ. Melatonin: A Mitochondrial Targeting Molecule Involving Mitochondrial Protection and Dynamics. Int J Mol Sci 2016; 17:ijms17122124. [PMID: 27999288 PMCID: PMC5187924 DOI: 10.3390/ijms17122124] [Citation(s) in RCA: 281] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/28/2016] [Accepted: 12/07/2016] [Indexed: 01/19/2023] Open
Abstract
Melatonin has been speculated to be mainly synthesized by mitochondria. This speculation is supported by the recent discovery that aralkylamine N-acetyltransferase/serotonin N-acetyltransferase (AANAT/SNAT) is localized in mitochondria of oocytes and the isolated mitochondria generate melatonin. We have also speculated that melatonin is a mitochondria-targeted antioxidant. It accumulates in mitochondria with high concentration against a concentration gradient. This is probably achieved by an active transportation via mitochondrial melatonin transporter(s). Melatonin protects mitochondria by scavenging reactive oxygen species (ROS), inhibiting the mitochondrial permeability transition pore (MPTP), and activating uncoupling proteins (UCPs). Thus, melatonin maintains the optimal mitochondrial membrane potential and preserves mitochondrial functions. In addition, mitochondrial biogenesis and dynamics is also regulated by melatonin. In most cases, melatonin reduces mitochondrial fission and elevates their fusion. Mitochondrial dynamics exhibit an oscillatory pattern which matches the melatonin circadian secretory rhythm in pinealeocytes and probably in other cells. Recently, melatonin has been found to promote mitophagy and improve homeostasis of mitochondria.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cell System and Anatomy, The University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | - Lucien C Manchester
- Department of Cell System and Anatomy, The University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | - Lilan Qin
- Department of Cell System and Anatomy, The University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | - Russel J Reiter
- Department of Cell System and Anatomy, The University of Texas Health Science Center, San Antonio, TX 78229, USA.
| |
Collapse
|
14
|
He C, Wang J, Zhang Z, Yang M, Li Y, Tian X, Ma T, Tao J, Zhu K, Song Y, Ji P, Liu G. Mitochondria Synthesize Melatonin to Ameliorate Its Function and Improve Mice Oocyte's Quality under in Vitro Conditions. Int J Mol Sci 2016; 17:ijms17060939. [PMID: 27314334 PMCID: PMC4926472 DOI: 10.3390/ijms17060939] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/30/2016] [Accepted: 06/02/2016] [Indexed: 12/17/2022] Open
Abstract
The physiology of oocyte in vitro maturation remains elusive. Generally, the oocytes have a very low maturation rate under in vitro conditions. In the current study, we found that melatonin promotes the maturation of oocytes in which mitochondria play a pivotal role. It was identified that; (1) mitochondria are the major sites for melatonin synthesis in oocytes and they synthesize large amounts of melatonin during their maturation; (2) melatonin improves mitochondrial function by increased mtDNA copy, mitochondrial membrane potential (ΔΨm) and mitochondrial distribution and ATP production in oocytes; (3) the meiotic spindle assembly is enhanced; (4) melatonin reduces ROS production and inhibits 8-oxodG formation, thereby protecting potential DNA mutation from oxidative damage. As a result, melatonin improves the quality of oocytes, significantly accelerates the developmental ability of IVF embryo. The results provide novel knowledge on the physiology of oocyte’s maturation, especially under in vitro conditions.
Collapse
Affiliation(s)
- Changjiu He
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Jing Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Zhenzhen Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Minghui Yang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Yu Li
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Xiuzhi Tian
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Teng Ma
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Jingli Tao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Kuanfeng Zhu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Yukun Song
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Pengyun Ji
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Guoshi Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
15
|
Tan K, Zhang Z, Miao K, Yu Y, Sui L, Tian J, An L. Dynamic integrated analysis of DNA methylation and gene expression profiles in in vivo and in vitro fertilized mouse post-implantation extraembryonic and placental tissues. Mol Hum Reprod 2016; 22:485-98. [PMID: 27090932 DOI: 10.1093/molehr/gaw028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 03/30/2016] [Indexed: 01/02/2023] Open
Abstract
STUDY HYPOTHESIS How does in vitro fertilization (IVF) alter promoter DNA methylation patterns and its subsequent effects on gene expression profiles during placentation in mice? STUDY FINDING IVF-induced alterations in promoter DNA methylation might have functional consequences in a number of biological processes and functions during IVF placentation, including actin cytoskeleton organization, hematopoiesis, vasculogenesis, energy metabolism and nutrient transport. WHAT IS KNOWN ALREADY During post-implantation embryonic development, both embryonic and extraembryonic tissues undergo de novo DNA methylation, thereby establishing a global DNA methylation pattern, and influencing gene expression profiles. Embryonic and placental tissues of IVF conceptuses can have aberrant morphology and functions, resulting in adverse pregnancy outcomes such as pregnancy loss, low birthweight, and long-term health effects. To date, the IVF-induced global profiling of DNA methylation alterations, and their functional consequences on aberrant gene expression profiles in IVF placentas have not been systematically studied. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Institute for Cancer Research mice (6 week-old females and 8-9 week-old males) were used to generate in vivo fertilization (IVO) and IVF blastocysts. After either IVO and development (IVO group as control) or in vitro fertilization and culture (IVF group), blastocysts were collected and transferred to pseudo-pregnant recipient mice. Extraembryonic (ectoplacental cone and extraembryonic ectoderm) and placental tissues from both groups were sampled at embryonic day (E) 7.5 (IVO, n = 822; IVF, n = 795) and E10.5 (IVO, n = 324; IVF, n = 278), respectively. The collected extraembryonic (E7.5) and placental tissues (E10.5) were then used for high-throughput RNA sequencing (RNA-seq) and methylated DNA immunoprecipitation sequencing (MeDIP-seq). The main dysfunctions indicated by bioinformatic analyses were further validated using molecular detection, and morphometric and phenotypic analyses. MAIN RESULTS AND THE ROLE OF CHANCE Dynamic functional profiling of high-throughput data, together with molecular detection, and morphometric and phenotypic analyses, showed that differentially expressed genes dysregulated by DNA methylation were functionally involved in: (i) actin cytoskeleton disorganization in IVF extraembryonic tissues, which may impair allantois or chorion formation, and chorioallantoic fusion; (ii) disturbed hematopoiesis and vasculogenesis, which may lead to abnormal placenta labyrinth formation and thereby impairing nutrition transport in IVF placentas; (iii) dysregulated energy and amino acid metabolism, which may cause placental dysfunctions, leading to delayed embryonic development or even lethality; (iv) disrupted genetic information processing, which can further influence gene transcriptional and translational processes. LIMITATIONS, REASONS FOR CAUTION Findings in mouse placental tissues may not be fully representative of human placentas. Further studies are necessary to confirm these findings and determine their clinical significance. WIDER IMPLICATIONS OF THE FINDINGS Our study is the first to provide the genome-wide analysis of gene expression dysregulation caused by DNA methylation during IVF placentation. Systematic understanding of the molecular mechanisms implicated in IVF placentation can be useful for the improvement of existing assisted conception systems to prevent these IVF-associated safety concerns. STUDY FUNDING AND COMPETING INTERESTS This work was supported by grants from the National Natural Science Foundation of China (No. 31472092), and the National High-Tech R&D Program (Nos. 2011|AA100303, 2013AA102506). There was no conflict of interest.
Collapse
Affiliation(s)
- Kun Tan
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Zhenni Zhang
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Kai Miao
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Yong Yu
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Linlin Sui
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Jianhui Tian
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Lei An
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| |
Collapse
|
16
|
Wei X, Xiaoling Z, Kai M, Rui W, Jing X, Min G, Zhonghong W, Jianhui T, Xinyu Z, Lei A. Characterization and comparative analyses of transcriptomes for in vivo and in vitro produced peri-implantation conceptuses and endometria from sheep. J Reprod Dev 2016; 62:279-87. [PMID: 26946921 PMCID: PMC4919292 DOI: 10.1262/jrd.2015-064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
An increasing number of reports indicate that in vitro fertilization (IVF) is highly
associated with long‑term side effects on embryonic and postnatal development, and can sometimes result in
embryonic implant failure. While high‑throughput gene expression analysis has been used to explore the
mechanisms underlying IVF-induced side effects on embryonic development, little is known about the effects of
IVF on conceptus–endometrial interactions during the peri-implantation period. Using sheep as a model, we
performed a comparative transcriptome analysis between in vivo (IVO; in vivo
fertilized followed by further development in the uterus) and in vitro produced (IVP; IVF
with further culture in the incubator) conceptuses, and the caruncular and intercaruncular areas of the ovine
endometrium. We identified several genes that were differentially expressed between the IVO and IVP groups on
day 17, when adhesion between the trophoblast and the uterine luminal epithelium begins in sheep. By
performing Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis, we found that, in the conceptus, differentially expressed genes (DEGs) were associated mainly with
functions relating to cell binding and the cell cycle. In the endometrial caruncular area, DEGs were involved
in cell adhesion/migration and apoptosis, and in the intercaruncular area, they were significantly enriched in
pathways of signal transduction and transport. Thus, these DEGs are potential candidates for further exploring
the mechanism underlying IVF/IVP-induced embryonic implant failure that occurs due to a loss of interaction
between the conceptus and endometrium during the peri-implantation period.
Collapse
Affiliation(s)
- Xia Wei
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Sciences and Technology, China Agricultural University, Beijing 100094, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|