1
|
Mannewitz M, Kolben T, Perleberg C, Meister S, Hahn L, Mitter S, Schmoeckel E, Mahner S, Corradini S, Trillsch F, Kessler M, Jeschke U, Beyer S. CCL22 as an independent prognostic factor in endometrial cancer patients. Transl Oncol 2024; 50:102116. [PMID: 39232378 PMCID: PMC11404215 DOI: 10.1016/j.tranon.2024.102116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/12/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024] Open
Abstract
OBJECTIVES The chemokine CCL22 is recognized for recruiting immunosuppressive regulatory T-cells (Treg) that contribute to disease progression in various tumor entities helping them to evade the host immune response. Our study aims to identify the expressing cell types and to evaluate the prognostic significance of CCL22 secretion and its association with Treg invasion in endometrial cancer (EC), an immunogenic cancer. METHODS Specimens from 275 patients with EC and 28 healthy controls were screened immunohistochemically for CCL22. Immunofluorescence double-staining for CCL22 and different immune cell markers was performed. In vitro regulation of CCL22-expression was examined in EC cell lines (Ishikawa+, RL95-2) and human PBMCs in coculture settings via qPCR and ELISA. RESULTS Elevated CCL22 staining in tumor cells and CCL22-positive M1-macrophages in tumordistant areas were significantly associated with increased overall survival (OS). Conversely, high, secretory-appearing staining in the peritumoral and intratumoral stroma correlated with reduced OS. Although the analysis of the in vitro coculture model of epithelial tumor- and immune cells revealed PBMCs as the primary source of CCL22, we could confirm expression of the chemokine also in the EC epithelial cells. CONCLUSION Our study suggests that CCL22 in EC is associated with OS, dependent on its location and the cell type producing it. Intracellular upregulation and extracellular secretion must be considered separately when investigating CCL22 expressing cell types in EC. These results may provide evidence for CCL22-mediated Treg recruitment in EC as a potential future therapeutic target.
Collapse
Affiliation(s)
- Mareike Mannewitz
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany.
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Carolin Perleberg
- Center of Integrated Protein Science Munich, Division of Clinical Pharmacology, University Hospital, LMU Munich, Munich, Germany
| | - Sarah Meister
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Laura Hahn
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Sophie Mitter
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | | | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation-Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Mirjana Kessler
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Augsburg, Germany
| | - Susanne Beyer
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
2
|
Park W, Lim W, Kim M, Jang H, Park SJ, Song G, Park S. Female reproductive disease, endometriosis: From inflammation to infertility. Mol Cells 2024; 48:100164. [PMID: 39617101 DOI: 10.1016/j.mocell.2024.100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Despite the fact that endometriosis is a common gynecological disease that occurs in 10% of women of reproductive age, the pathogenesis and treatment strategy are not clear to date. Endometriosis patients are commonly characterized by adhesions in the pelvis or ovaries, which leads to prolonged inflammation in the abdominal cavity. To handle the chronic inflammation, changes of immune cells, including T cells, NK cells, and macrophage, are accompanied. Therefore, diverse cytokines and adhesions of the abdominal cavity lead to poor quality of ovarian follicles, inappropriate response to the hormone, and infertility. This review will guide researchers to summarize the molecular changes and identify new treatment strategies for endometriosis-mediated inflammation and pregnancy failure.
Collapse
Affiliation(s)
- Wonhyoung Park
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Miji Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hyewon Jang
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Soo Jin Park
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Sunwoo Park
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea.
| |
Collapse
|
3
|
Peng Y, Li Y, Wang L, Lin S, Xu H. Causality of immune cells and endometriosis: a bidirectional mendelian randomization study. BMC Womens Health 2024; 24:574. [PMID: 39462363 PMCID: PMC11515284 DOI: 10.1186/s12905-024-03417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Endometriosis, a prevalent chronic condition, afflicts approximately 10% of women in their reproductive years. Emerging evidence implicates immune cells in the pathogenesis of endometriosis, particularly in angiogenesis, tissue proliferation, and lesion invasion. This investigation employs two-sample Mendelian Randomization (MR) to dissect the bidirectional causal relationships between immune cell profiles and endometriosis. METHODS We leveraged publicly available genome-wide association study (GWAS) data to elucidate the causal interplay between immune cell traits and endometriosis. Utilizing GWAS summary statistics ranging from accession numbers GCST90001391 to GCST90002121 and endometriosis data from the FinnGen study GWAS (8,288 endometriosis cases and 68,969 controls), we adopted stringent criteria for instrumental variable selection. We applied MR-Egger, weighted median, inverse variance weighted (IVW), and weighted mode methods to derive causal estimates. To address potential heterogeneity and pleiotropy, Cochran's Q test, MR-Egger intercept, and leave-one-out analyses were executed. Reverse-direction MR and bidirectional MR analyses evaluated potential reciprocal causation and the influence of endometriosis on immune cell composition. RESULTS Our analysis identified five immune phenotypes inversely associated with endometriosis risk. These phenotypes comprise: a percentage of CD11c + HLA-DR + + monocytes, CD25 expression on CD39 + CD4 + T cells, elevated CD25 on CD45RA + CD4 + non-regulatory T cells, HLA-DR intensity on HLA-DR + CD8 bright (CD8br) T cells, and the proportion of naïve double-negative (CD4 - CD8- %DN) T cells. In contrast, eleven phenotypes were positively correlated with endometriosis risk, including: CD127 expression on T cells, the proportion of CD24 + CD27 + B cells within lymphocytes, CD25 expression on CD28 + CD4 + T cells, CD28 expression on CD39 + activated regulatory T cells (activated Tregs), the frequency of bright CD33 HLA-DR + CD14 - cells within the CD33br HLA-DR + compartment, CD45 expression on lymphocytes and natural killer (NK) cells, activation status of central memory CD8 bright (CM CD8br) T cells, CX3CR1 expression on monocytes, and the percentage of HLA-DR + NK cells within the NK cell subset. Sensitivity assessments that excluded significant heterogeneity and pleiotropy confirmed the stability of these associations, thereby reinforcing the validity of our findings. CONCLUSION This study provides novel evidence of the potential causal impact of specific immune cells on the risk of developing endometriosis. These findings enhance our understanding of endometriosis pathophysiology and may inform innovative approaches for its diagnosis and management. While our findings provide novel insights, limitations such as potential horizontal pleiotropy and reliance on European ancestry data should be considered. Future research should expand to diverse populations and incorporate individual-level data to refine these findings.
Collapse
Affiliation(s)
- Ying Peng
- Department of Pathology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, No. 36 Gongye 7th Road, Nanshan District, Shenzhen, 518057, Guangdong Province, China
- First Clinical College of Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, P.R. China
| | - Youheng Li
- Department of Pathology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, No. 36 Gongye 7th Road, Nanshan District, Shenzhen, 518057, Guangdong Province, China
| | - Lingmei Wang
- Department of Pathology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, No. 36 Gongye 7th Road, Nanshan District, Shenzhen, 518057, Guangdong Province, China
| | - Shenglai Lin
- Department of Pathology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, No. 36 Gongye 7th Road, Nanshan District, Shenzhen, 518057, Guangdong Province, China
| | - Hong Xu
- Department of Pathology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, No. 36 Gongye 7th Road, Nanshan District, Shenzhen, 518057, Guangdong Province, China.
| |
Collapse
|
4
|
Wang H, Wang B, Wu M, Lu J, Duan P. Targeting osteopontin alleviates endometriosis and inflammation by inhibiting the RhoA/ROS axis and achieves non-invasive in vitro detection via menstrual blood. Hum Reprod 2024; 39:1057-1071. [PMID: 38511216 DOI: 10.1093/humrep/deae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/16/2024] [Indexed: 03/22/2024] Open
Abstract
STUDY QUESTION How does osteopontin (OPN) in endometriosis ectopic stromal cells (EESCs) participate in the pathogenesis of endometriosis and achieve non-invasive detection in vitro? SUMMARY ANSWER Targeted OPN regulates endometriosis's necroptosis and inflammatory state by inhibiting the RhoA/reactive oxygen species (ROS) axis, thereby alleviating endometriosis and enabling non-invasive detection of menstrual blood in vitro. WHAT IS KNOWN ALREADY Endometriosis is a chronic inflammatory disease. Recent studies have shown that OPN plays an important role in disease progression by regulating cell death and inflammation. STUDY DESIGN, SIZE, DURATION The study included 20 patients diagnosed with endometriosis (confirmed by laparoscopy and histology) and 10 controls without endometriosis. Endometriotic stromal cells were isolated from endometrial samples, while menstrual blood endometrial cells (MESCs) were isolated from menstrual blood. These cells were then cultured in vitro and utilized in subsequent experiments. PARTICIPANTS/MATERIALS, SETTING, METHODS OPN expression in EESCs was assessed using inflammatory factor sequencing, immunohistochemical staining (IHC), quantitative real-time PCR (qRT-PCR) analysis, and Western blotting (WB). The biological behavior of OPN and its effects on inflammatory factors were examined using EdU, wound-healing, Transwell, and ELISA assays. Necroptosis in EESCs and its impact on inflammatory factors were detected through qRT-PCR, WB, and Calcein-AM/PI fluorescence assays. The examination of mitochondrial stress in EESCs involved the use of the Mitochondrial Membrane Potential (ΔΨm) Assay, ROS detection, and Calcein-AM Loading/cobalt chloride Quenching. qRT-PCR, WB, and other experiments were conducted to verify the regulation of necroptosis and inflammatory factor levels in EESCs by OPN through the RhoA/ROS axis. Knockdown of OPN and its inhibitory effect on endometriosis lesion size were confirmed using AAV9 virus, IHC, qRT-PCR, WB, and other experiments. Additionally, OPN expression in MESCs was detected using transcriptome sequencing, RT-PCR, WB, and other experiments. MAIN RESULTS AND THE ROLE OF CHANCE In vitro assays demonstrated a significant upregulation of OPN in EESCs, and the knockdown of OPN effectively inhibited necroptosis and the release of inflammatory factors. OPN inhibited necroptosis and inflammatory factor release by mediating RhoA-dependent ROS production and blocking mixed lineage kinase domain-like protein phosphorylation at the cell membrane. In vivo, targeting of OPN can inhibit the growth of endometriosis lesions. Clinically, OPN was also significantly upregulated in the menstrual blood of patients with endometriosis. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Due to limitations in obtaining surgical specimens, our study primarily involved collecting endometriosis tissues from women during the proliferative and secretory phases of the menstrual cycle. We observed a significant overexpression of OPN in the samples used for our investigation. However, the expression of OPN in endometriosis tissues during the intermenstrual phase remains unknown. WIDER IMPLICATIONS OF THE FINDINGS Our findings highlight the pivotal role of the OPN/RhoA/ROS axis in the regulation of necroptosis and the release of inflammatory factors. OPN knockdown exerts a therapeutic effect in vivo, and the high expression detection of OPN in menstrual blood in vitro. In summary, targeting OPN provides possibilities for the treatment and detection of endometriosis. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the National Natural Science Foundation of China (82071626), the Zhejiang Province Public Welfare Technology Application Research Project (LGF21H040010), and the Clinical Research project of the Second Affiliated Hospital of Wenzhou Medical University (1010293). The authors have no conflicts of interest.
Collapse
Affiliation(s)
- Han Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Oncology Discipline Group, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Binming Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Oncology Discipline Group, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Meiling Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Oncology Discipline Group, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiefang Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ping Duan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Oncology Discipline Group, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Fan D, Wang X, Shi Z, Jiang Y, Zheng B, Xu L, Zhou S. Understanding endometriosis from an immunomicroenvironmental perspective. Chin Med J (Engl) 2023; 136:1897-1909. [PMID: 37439327 PMCID: PMC10431529 DOI: 10.1097/cm9.0000000000002649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Indexed: 07/14/2023] Open
Abstract
ABSTRACT Endometriosis, a heterogeneous, inflammatory, and estrogen-dependent gynecological disease defined by the presence and growth of endometrial tissues outside the lining of the uterus, affects approximately 5-10% of reproductive-age women, causing chronic pelvic pain and reduced fertility. Although the etiology of endometriosis is still elusive, emerging evidence supports the idea that immune dysregulation can promote the survival and growth of retrograde endometrial debris. Peritoneal macrophages and natural killer (NK) cells exhibit deficient cytotoxicity in the endometriotic microenvironment, leading to inefficient eradication of refluxed endometrial fragments. In addition, the imbalance of T-cell subtypes results in aberrant cytokine production and chronic inflammation, which contribute to endometriosis development. Although it remains uncertain whether immune dysregulation represents an initial cause or merely a secondary enhancer of endometriosis, therapies targeting altered immune pathways exhibit satisfactory effects in preventing disease onset and progression. Here, we summarize the phenotypic and functional alterations of immune cells in the endometriotic microenvironment, focusing on their interactions with microbiota and endocrine and nervous systems, and how these interactions contribute to the etiology and symptomology of endometriosis.
Collapse
Affiliation(s)
- Dian Fan
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Xu Wang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Zhixian Shi
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | | | - Bohao Zheng
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lian Xu
- Department of Pathology, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| |
Collapse
|
6
|
Zhang Y, Lu H, Yu Y. ZAP70 interaction with 13 mRNAs as a potential immunotherapeutic target for endometrial cancer. Oncol Lett 2023; 25:213. [PMID: 37123018 PMCID: PMC10131270 DOI: 10.3892/ol.2023.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
For advanced, refractory endometrial cancer (EC), it is advisable to find effective immunotherapeutic targets. In the present study, genes affecting the immune status of uterine corpus endometrial carcinoma (UCEC) samples within The Cancer Genome Atlas were explored by weighted correlation network analysis and differential gene expression analysis. The protein function and immune correlation of 14 key genes, including ζ-chain-associated protein kinase 70 (ZAP70), were analyzed. Based on the expression levels of key genes, the patients with UCEC were divided into two groups using consensus clustering, low expression (group 1) and high expression (group 2). Next, the functions of differentially expressed genes (DEGs) between the two groups were identified using Gene Ontology enrichment analysis, Kyoto Encyclopedia of Genes and Genomes analysis and Gene Set Enrichment Analysis. The immune status of the patients in the two groups was evaluated using immune infiltration score and the expression levels of targets of immune checkpoint inhibitors. The role of ZAP70 in the prognosis of patients with UCEC and the differences in ZAP70 expression between EC tissues and healthy intimal tissues were determined by reverse transcription-quantitative PCR and immunohistochemistry. The present study found strong correlations between key genes, including ZAP70, LCK, FOXP3, TIGIT, CTLA4, ICOS, CD5, IL2RG, PDCD1, TNFRSF4, CD27, CCR7, GZMB, CXCL9. From the enrichment analyses, it was found that the functions of these DEGs were related to T cells. Patients in group 2 had stronger immune infiltration and higher immune checkpoints expression compared with those in group 1. ZAP70 was expressed at higher levels in EC tissues compared with in normal tissues, and may act as a protective factor in EC. In conclusion, ZAP70 interaction with 13 mRNAs may affect the immune status of patients with EC and may be a potential target for immunotherapy.
Collapse
Affiliation(s)
- Yuming Zhang
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Hai'ou Lu
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Yuexin Yu
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
- Correspondence to: Professor Yuexin Yu, Department of Reproductive Medicine, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, P.R. China, E-mail:
| |
Collapse
|
7
|
Wang Y, Dragovic RA, Greaves E, Becker CM, Southcombe JH. Macrophages and small extracellular vesicle mediated-intracellular communication in the peritoneal microenvironment: Impact on endometriosis development. FRONTIERS IN REPRODUCTIVE HEALTH 2023; 5:1130849. [PMID: 37077181 PMCID: PMC10106708 DOI: 10.3389/frph.2023.1130849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Endometriosis is an inflammatory disease that is defined as the growth of endometrium-like tissue outside the uterus, commonly on the lining of the pelvic cavity, visceral organs and in the ovaries. It affects around 190 million women of reproductive age worldwide and is associated with chronic pelvic pain and infertility, which greatly impairs health-related life quality. The symptoms of the disease are variable, this combined with a lack of diagnostic biomarkers and necessity of surgical visualisation to confirm disease, the prognosis can take an average timespan of 6-8 years. Accurate non-invasive diagnostic tests and the identification of effective therapeutic targets are essential for disease management. To achieve this, one of the priorities is to define the underlying pathophysiological mechanisms that contribute to endometriosis. Recently, immune dysregulation in the peritoneal cavity has been linked to endometriosis progression. Macrophages account for over 50% of immune cells in the peritoneal fluid and are critical for lesion growth, angiogenesis, innervation and immune regulation. Apart from the secretion of soluble factors like cytokines and chemokines, macrophages can communicate with other cells and prime disease microenvironments, such as the tumour microenvironment, via the secretion of small extracellular vesicles (sEVs). The sEV-mediated intracellular communication pathways between macrophages and other cells within the peritoneal microenvironment in endometriosis remain unclear. Here, we give an overview of peritoneal macrophage (pMΦ) phenotypes in endometriosis and discuss the role of sEVs in the intracellular communication within disease microenvironments and the impact they may have on endometriosis progression.
Collapse
Affiliation(s)
- Yifan Wang
- Nuffield Department of Women's and Reproductive Health, Oxford Endometriosis CaRe Centre, Nuffield University of Oxford, Oxford, United Kingdom
| | - Rebecca A. Dragovic
- Nuffield Department of Women's and Reproductive Health, Oxford Endometriosis CaRe Centre, Nuffield University of Oxford, Oxford, United Kingdom
| | - Erin Greaves
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Christian M. Becker
- Nuffield Department of Women's and Reproductive Health, Oxford Endometriosis CaRe Centre, Nuffield University of Oxford, Oxford, United Kingdom
| | - Jennifer H. Southcombe
- Nuffield Department of Women's and Reproductive Health, Oxford Endometriosis CaRe Centre, Nuffield University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Li HX, Wang SQ, Lian ZX, Deng SL, Yu K. Relationship between Tumor Infiltrating Immune Cells and Tumor Metastasis and Its Prognostic Value in Cancer. Cells 2022; 12:cells12010064. [PMID: 36611857 PMCID: PMC9818185 DOI: 10.3390/cells12010064] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Tumor metastasis is an important reason for the difficulty of tumor treatment. Besides the tumor cells themselves, the tumor microenvironment plays an important role in the process of tumor metastasis. Tumor infiltrating immune cells (TIICs) are one of the main components of TME and plays an important role in every link of tumor metastasis. This article mainly reviews the role of tumor-infiltrating immune cells in epithelial mesenchymal transformation, extracellular matrix remodeling, tumor angiogenesis and formation of pre-metastatic niche. The value of TIICs in the prognosis of cervical cancer, lung cancer and breast cancer was also discussed. We believe that accurate prognosis of cancer treatment outcomes is conducive to further improving treatment regimens, determining personalized treatment strategies, and ultimately achieving successful cancer treatment. This paper elucidates the relationship between tumor and TIICs in order to explore the function of immune cells in different diseases and provide new ideas for the treatment of cancer.
Collapse
Affiliation(s)
- Huan-Xiang Li
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shu-Qi Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zheng-Xing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shou-Long Deng
- National Health Commission (NHC) of China Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
- Correspondence: (S.-L.D.); (K.Y.)
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: (S.-L.D.); (K.Y.)
| |
Collapse
|
9
|
Xiao F, Liu X, Guo SW. Interleukin-33 Derived from Endometriotic Lesions Promotes Fibrogenesis through Inducing the Production of Profibrotic Cytokines by Regulatory T Cells. Biomedicines 2022; 10:biomedicines10112893. [PMID: 36428461 PMCID: PMC9687776 DOI: 10.3390/biomedicines10112893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
In endometriosis, it has been widely believed that the local immunological milieu is Th2-skewed. Regulatory T cells (Tregs) promote fibrogenesis of endometriosis through the transforming growth factor β1 (TGF-β1) and platelet-derived growth factor (PDGF) signaling pathways. We aimed to explore whether Tregs in endometriotic lesions acquire increased production of effector cytokines under the influence of lesion-derived interleukin (IL)-33. We extracted lymphocytes from normal endometrium and ovarian endometrioma to evaluate the expression of IL-4, IL-13, interferon-γ (IFN-γ), TGF-β1, and the IL-33 receptor (ST2) by Tregs from these tissues. Colocalization of IL-33 and FOXP3 in normal endometrium and ovarian endometrioma was evaluated by immunofluorescence. Tregs and endometriotic stromal cells were co-cultured and treated with anti-IL-33 antibody, and the cytokines produced by Tregs were analyzed by flow cytometry and enzyme-linked immunosorbent assay (ELISA). Tregs in ovarian endometrioma produced significant amounts of IL-4, IL-13, TGF-β1, and ST2. Colocalization of IL-33 and FOXP3 was detected in ovarian endometrioma. IL-33 from endometriotic stromal cells caused the differentiation of lesional Tregs into type 2 T helper (Th2)-like cells, along with increased production of TGF-β1 by Tregs. Thus, Tregs and endometriotic lesions engage active crosstalk through IL-33 to promote fibrogenesis in endometriosis, and, as such, this finding opens up new avenues to identify novel therapeutic targets for endometriosis.
Collapse
Affiliation(s)
- Fengyi Xiao
- Gynecology Department, Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Xishi Liu
- Gynecology Department, Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai 200011, China
| | - Sun-Wei Guo
- Gynecology Department, Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai 200011, China
- Correspondence:
| |
Collapse
|
10
|
Potential impact of COVID-19 pandemic on endometriosis. REPRODUCTIVE AND DEVELOPMENTAL MEDICINE 2022. [PMID: 37521529 PMCID: PMC9924788 DOI: 10.1097/rd9.0000000000000015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The impact of coronavirus disease 2019 (COVID-19) on endometriosis (EM) is currently unclear. Here, we aimed to describe the potential influence of COVID-19 on the pathogenesis, clinical symptoms, and treatment of EM. The cytokine storm caused by COVID-19 may induce the occurrence and progression of EM, and immunosuppression of COVID-19 may help the ectopic endometrium escape from immune clearance. Consequently, the forced social isolation and the cancelation of non-emergency medical treatment during the COVID-19 pandemic aggravate anxiety and psychological pressure, which can aggravate the symptoms related to EM and delay routine medical services.
Collapse
|
11
|
Szukiewicz D. Epigenetic regulation and T-cell responses in endometriosis – something other than autoimmunity. Front Immunol 2022; 13:943839. [PMID: 35935991 PMCID: PMC9355085 DOI: 10.3389/fimmu.2022.943839] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Endometriosis is defined as the presence of endometrial-like glands and stroma located outside the uterine cavity. This common, estrogen dependent, inflammatory condition affects up to 15% of reproductive-aged women and is a well-recognized cause of chronic pelvic pain and infertility. Despite the still unknown etiology of endometriosis, much evidence suggests the participation of epigenetic mechanisms in the disease etiopathogenesis. The main rationale is based on the fact that heritable phenotype changes that do not involve alterations in the DNA sequence are common triggers for hormonal, immunological, and inflammatory disorders, which play a key role in the formation of endometriotic foci. Epigenetic mechanisms regulating T-cell responses, including DNA methylation and posttranslational histone modifications, deserve attention because tissue-resident T lymphocytes work in concert with organ structural cells to generate appropriate immune responses and are functionally shaped by organ-specific environmental conditions. Thus, a failure to precisely regulate immune cell transcription may result in compromised immunological integrity of the organ with an increased risk of inflammatory disorders. The coexistence of endometriosis and autoimmunity is a well-known occurrence. Recent research results indicate regulatory T-cell (Treg) alterations in endometriosis, and an increased number of highly active Tregs and macrophages have been found in peritoneal fluid from women with endometriosis. Elimination of the regulatory function of T cells and an imbalance between T helper cells of the Th1 and Th2 types have been reported in the endometria of women with endometriosis-associated infertility. This review aims to present the state of the art in recognition epigenetic reprogramming of T cells as the key factor in the pathophysiology of endometriosis in the context of T-cell-related autoimmunity. The new potential therapeutic approaches based on epigenetic modulation and/or adoptive transfer of T cells will also be outlined.
Collapse
|
12
|
Moghaddam MZ, Ansariniya H, Seifati SM, Zare F, Fesahat F. Immunopathogenesis of endometriosis: An overview of the role of innate and adaptive immune cells and their mediators. Am J Reprod Immunol 2022; 87:e13537. [PMID: 35263479 DOI: 10.1111/aji.13537] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/21/2022] [Accepted: 03/04/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Endometriosis is a chronic inflammatory disease associated with the growth and proliferation of endometrial-like tissues outside the uterus. Although the exact etiology and mechanism of the pathogenesis of the disease have not been fully elucidated, the immune system cells and the mediators produced by them can be named as effective factors in the onset and progression of the disease. AIMS We aim to attempt to review studies on the role of the immune system in endometriosis to better understand the pathogenesis of endometriosis. CONTENT Abundant production of inflammatory mediators by neutrophils and macrophages and reduced cytotoxicity of defined cells promote endometriosis at the early stages of the disease. Following an increase in the inflammation of the environment, the body takes compensatory mechanisms to reduce inflammation and establish homeostasis. For this purpose, the body produces remodeling and anti-inflammatory factors leading to slow conversion of the inflammatory environment into a non-inflammatory environment with proliferative and immunosuppressive properties. Environmental conditions induce M2 macrophages, TH2 cells, and Tregs differentiation, promoting disease progression by producing angiogenic and immunosuppressive factors. However, the exact molecular mechanism involved in changing inflammatory to non-inflammatory conditions is not yet fully understood. IMPLICATIONS Due to the common characteristics of endometriotic cells and cancer cells, most potential treatment options for endometriosis have been suggested due to the results of these methods in the treatment of cancer. In this pathway, immune system cells and soluble mediators can be used as targets.
Collapse
Affiliation(s)
- Maryam Zare Moghaddam
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Ansariniya
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Seifati
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Zare
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farzaneh Fesahat
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
13
|
Xiaocui L, Wei H, Yunlang C, Zhenzhen Z, Min A. CSF-1-induced DC-SIGN + macrophages are present in the ovarian endometriosis. Reprod Biol Endocrinol 2022; 20:48. [PMID: 35260161 PMCID: PMC8903642 DOI: 10.1186/s12958-022-00901-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Researchers have found that macrophages are the predominant cells in the peritoneal fluid (PF) of endometriosis patients. CSF-1 has been found to accumulate in the lesions and PF of endometriosis patients, and CSF-1 induces THP-1-derived macrophages to polarize toward a CD169+ DC-SIGN+ phenotype. Does the cytokine CSF-1 induce monocytes to differentiate into macrophages with a DC-SIGN+ phenotype in endometriosis? METHODS The level of CSF-1 in the endometrium of control subjects, and the eutopic, and ectopic endometrium of endometriosis patients was evaluated by real-time polymerase chain reaction (qRT-PCR) and was determined by enzyme-linked immunosorbent assay (ELISA) in the PF of control and endometriosis patients. CSF-1 expression was examined with a MILLIPLEX MAP Mouse Cytokine/Chemokine Magnetic Bead Panel. DC-SIGN+ macrophages were detected by immunohistochemical staining of tissues and flow cytometric analysis of the PF of control subjects (N = 25) and endometriosis (N = 35) patients. The phenotypes and biological activities of CSF-1 -induced macrophages were compared in an in vitro coculture system with peripheral blood lymphocytes from control subjects. RESULTS In this study, we found that the proportion of DC-SIGN+ CD169+ macrophages was higher in the abdominal immune microenvironment of endometriosis patients. CSF-1 was primarily secreted from ectopic lesions and peritoneum in mice with endometriosis. In addition, CSF-1 induced the polarization of macrophages toward a DC-SIGN+ CD169+ phenotype; this effect was abolished by the addition of an anti-CSF-1R antibody. CSF-1 induced the generation of DC-SIGN+ macrophages, leading to a depressed status of peripheral blood lymphocytes, including a high percentage of Treg cells and a low percentage of CD8+ T cells. Similarly, blockade with the anti-CSF-1R antibody abrogated this biological effect. CONCLUSIONS This is the first study on the role of DC-SIGN+ macrophages in the immune microenvironment of endometriosis. Further study of the mechanism and biological activities of CSF-1-induced DC-SIGN+ macrophages will enhance our understanding of the physiology of endometriosis.
Collapse
Affiliation(s)
- Li Xiaocui
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, P.R. China
| | - Hong Wei
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, P.R. China
| | - Cai Yunlang
- Department of Obstetrics and Gynecology, Medical School, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Zheng Zhenzhen
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, P.R. China
| | - An Min
- Department of Obstetrics and Gynecology, Medical School, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
14
|
Fan L, Sha M, Li W, Kang Q, Wu J, Chen S, Yu N. Intrauterine administration of peripheral blood mononuclear cells (PBMCs) improves embryo implantation in mice by regulating local Treg/Th17 cell balance. J Reprod Dev 2021; 67:359-368. [PMID: 34615838 PMCID: PMC8668375 DOI: 10.1262/jrd.2021-006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 09/10/2021] [Indexed: 11/20/2022] Open
Abstract
Immune imbalance of Treg/Th17 cells may contribute to recurrent implantation failure (RIF) during in vitro fertilization and embryo transfer (IVF-ET). In this study, we sought to determine the effect of intrauterine administration of mouse PBMCs prior to embryo implantation on endometrial receptivity and embryo implantation, and examine the underlying mechanism of Treg/Th17 cell balance following intrauterine administration of PBMCs. Pregnant mice were randomly divided into three groups: control group, embryo implantation dysfunction (EID) group, and EID with PBMCs group, and the number of embryo implantation sites was recorded during early pregnancy (Pd7.5). The balance of Treg/Th17 cells in the peripheral blood, spleen, and local implantation sites was detected during the peri-implantation period (Pd4.0) and early pregnancy (Pd7.5). The EID group demonstrated a significant decrease in the number of embryo implantation sites, while the EID with PBMCs group demonstrated higher number of embryo implantation sites compared to the EID group. The balance of Treg/Th17 cells in the peripheral blood and spleen tissues was not significantly different between the aforementioned groups. However, the local uterine ratio of the Treg/Th17 cells increased in the EID with PBMCs group compared to that in the EID group. Collectively, we found that intrauterine administration of PBMCs prior to embryo implantation effectively promotes embryo implantation rates. This may be attributed to the improvement in the local immune balance of Treg and Th17 cells compared with the overall immune balance.
Collapse
Affiliation(s)
- Lei Fan
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Menghan Sha
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Wei Li
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Qingling Kang
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jianli Wu
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Suhua Chen
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Nan Yu
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
15
|
Brunty S, Clower L, Mitchell B, Fleshman T, Zgheib NB, Santanam N. Peritoneal Modulators of Endometriosis-Associated Ovarian Cancer. Front Oncol 2021; 11:793297. [PMID: 34900746 PMCID: PMC8655857 DOI: 10.3389/fonc.2021.793297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer is the 4th largest cause of cancer death in women. Approximately 10-15% of women of childbearing age suffer from endometriosis. Endometriosis is defined by the growth and presence of endometrial tissue (lesions) outside of the uterus. The women with endometriosis also have an increased presence of peritoneal fluid (PF) that comprises of inflammatory cells, growth factors, cytokines/chemokines, etc. Epidemiological studies have shown that >3% of women with endometriosis develop ovarian cancer (low-grade serous or endometrioid types). Our hypothesis is that the PF from women with endometriosis induces transformative changes in the ovarian cells, leading to ovarian cancer development. PF from women with and without endometriosis was collected after IRB approval and patient consent. IOSE (human normal ovarian epithelial cells) and TOV-21G cells (human ovarian clear cell carcinoma cell line) were treated with various volumes of PF (no endometriosis or endometriosis) for 48 or 96 h and proliferation measured. Expression levels of epigenetic regulators and FoxP3, an inflammatory tumor suppressor, were determined. A Human Cancer Inflammation and Immunity Crosstalk RT2 Profiler PCR array was used to measure changes in cancer related genes in treated cells. Results showed increased growth of TOV-21G cells treated with PF from women with endometriosis versus without endometriosis and compared to IOSE cells. Endo PF treatment induced EZH2, H3K27me3, and FoxP3. The RT2 PCR array of TOV-21G cells treated with endo PF showed upregulation of various inflammatory genes (TLRs, Myd88, etc.). These studies indicate that PF from women with endometriosis can both proliferate and transform ovarian cells and hence this microenvironment plays a major mechanistic role in the progression of endometriosis to ovarian cancer.
Collapse
Affiliation(s)
- Sarah Brunty
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Lauren Clower
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Brenda Mitchell
- Department of Obstetrics & Gynecology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Taylor Fleshman
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Nadim Bou Zgheib
- Department of Obstetrics & Gynecology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Nalini Santanam
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| |
Collapse
|
16
|
Sekulovski N, Whorton AE, Tanaka T, Hirota Y, Shi M, MacLean JA, de Mola JRL, Groesch K, Diaz-Sylvester P, Wilson T, Hayashi K. Niclosamide suppresses macrophage-induced inflammation in endometriosis†. Biol Reprod 2021; 102:1011-1019. [PMID: 31950153 DOI: 10.1093/biolre/ioaa010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/18/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022] Open
Abstract
Endometriosis is a common gynecological disease, which causes chronic pelvic pain and infertility in women of reproductive age. Due to limited efficacy of current treatment options, a critical need exists to develop new and effective treatments for endometriosis. Niclosamide is an efficacious and FDA-approved drug for the treatment of helminthosis in humans that has been used for decades. We have reported that niclosamide reduces growth and progression of endometriosis-like lesions via targeting STAT3 and NFĸB signaling in a mouse model of endometriosis. To examine the effects of niclosamide on macrophage-induced inflammation in endometriosis, a total of 29 stage III-IV endometrioma samples were used to isolate human endometriotic stromal cells (hESCs). M1 or M2 macrophages were isolated and differentiated from fresh human peripheral blood samples. Then, hESCs were cultured in conditioned media (CM) from macrophages with/without niclosamide. Niclosamide dose dependently reduced cell viability and the activity of STAT3 and NFκB signaling in hESCs. While macrophage CM stimulated cell viability in hESCs, niclosamide inhibited this stimulation. Macrophage CM stimulated the secretion of proinflammatory cytokines and chemokines from hESCs. Most of these secreted factors were inhibited by niclosamide. These results indicate that niclosamide is able to reduce macrophage-induced cell viability and cytokine/chemokine secretion in hESCs by inhibiting inflammatory mechanisms via STAT3 and/or NFκB signaling.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois USA
| | - Allison E Whorton
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois USA
| | - Tomoki Tanaka
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo Japan
| | - Mingxin Shi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois USA
| | - James A MacLean
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois USA
| | - Julio Ricardo Loret de Mola
- Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, Illinois USA
| | - Kathleen Groesch
- Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, Illinois USA.,Center for Clinical Research, Southern Illinois University School of Medicine, Springfield, Illinois USA
| | - Paula Diaz-Sylvester
- Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, Illinois USA.,Center for Clinical Research, Southern Illinois University School of Medicine, Springfield, Illinois USA
| | - Teresa Wilson
- Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, Illinois USA.,Center for Clinical Research, Southern Illinois University School of Medicine, Springfield, Illinois USA
| | - Kanako Hayashi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois USA.,Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, Illinois USA
| |
Collapse
|
17
|
AlAshqar A, Reschke L, Kirschen GW, Borahay MA. Role of inflammation in benign gynecologic disorders: from pathogenesis to novel therapies†. Biol Reprod 2021; 105:7-31. [PMID: 33739368 PMCID: PMC8256101 DOI: 10.1093/biolre/ioab054] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
Emerging evidence supports the notion that inflammation fosters the development of common benign gynecologic disorders, including uterine leiomyoma, endometriosis, and adenomyosis. Numerous cytokines, chemokines, and growth and transcription factors have indisputable roles in the establishment and maintenance of benign gynecologic disorders by initiating complex cascades that promote proliferation, angiogenesis, and lesion progression. The interaction between inflammation and benign gynecologic disorders is orchestrated by a plethora of factors, including sex steroids, genetics, epigenetics, extracellular matrix, stem cells, cardiometabolic risk factors, diet, vitamin D, and the immune system. The role of inflammation in these disorders is not limited to local pathobiology but also extends to involve clinical sequelae that range from those confined to the reproductive tract, such as infertility and gynecologic malignancies, to systemic complications such as cardiovascular disease. Enhanced understanding of the intricate mechanisms of this association will introduce us to unvisited pathophysiological perspectives and guide future diagnostic and therapeutic implications aimed at reducing the burden of these disorders. Utilization of inflammatory markers, microRNA, and molecular imaging as diagnostic adjuncts may be valuable, noninvasive techniques for prompt detection of benign gynecologic disorders. Further, use of novel as well as previously established therapeutics, such as immunomodulators, hormonal treatments, cardiometabolic medications, and cyclooxygenase-2 and NF-κB inhibitors, can target inflammatory pathways involved in their pathogenesis. In this comprehensive review, we aim to dissect the existing literature on the role of inflammation in benign gynecologic disorders, including the proposed underlying mechanisms and complex interactions, its contribution to clinical sequelae, and the clinical implications this role entails.
Collapse
Affiliation(s)
- Abdelrahman AlAshqar
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA
- Department of Obstetrics and Gynecology, Kuwait University, Kuwait City, Kuwait
| | - Lauren Reschke
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| | - Gregory W Kirschen
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
18
|
Treatment optimization of patients with genital endometriosis. EUREKA: HEALTH SCIENCES 2021. [DOI: 10.21303/2504-5679.2021.001682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of the research: to optimize the treatment of patients with combined genital pathology, including internal endometriosis (adenomyosis) and inflammatory diseases.
Materials and methods: prospective study has been conducted on 160 women with adenomyosis. There were 24 (15 %) patients with the I degree of adenomyosis spreading, 72 (45.0 %) women with the II degree, 33 (20.6 %) patients with the III degree, and 31 (19.4 %) woman with the IV degree of adenomyosis spreading. Microbial flora analysis included bacterioscopic, bacteriological research methods with determination of sensitivity to antibiotics, and PCR method.
The concentration of cytokines in the culture medium (supernatant) was determined by the enzyme immunoassay.
Results: the obtained data from the study indicate a high percentage of the combination of adenomyosis with chronic inflammatory diseases of the pelvic organs. An immuno-inflammatory reaction preceding adenomyosis is accompanied by the violation of the local cytokine balance. In turn, the increased activity of cytokines and the presence of infectious agents can participate in the relapse of endometriosis.
Conclusion: considering the immuno-inflammatory reaction, accompanied by the violation of the local cytokine balance in the development of adenomyosis. The study substantiates the necessity of using antimicrobial therapy in patients with combined genital pathology, including adenomyosis and inflammatory diseases
Collapse
|
19
|
Liu Z, Zhao Q, Zheng Z, Liu S, Meng L, Dong L, Jiang X. Vascular normalization in immunotherapy: A promising mechanisms combined with radiotherapy. Biomed Pharmacother 2021; 139:111607. [PMID: 33965730 DOI: 10.1016/j.biopha.2021.111607] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Leakage and compression of blood vessels may result in deprivation of blood flow to a large number of tumor tissues, which can lead to tumor hypoxia. Hypoxia induces an increase in the expression of hypoxia-inducible factor 1 in tumor cells, which induces angiogenesis in tumors through the high expression of vascular endothelial growth factor, thereby forming a positive feedback vicious circle. Improving hypoxia by normalizing blood vessels and improving radiosensitivity by immunotherapy has emerged as a new application of combined immunotherapy and radiotherapy. Interferon γ produced by CD4 + /CD8 + T cells, induced by immune checkpoint inhibitors, plays an important role in the normalization of blood vessels; tumor-associated eosinophils also play a role in the process of immunotherapy-induced blood vessel normalization. In addition, the reduction in regulatory T cells induced by immune checkpoint inhibitors can increase eosinophil levels, which promotes the further development of vascular normalization mechanisms. This review focuses on the mechanism of immunotherapy to normalize blood vessels, and proposes a good prospect for improving hypoxia. Due to the narrow vascular normalization window of anti-angiogenesis therapy, discovery of the vascular normalization effect of immunotherapy provides a new idea for the combined application of immunotherapy and radiotherapy. The enlarged vascular normalization window and improved hypoxia provide a good opportunity for the subsequent implementation of radiotherapy. The above sorting and analysis may pave the way for a promising strategy for cancer treatment via combined immunotherapy and radiotherapy.
Collapse
Affiliation(s)
- Zijing Liu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Qin Zhao
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Zhuangzhuang Zheng
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Shiyu Liu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Lihua Dong
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
20
|
Lužnik Z, Anchouche S, Dana R, Yin J. Regulatory T Cells in Angiogenesis. THE JOURNAL OF IMMUNOLOGY 2021; 205:2557-2565. [PMID: 33168598 DOI: 10.4049/jimmunol.2000574] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022]
Abstract
Regulatory T cells (Tregs) are crucial mediators of immune homeostasis. They regulate immune response by suppressing inflammation and promoting self-tolerance. In addition to their immunoregulatory role, a growing body of evidence highlights the dynamic role of Tregs in angiogenesis, the process of forming new blood vessels. Although angiogenesis is critically important for normal tissue regeneration, it is also a hallmark of pathological processes, including malignancy and chronic inflammation. Interestingly, the role of Tregs in angiogenesis has been shown to be highly tissue- and context-specific and as a result can yield either pro- or antiangiogenic effects. For these reasons, there is considerable interest in determining the molecular underpinnings of Treg-mediated modulation of angiogenesis in different disease states. The present review summarizes the role of Tregs in angiogenesis and mechanisms by which Tregs regulate angiogenesis and discusses how these mechanisms differ in homeostatic and pathological settings.
Collapse
Affiliation(s)
- Zala Lužnik
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114.,Eye Hospital, University Medical Centre, 1000 Ljubljana, Slovenia; and
| | - Sonia Anchouche
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114.,Faculty of Medicine, McGill University, Montreal, Quebec H3G 2M1, Canada
| | - Reza Dana
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114;
| | - Jia Yin
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114;
| |
Collapse
|
21
|
Pinto-Bravo P, Rebordão MR, Amaral A, Fernandes C, Galvão A, Silva E, Pessa-Santos P, Alexandre-Pires G, Roberto da Costa RP, Skarzynski DJ, Ferreira-Dias G. Microvascularization and Expression of Fibroblast Growth Factor and Vascular Endothelial Growth Factor and Their Receptors in the Mare Oviduct. Animals (Basel) 2021; 11:ani11041099. [PMID: 33921416 PMCID: PMC8070128 DOI: 10.3390/ani11041099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The oviduct provides the ideal conditions for fertilization and early embryonic development. Adequate vascularization is essential for proper oviduct physiological function. In this work on the mare oviduct, differences in the oviductal artery and arterioles and their ramifications in the infundibulum, ampulla and isthmus were examined. Locally, vascularization is modulated by the action of angiogenic factors, mediated by their specific receptors. In the present study, the isthmus presented the largest vascular area and the highest number of vascular structures in the follicular phase. We have also shown that the relative abundance of angiogenic transcripts and proteins, such as fibroblast growth factor 1 (FGF1) and 2 (FGF2) and vascular endothelial growth factor (VEGF), and their respective receptors (FGFR1, FGFR2, VEGFR2 = KDR), were present in all portions of the oviduct throughout the estrous cycle. There was an increase in the transcripts of angiogenic receptors FGF1 and FGFR1 in the ampulla and isthmus, and of FGF2 and KDR in the isthmus. This was also observed in the isthmus, where the relative abundance of proteins FGFR1 and KDR was the highest. This study shows that the equine oviduct presents differences in microvascular density in its portions. The angiogenic factors VEGF, FGF1, FGF2 and their respective receptors are expressed in all studied regions of the mare oviduct, in agreement with microvascular patterns. Abstract The oviduct presents the ideal conditions for fertilization and early embryonic development. In this study, (i) vascularization pattern; (ii) microvascular density; (iii) transcripts of angiogenic factors (FGF1, FGF2, VEGF) and their receptors—FGFR1, FGFR2, KDR, respectively, and (iv) the relative protein abundance of those receptors were assessed in cyclic mares’ oviducts. The oviductal artery, arterioles and their ramifications, viewed by means of vascular injection-corrosion, differed in the infundibulum, ampulla and isthmus. The isthmus, immunostained with CD31, presented the largest vascular area and the highest number of vascular structures in the follicular phase. Transcripts (qPCR) and relative protein abundance (Western blot) of angiogenic factors fibroblast growth factor 1 (FGF1) and 2 (FGF2) and vascular endothelial growth factor (VEGF), and their respective receptors (FGFR1, FGFR2, VEGFR2 = KDR), were present in all oviduct portions throughout the estrous cycle. Upregulation of the transcripts of angiogenic receptors FGF1 and FGFR1 in the ampulla and isthmus and of FGF2 and KDR in the isthmus were noted. Furthermore, in the isthmus, the relative protein abundance of FGFR1 and KDR was the highest. This study shows that the equine oviduct presents differences in microvascular density in its three portions. The angiogenic factors VEGF, FGF1, FGF2 and their respective receptors are expressed in all studied regions of the mare oviduct, in agreement with microvascular patterns.
Collapse
Affiliation(s)
- Pedro Pinto-Bravo
- CERNAS (Research Center for Natural Resources, Environment and Society), Polytechnic Institute of Coimbra, 3045-601 Coimbra, Portugal; (P.P.-B.); (R.P.R.d.C.)
- Coimbra College of Agriculture, Polytechnic Institute of Coimbra, 3045-601 Coimbra, Portugal;
| | - Maria Rosa Rebordão
- Coimbra College of Agriculture, Polytechnic Institute of Coimbra, 3045-601 Coimbra, Portugal;
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (A.A.); (C.F.); (E.S.); (G.A.-P.)
| | - Ana Amaral
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (A.A.); (C.F.); (E.S.); (G.A.-P.)
| | - Carina Fernandes
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (A.A.); (C.F.); (E.S.); (G.A.-P.)
| | - António Galvão
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, 10-748 Olsztyn, Poland; (A.G.); (D.J.S.)
| | - Elisabete Silva
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (A.A.); (C.F.); (E.S.); (G.A.-P.)
| | | | - Graça Alexandre-Pires
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (A.A.); (C.F.); (E.S.); (G.A.-P.)
| | - Rosário P. Roberto da Costa
- CERNAS (Research Center for Natural Resources, Environment and Society), Polytechnic Institute of Coimbra, 3045-601 Coimbra, Portugal; (P.P.-B.); (R.P.R.d.C.)
- Coimbra College of Agriculture, Polytechnic Institute of Coimbra, 3045-601 Coimbra, Portugal;
| | - Dariusz J. Skarzynski
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, 10-748 Olsztyn, Poland; (A.G.); (D.J.S.)
| | - Graça Ferreira-Dias
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (A.A.); (C.F.); (E.S.); (G.A.-P.)
- Correspondence: ; Tel.: +351-213-652-859
| |
Collapse
|
22
|
Pramil E, Dillard C, Escargueil AE. Colorectal Cancer and Immunity: From the Wet Lab to Individuals. Cancers (Basel) 2021; 13:cancers13071713. [PMID: 33916641 PMCID: PMC8038567 DOI: 10.3390/cancers13071713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Tackling the current dilemma of colorectal cancer resistance to immunotherapy is puzzling and requires novel therapeutic strategies to emerge. However, characterizing the intricate interactions between cancer and immune cells remains difficult because of the complexity and heterogeneity of both compartments. Developing rationales is intellectually feasible but testing them can be experimentally challenging and requires the development of innovative procedures and protocols. In this review, we delineated useful in vitro and in vivo models used for research in the field of immunotherapy that are or could be applied to colorectal cancer management and lead to major breakthroughs in the coming years. Abstract Immunotherapy is a very promising field of research and application for treating cancers, in particular for those that are resistant to chemotherapeutics. Immunotherapy aims at enhancing immune cell activation to increase tumor cells recognition and killing. However, some specific cancer types, such as colorectal cancer (CRC), are less responsive than others to the current immunotherapies. Intrinsic resistance can be mediated by the development of an immuno-suppressive environment in CRC. The mutational status of cancer cells also plays a role in this process. CRC can indeed be distinguished in two main subtypes. Microsatellite instable (MSI) tumors show a hyper-mutable phenotype caused by the deficiency of the DNA mismatch repair machinery (MMR) while microsatellite stable (MSS) tumors show a comparatively more “stable” mutational phenotype. Several studies demonstrated that MSI CRC generally display good prognoses for patients and immunotherapy is considered as a therapeutic option for this type of tumors. On the contrary, MSS metastatic CRC usually presents a worse prognosis and is not responsive to immunotherapy. According to this, developing new and innovative models for studying CRC response towards immune targeted therapies has become essential in the last years. Herein, we review the in vitro and in vivo models used for research in the field of immunotherapy applied to colorectal cancer.
Collapse
Affiliation(s)
- Elodie Pramil
- Sorbonne Université, INSERM U938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; (E.P.); (C.D.)
- Alliance Pour la Recherche en Cancérologie—APREC, Tenon Hospital, F-75012 Paris, France
| | - Clémentine Dillard
- Sorbonne Université, INSERM U938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; (E.P.); (C.D.)
- Alliance Pour la Recherche en Cancérologie—APREC, Tenon Hospital, F-75012 Paris, France
| | - Alexandre E. Escargueil
- Sorbonne Université, INSERM U938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; (E.P.); (C.D.)
- Correspondence: ; Tel.: +33-(0)1-49-28-46-44
| |
Collapse
|
23
|
Zhu Y, Zhuang Z, Wu Q, Lin S, Zhao N, Zhang Q, Xie L, Yu S. CD39/CD73/A2a Adenosine Metabolic Pathway: Targets for Moxibustion in Treating DSS-Induced Ulcerative Colitis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:661-676. [PMID: 33683190 DOI: 10.1142/s0192415x21500300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ulcerative Colitis (UC) is a chronic inflammation disease, and the incidence of UC is increasing recently. Both clinical trials and animal experiments show that moxibustion is a complementary and alternative treatment for UC. Previous studies showed that moxibustion can improve UC by regulating the balance of Tregs and Th17 (Sun et al., 2017). Treg cells is one subset of CD4[Formula: see text] T cells that exert the immunosuppressive function. CD39 and CD73, expressed on the surface of Tregs, hydrolyze ATP to AMP and are further involved in the immunosuppressive function of Tregs. In this study, we investigated the effect of moxibustion on CD39[Formula: see text] Tregs and CD73[Formula: see text] Tregs in dextran sulfate sodium (DSS) induced UC mice. The A2a receptor (A2aR), one of the targets of adenosine, was also detected. The results showed that moxibustion could increase the expression of CD39, CD73, and A2aR in colonic tissue and improve the proportion of CD39[Formula: see text] Tregs and CD73[Formula: see text] Tregs in peripheral blood, inguinal draining lymph nodes and spleen in the UC model. Additionally, A2aR agonists enhanced the cell viability of colonic epithelial cells and inhibit the production of cytokines IL-6 and TNF-[Formula: see text] in vitro, which may further influence the pathway of ATP purine signal metabolism and alleviates the gut inflammation of UC mice. Taken together, this study provides supplemental evidence to reveal the immune related mechanism of moxibustion in the treatment of UC.
Collapse
Affiliation(s)
- Yuanbing Zhu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P. R. China
| | - Zhiqi Zhuang
- People's Hospital of Pengzhou, Pengzhou, Sichuan 611930, P. R. China
| | - Qiaofeng Wu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P. R. China.,Acupuncture & Chronobiology Key Laboratory of Sichuan Province, Chengdu 610075, China
| | - Sirui Lin
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P. R. China
| | - Na Zhao
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P. R. China
| | - Qun Zhang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P. R. China
| | - Lushuang Xie
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P. R. China.,College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P. R. China
| | - Shuguang Yu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P. R. China
| |
Collapse
|
24
|
Deng S, Jin P, Sherchan P, Liu S, Cui Y, Huang L, Zhang JH, Gong Y, Tang J. Recombinant CCL17-dependent CCR4 activation alleviates neuroinflammation and neuronal apoptosis through the PI3K/AKT/Foxo1 signaling pathway after ICH in mice. J Neuroinflammation 2021; 18:62. [PMID: 33648537 PMCID: PMC7923481 DOI: 10.1186/s12974-021-02112-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
Background Intracerebral hemorrhage (ICH), a devastating subtype of stroke, is associated with high mortality and morbidity. Neuroinflammation is an important factor leading to ICH-induced neurological injuries. C-C Chemokine Receptor 4 (CCR4) plays an important role in enhancing hematoma clearance after ICH. However, it is unclear whether CCR4 activation can ameliorate neuroinflammation and apoptosis of neurons following ICH. The aim of the present study was to examine the effects of recombinant CCL17 (rCCL17)-dependent CCR4 activation on neuroinflammation and neuronal apoptosis in an intrastriatal autologous blood injection ICH model, and to determine whether the PI3K/AKT/Foxo1 signaling pathway was involved. Methods Two hundred twenty-six adult (8-week-old) male CD1 mice were randomly assigned to sham and ICH surgery groups. An intrastriatal autologous blood injection ICH model was used. rCCL17, a CCR4 ligand, was delivered by intranasal administration at 1 h, 3 h, and 6 h post-ICH. CCL17 antibody was administrated by intraventricular injection at 1 h post-ICH. C021, a specific inhibitor of CCR4 and GDC0068, an AKT inhibitor were delivered intraperitoneally 1 h prior to ICH induction. Brain edema, neurobehavioral assessments, western blotting, Fluoro-Jade C staining, terminal deoxynucleotidyl transferase dUTP nick end labeling, and immunofluorescence staining were conducted. Results Endogenous expression of CCL17 and CCR4 were increased following ICH, peaking at 5 days post-induction. CCR4 was found to co-localize with microglia, neurons, and astrocytes. rCCL17 treatment decreased brain water content, attenuated short- and long-term neurological deficits, deceased activation of microglia/macrophages and infiltration of neutrophils, and inhibited neuronal apoptosis in the perihematomal region post-ICH. Moreover, rCCL17 treatment post-ICH significantly increased the expression of CCR4, PI3K, phosphorylated AKT, and Bcl-2, while Foxo1, IL-1β, TNF-α, and Bax expression were decreased. The neuroprotective effects of rCCL17 were reversed with the administration of C021 or GDC0068. Conclusions rCCL17-dependent CCR4 activation ameliorated neurological deficits, reduced brain edema, and ameliorated neuroinflammation and neuronal apoptosis, at least in part, through the PI3K/AKT/Foxo1 signaling pathway after ICH. Thus, activation of CCR4 may provide a promising therapeutic approach for the early management of ICH. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02112-3.
Collapse
Affiliation(s)
- Shuixiang Deng
- Department of Critical Care Medicine, HuaShan Hospital, Fudan University, 12 middle WuLuMuQi, Shanghai, 200040, China.,Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA
| | - Peng Jin
- Department of Critical Care Medicine, HuaShan Hospital, Fudan University, 12 middle WuLuMuQi, Shanghai, 200040, China.,Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA
| | - Shengpeng Liu
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA.,Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | - Yuhui Cui
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA
| | - Lei Huang
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA.,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Ye Gong
- Department of Critical Care Medicine, HuaShan Hospital, Fudan University, 12 middle WuLuMuQi, Shanghai, 200040, China. .,Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jiping Tang
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA.
| |
Collapse
|
25
|
Brassica Bioactives Could Ameliorate the Chronic Inflammatory Condition of Endometriosis. Int J Mol Sci 2020; 21:ijms21249397. [PMID: 33321760 PMCID: PMC7763502 DOI: 10.3390/ijms21249397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/26/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023] Open
Abstract
Endometriosis is a chronic, inflammatory, hormone-dependent disease characterized by histological lesions produced by the presence of endometrial tissue outside the uterine cavity. Despite the fact that an estimated 176 million women are affected worldwide by this gynecological disorder, risk factors that cause endometriosis have not been properly defined and current treatments are not efficient. Although the interaction between diet and human health has been the focus of many studies, little information about the correlation of foods and their bioactive derivates with endometriosis is available. In this framework, Brassica crops have emerged as potential candidates for ameliorating the chronic inflammatory condition of endometriosis, due to their abundant content of health-promoting compounds such as glucosinolates and their hydrolysis products, isothiocyanates. Several inflammation-related signaling pathways have been included among the known targets of isothiocyanates, but those involving aquaporin water channels have an important role in endometriosis. Therefore, the aim of this review is to highlight the promising effects of the phytochemicals present in Brassica spp. as major candidates for inclusion in a dietary approach aiming to improve the inflammatory condition of women affected with endometriosis. This review points out the potential roles of glucosinolates and isothiocyanates from Brassicas as anti-inflammatory compounds, which might contribute to a reduction in endometriosis symptoms. In view of these promising results, further investigation of the effect of glucosinolates on chronic inflammatory diseases, either as diet coadjuvants or as therapeutic molecules, should be performed. In addition, we highlight the involvement of aquaporins in the maintenance of immune homeostasis. In brief, glucosinolates and the modulation of cellular water by aquaporins could shed light on new approaches to improve the quality of life for women with endometriosis.
Collapse
|
26
|
García-Peñarrubia P, Ruiz-Alcaraz AJ, Martínez-Esparza M, Marín P, Machado-Linde F. Hypothetical roadmap towards endometriosis: prenatal endocrine-disrupting chemical pollutant exposure, anogenital distance, gut-genital microbiota and subclinical infections. Hum Reprod Update 2020; 26:214-246. [PMID: 32108227 DOI: 10.1093/humupd/dmz044] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Endometriosis is a gynaecological hormone-dependent disorder that is defined by histological lesions generated by the growth of endometrial-like tissue out of the uterus cavity, most commonly engrafted within the peritoneal cavity, although these lesions can also be located in distant organs. Endometriosis affects ~10% of women of reproductive age, frequently producing severe and, sometimes, incapacitating symptoms, including chronic pelvic pain, dysmenorrhea and dyspareunia, among others. Furthermore, endometriosis causes infertility in ~30% of affected women. Despite intense research on the mechanisms involved in the initial development and later progression of endometriosis, many questions remain unanswered and its aetiology remains unknown. Recent studies have demonstrated the critical role played by the relationship between the microbiome and mucosal immunology in preventing sexually transmitted diseases (HIV), infertility and several gynaecologic diseases. OBJECTIVE AND RATIONALE In this review, we sought to respond to the main research question related to the aetiology of endometriosis. We provide a model pointing out several risk factors that could explain the development of endometriosis. The hypothesis arises from bringing together current findings from large distinct areas, linking high prenatal exposure to environmental endocrine-disrupting chemicals with a short anogenital distance, female genital tract contamination with the faecal microbiota and the active role of genital subclinical microbial infections in the development and clinical progression of endometriosis. SEARCH METHODS We performed a search of the scientific literature published until 2019 in the PubMed database. The search strategy included the following keywords in various combinations: endometriosis, anogenital distance, chemical pollutants, endocrine-disrupting chemicals, prenatal exposure to endocrine-disrupting chemicals, the microbiome of the female reproductive tract, microbiota and genital tract, bacterial vaginosis, endometritis, oestrogens and microbiota and microbiota-immune system interactions. OUTCOMES On searching the corresponding bibliography, we found frequent associations between environmental endocrine-disrupting chemicals and endometriosis risk. Likewise, recent evidence and hypotheses have suggested the active role of genital subclinical microbial infections in the development and clinical progression of endometriosis. Hence, we can envisage a direct relationship between higher prenatal exposure to oestrogens or estrogenic endocrine-disrupting compounds (phthalates, bisphenols, organochlorine pesticides and others) and a shorter anogenital distance, which could favour frequent postnatal episodes of faecal microbiota contamination of the vulva and vagina, producing cervicovaginal microbiota dysbiosis. This relationship would disrupt local antimicrobial defences, subverting the homeostasis state and inducing a subclinical inflammatory response that could evolve into a sustained immune dysregulation, closing the vicious cycle responsible for the development of endometriosis. WIDER IMPLICATIONS Determining the aetiology of endometriosis is a challenging issue. Posing a new hypothesis on this subject provides the initial tool necessary to design future experimental, clinical and epidemiological research that could allow for a better understanding of the origin of this disease. Furthermore, advances in the understanding of its aetiology would allow the identification of new therapeutics and preventive actions.
Collapse
Affiliation(s)
- Pilar García-Peñarrubia
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología. Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain
| | - Antonio J Ruiz-Alcaraz
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología. Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain
| | - María Martínez-Esparza
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología. Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain
| | - Pilar Marín
- Servicio de Ginecología y Obstetricia, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB, Murcia, Spain
| | - Francisco Machado-Linde
- Servicio de Ginecología y Obstetricia, Hospital Clínico Universitario Reina Sofía, CARM, Murcia, Spain
| |
Collapse
|
27
|
Wei Y, Liang Y, Lin H, Dai Y, Yao S. Autonomic nervous system and inflammation interaction in endometriosis-associated pain. J Neuroinflammation 2020; 17:80. [PMID: 32145751 PMCID: PMC7060607 DOI: 10.1186/s12974-020-01752-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Endometriosis is a chronic inflammatory disease. Pain is the most common symptom in endometriosis. Endometriosis-associated pain is caused by inflammation, and is related to aberrant innervation. Although the specific mechanism between endometriosis-associated pain and the interaction of aberrant innervation and inflammation remains unclear, many studies have confirmed certain correlations between them. In addition, we found that some chronic inflammatory autoimmune diseases (AIDs) such as inflammatory bowel disease (IBD) and rheumatoid arthritis (RA) share similar characteristics: the changes in dysregulation of inflammatory factors as well as the function and innervation of the autonomic nervous system (ANS). The mechanisms underlying the interaction between the ANS and inflammation have provided new advances among these disorders. Therefore, the purpose of this review is to compare the changes in inflammation and ANS in endometriosis, IBD, and RA; and to explore the role and possible mechanism of sympathetic and parasympathetic nerves in endometriosis-associated inflammation by referring to IBD and RA studies to provide some reference for further endometriosis research and treatment.
Collapse
Affiliation(s)
- Yajing Wei
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Sun Yat-Sen University, No. 58, the 2nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Yanchun Liang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Sun Yat-Sen University, No. 58, the 2nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Haishan Lin
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510089, China
| | - Yujing Dai
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510089, China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Sun Yat-Sen University, No. 58, the 2nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
28
|
Zhou WJ, Yang HL, Shao J, Mei J, Chang KK, Zhu R, Li MQ. Anti-inflammatory cytokines in endometriosis. Cell Mol Life Sci 2019; 76:2111-2132. [PMID: 30826860 PMCID: PMC11105498 DOI: 10.1007/s00018-019-03056-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/29/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023]
Abstract
Although the pathogenesis of endometriosis is not fully understood, it is often considered to be an inflammatory disease. An increasing number of studies suggest that differential expression of anti-inflammatory cytokines (e.g., interleukin-4 and -10, and transforming growth factor-β1) occurs in women with endometriosis, including in serum, peritoneal fluid and ectopic lesions. These anti-inflammatory cytokines also have indispensable roles in the progression of endometriosis, including by promoting survival, growth, invasion, differentiation, angiogenesis, and immune escape of the endometriotic lesions. In this review, we provide an overview of the expression, origin, function and regulation of anti-inflammatory cytokines in endometriosis, with brief discussion and perspectives on their future clinical implications in the diagnosis and therapy of the disease.
Collapse
Affiliation(s)
- Wen-Jie Zhou
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200090, People's Republic of China
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Hui-Li Yang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200090, People's Republic of China
| | - Jun Shao
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200090, People's Republic of China
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China
| | - Jie Mei
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Reproductive Medicine Center, The Affiliated Hospital of Nanjing University Medicine School, Nanjing, 210000, People's Republic of China
| | - Kai-Kai Chang
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China
| | - Rui Zhu
- Center for Human Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, 215008, People's Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200090, People's Republic of China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
29
|
Symons LK, Miller JE, Kay VR, Marks RM, Liblik K, Koti M, Tayade C. The Immunopathophysiology of Endometriosis. Trends Mol Med 2018; 24:748-762. [PMID: 30054239 DOI: 10.1016/j.molmed.2018.07.004] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 12/14/2022]
Abstract
Endometriosis is a chronic, inflammatory, estrogen-dependent disease characterized by the growth of endometrial tissue outside of the uterine cavity. Although the etiology of endometriosis remains elusive, immunological dysfunction has been proposed as a critical facilitator of ectopic lesion growth following retrograde menstruation of endometrial debris. However, it is not clear whether this immune dysfunction is a cause or consequence of endometriosis. Thus, here we provide in-depth insights into our current understanding of the immunopathophysiology of endometriosis and highlight challenges and opportunities for future research. With the explosion of successful immune-based therapies targeting various chronic inflammatory conditions, it is crucial to determine whether immune dysfunction can be therapeutically targeted in endometriosis.
Collapse
Affiliation(s)
- Lindsey K Symons
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Jessica E Miller
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Vanessa R Kay
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Ryan M Marks
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Kiera Liblik
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada; Department of Obstetrics and Gynecology, Kingston General Hospital, Kingston, Ontario, K7L 2V7, Canada; Division of Cancer Biology and Genetics, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
30
|
Laschke MW, Menger MD. Basic mechanisms of vascularization in endometriosis and their clinical implications. Hum Reprod Update 2018; 24:207-224. [PMID: 29377994 DOI: 10.1093/humupd/dmy001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/19/2017] [Accepted: 01/01/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Vascularization is a major hallmark in the pathogenesis of endometriosis. An increasing number of studies suggests that multiple mechanisms contribute to the vascularization of endometriotic lesions, including angiogenesis, vasculogenesis and inosculation. OBJECTIVE AND RATIONALE In this review, we provide an overview of the basic mechanisms of vascularization in endometriosis and give special emphasis on their future clinical implications in the diagnosis and therapy of the disease. SEARCH METHODS Literature searches were performed in PubMed for English articles with the key words 'endometriosis', 'endometriotic lesions', 'angiogenesis', 'vascularization', 'vasculogenesis', 'endothelial progenitor cells' and 'inosculation'. The searches included both animal and human studies. No restriction was set for the publication date. OUTCOMES The engraftment of endometriotic lesions is typically associated with angiogenesis, i.e. the formation of new blood vessels from pre-existing ones. This angiogenic process underlies the complex regulation by angiogenic growth factors and hormones, which activate intracellular pathways and associated signaling molecules. In addition, circulating endothelial progenitor cells (EPCs) are mobilized from the bone marrow and recruited into endometriotic lesions, where they are incorporated into the endothelium of newly developing microvessels, referred to as vasculogenesis. Finally, preformed microvessels in shed endometrial fragments inosculate with the surrounding host microvasculature, resulting in a rapid blood supply to the ectopic tissue. These vascularization modes offer different possibilities for the establishment of novel diagnostic and therapeutic approaches. Angiogenic growth factors and EPCs may serve as biomarkers for the diagnosis and classification of endometriosis. Blood vessel formation and mature microvessels in endometriotic lesions may be targeted by means of anti-angiogenic compounds and vascular-disrupting agents. WIDER IMPLICATIONS The establishment of vascularization-based approaches in the management of endometriosis still represents a major challenge. For diagnostic purposes, reliable angiogenic and vasculogenic biomarker panels exhibiting a high sensitivity and specificity must be identified. For therapeutic purposes, novel compounds selectively targeting the vascularization of endometriotic lesions without inducing severe side effects are required. Recent progress in the field of endometriosis research indicates that these goals may be achieved in the near future.
Collapse
Affiliation(s)
- Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| |
Collapse
|