1
|
Shankara-Narayana N, Yu B, Qian J, Allen S, Reyes B, Cheong A, Daniele J, Sleiman S, Bacha F, Jayadev V, Handelsman DJ. Successful colonization of the testicular germinal epithelium by bone marrow stem cells producing spermatozoa of donor genotype is rare. Andrology 2024. [PMID: 39551624 DOI: 10.1111/andr.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND It is not known whether bone marrow stem cells when injected intravenously for a bone marrow transplant colonize the human testicular epithelium. No previous studies of sperm genotype after bone marrow transplantation are reported. OBJECTIVES To differentiate host from donor genotype in spermatozoa of men who have undergone successful bone marrow transplants. MATERIALS AND METHODS Triplet DNA samples (spermatozoa, blood, and hair) obtained from men who had recovered sperm production after bone marrow transplant were genotyped using 44 autosomal and three sex-related single nucleotide polymorphisms to determine the tissue genotype in pairwise comparisons of DNA profiles. RESULTS Participants were 14 men at a median of 5.5 years after allogeneic bone marrow transplant who had a median sperm output of 77 million spermatozoa/ejaculate. In 14/14 the donor (leukocyte) DNA genotype differed significantly from the spermatozoa and hair genotypes whereas hair and sperm genotypes showed no variations. DISCUSSION These data suggest that paternity after a successful bone marrow transplant is likely to be of the host and not the donor's genetic origins. The study's small sample size reflects the paucity of eligible man with recovered spermatogenesis after bone marrow transplant and represents preliminary evidence. A large-scale epidemiological analysis to estimate the frequency of bone marrow donor stem cell colonization of the testicular germinal epithelium based on progeny sex ratio and frequency of female donors is proposed. CONCLUSION Successful colonization of the testicular germinal and hair follicle epithelia by allogeneic bone marrow transplant donor stem cells is rare or does not occur.
Collapse
Affiliation(s)
- Nandini Shankara-Narayana
- Andrology Department, Concord Hospital, Sydney, Australia
- ANZAC Research Institute, University of Sydney, Sydney, Australia
| | - Bing Yu
- Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, Australia
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Jie Qian
- Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, Australia
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Steven Allen
- Sydney Cytometry, Centenary Institute, University of Sydney, Sydney, Australia
| | - Brisa Reyes
- Sydney Cytometry, Centenary Institute, University of Sydney, Sydney, Australia
| | - Anthony Cheong
- Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, Australia
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Joseph Daniele
- Liverpool Hospital, South West Sydney Health District, Liverpool, Australia
| | - Sue Sleiman
- Andrology Department, Concord Hospital, Sydney, Australia
| | - Fey Bacha
- Andrology Department, Concord Hospital, Sydney, Australia
| | - Veena Jayadev
- Andrology Department, Concord Hospital, Sydney, Australia
| | - David J Handelsman
- Andrology Department, Concord Hospital, Sydney, Australia
- ANZAC Research Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
2
|
Doghish AS, Elsakka EGE, Moustafa HAM, Ashraf A, Mageed SSA, Mohammed OA, Abdel-Reheim MA, Zaki MB, Elimam H, Rizk NI, Omran SA, Farag SA, Youssef DG, Abulsoud AI. Harnessing the power of miRNAs for precision diagnosis and treatment of male infertility. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03594-7. [PMID: 39535597 DOI: 10.1007/s00210-024-03594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Infertility is a multifactorial reproductive system disorder, and most infertility cases occur in men. Semen testing is now thought to be the most important diagnostic test for infertile men; nonetheless, because of its limitations, the cause of infertility remains unknown for 40% of infertile men. Semen assessment's shortcomings indicate the need for improved and innovative diagnostic techniques and biomarkers worldwide. Non-coding RNAs with a length of roughly 18-22 nucleotides are called microRNAs (miRNAs). Most of our protein-coding genes are post-transcriptionally regulated by them. These molecules are unusual in bodily fluids, and aberrant variations in their expression can point to specific conditions like infertility. As a result, fresh potential biomarkers for the diagnosis and prognosis of various forms of male infertility may be represented by miRNAs. This review examined the most recent research revealing the association between different miRNAs' functions in male infertility and their expression patterns. Also, it aims to figure out the most recent strategies that could be applied for using such miRNAs as possible therapeutic targets for infertility treatment.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City , 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | | | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Nasr City, 11786, Egypt, Cairo
| | - Sarah A Omran
- Pharmacognosy Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Shimaa A Farag
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Donia G Youssef
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, El-Salam City, Cairo, 11785, Egypt
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| |
Collapse
|
3
|
Sikiru AB, Truong MN, Zohdy W. Future prospects for the advancement of treatment of men with NOA: focus on gene editing, artificial sperm, stem cells, and use of imaging. Asian J Androl 2024:00129336-990000000-00253. [PMID: 39422616 DOI: 10.4103/aja202486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
Nonobstructive azoospermia (NOA) affects about 60% of men with azoospermia, representing a severe form of male infertility. The current approach to manage NOA primarily involves testicular sperm retrieval methods such as conventional testicular sperm extraction (c-TESE) and microdissection testicular sperm extraction (micro-TESE). While combining testicular sperm retrieval with intracytoplasmic sperm injection (ICSI) offers hope for patients, the overall sperm retrieval rate (SRR) stands at around 50%. In cases where micro-TESE fails to retrieve sperm, limited options, like donor sperm or adoption, can be problematic in certain cultural contexts. This paper delves into prospective treatments for NOA management. Gene editing technologies, particularly clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) protein 9 (CRISPR/Cas9), hold potential for correcting genetic mutations underlying testicular dysfunction. However, these technologies face challenges due to their complexity, potential off-target effects, ethical concerns, and affordability. This calls for research to address key challenges associated with NOA management within the clinical settings. This also necessitate ongoing research essential for developing more sensitive diagnostic tests, validating novel treatments, and customizing current treatment strategies for individual patients. This review concluded that the future of NOA management may entail a combination of these treatment options, tailored to each patient's unique circumstances, providing a comprehensive approach to address NOA challenges.
Collapse
Affiliation(s)
- Akeem Babatunde Sikiru
- Department of Animal Science, Federal University of Agriculture Zuru (FUAZ), Kebbi 872101, Nigeria
| | - Manh Nguyen Truong
- Fertility Centre, Hanh Phuc International Hospital, Ho Chi Minh City 70000, Vietnam
| | - Wael Zohdy
- Andrology and STIs, Cairo University, Giza 12613, Egypt
| |
Collapse
|
4
|
Jung H, Yoon M. Transplantation of spermatogonial stem cells in stallions. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:635-644. [PMID: 39165739 PMCID: PMC11331362 DOI: 10.5187/jast.2024.e30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/07/2024] [Accepted: 02/29/2024] [Indexed: 08/22/2024]
Abstract
Spermatogonial stem cells originate from gonocytes and undergo self-renewal and differentiation to generate mature spermatozoa via spermatogenesis in the seminiferous tubules of the testis in male mammals. Owing to the unique capacity of these cells, the spermatogonial stem cell transplantation technique, which enables the restoration of male fertility by transfer of germlines between donor and recipient males, has been developed. Thus, spermatogonial stem cell transplantation can be used as an important next-generation reproductive and breeding tool in livestock production. However, in large animals, this approach is associated with many technical limitations and inefficiency. Furthermore, research regrading spermatogonial stem cell transplantation in stallions is limited. Therefore, this review article describes the history and current knowledge regarding spermatogonial stem cell transplantation in animals and challenges in establishing an experimental protocol for successful spermatogonial stem cell transplantation in stallions, which have been presented under the following heads: spermatogonial stem cell isolation, recipient preparation, and spermatogonial stem cell transplantation. Additionally, we suggest that further investigation based on previous unequivocal evidence regarding donor-derived spermatogenesis in large animals must be conducted. A detailed and better understanding of the physical and physiological aspects is required to discuss the current status of this technique field and develop future directions for the establishment of spermatogonial stem cell transplantation in stallions.
Collapse
Affiliation(s)
- Heejun Jung
- Research Center for Horse Industry,
Kyungpook National University, Sangju 37224, Korea
| | - Minjung Yoon
- Research Center for Horse Industry,
Kyungpook National University, Sangju 37224, Korea
- Department of Horse, Companion and Wild
Animal Science, Kyungpook National University, Sangju 37224,
Korea
| |
Collapse
|
5
|
Gül M, Russo GI, Kandil H, Boitrelle F, Saleh R, Chung E, Kavoussi P, Mostafa T, Shah R, Agarwal A. Male Infertility: New Developments, Current Challenges, and Future Directions. World J Mens Health 2024; 42:502-517. [PMID: 38164030 PMCID: PMC11216957 DOI: 10.5534/wjmh.230232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/27/2023] [Indexed: 01/03/2024] Open
Abstract
There have been many significant scientific advances in the diagnostics and treatment modalities in the field of male infertility in recent decades. Examples of these include assisted reproductive technologies, sperm selection techniques for intracytoplasmic sperm injection, surgical procedures for sperm retrieval, and novel tests of sperm function. However, there is certainly a need for new developments in this field. In this review, we discuss advances in the management of male infertility, such as seminal oxidative stress testing, sperm DNA fragmentation testing, genetic and epigenetic tests, genetic manipulations, artificial intelligence, personalized medicine, and telemedicine. The role of the reproductive urologist will continue to expand in future years to address different topzics related to diverse questions and controversies of pathophysiology, diagnosis, and therapy of male infertility, training researchers and physicians in medical and scientific research in reproductive urology/andrology, and further development of andrology as an independent specialty.
Collapse
Affiliation(s)
- Murat Gül
- Department of Urology, Selcuk University School of Medicine, Konya, Turkey
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Giorgio Ivan Russo
- Urology Section, University of Catania, Catania, Italy
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Hussein Kandil
- Fakih IVF Fertility Center, Abu Dhabi, UAE
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Florence Boitrelle
- Reproductive Biology, Fertility Preservation, Andrology, CECOS, Poissy Hospital, Poissy, France
- Paris Saclay University, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Ramadan Saleh
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
- Ajyal IVF Center, Ajyal Hospital, Sohag, Egypt
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Eric Chung
- Department of Urology, Princess Alexandra Hospital, University of Queensland, Brisbane, QLD, Australia
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Parviz Kavoussi
- Department of Reproductive Urology, Austin Fertility & Reproductive Medicine/Westlake IVF, Austin, TX, USA
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Taymour Mostafa
- Department of Andrology, Sexology and STIs, Faculty of Medicine, Cairo University, Cairo, Egypt
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Rupin Shah
- Department of Urology, Lilavati Hospital and Research Centre, Mumbai, India
- Well Women's Centre, Sir HN Reliance Foundation Hospital, Mumbai, India
- Global Andrology Forum, Moreland Hills, OH, USA
| | - Ashok Agarwal
- Global Andrology Forum, Moreland Hills, OH, USA
- Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
6
|
Pasten González A, Salvador Alarcón C, Mora J, Martín Gimenez MP, Carrasco Torrents R, Krauel L. Current Status of Fertility Preservation in Pediatric Oncology Patients. CHILDREN (BASEL, SWITZERLAND) 2024; 11:537. [PMID: 38790532 PMCID: PMC11120648 DOI: 10.3390/children11050537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024]
Abstract
Cancer poses significant emotional challenges for children and adolescents, despite improvements in survival rates due to new therapies. However, there is growing concern about the long-term effects, including fertility issues. This review examines recent advancements and future directions in fertility preservation within a pediatric population subjected to oncological therapies. Worldwide, there is variability in the availability of fertility preservation methods, influenced by factors like development status and governmental support. The decision to pursue preservation depends on the risk of gonadotoxicity, alongside factors such as diagnosis, treatment, clinical status, and prognosis. Currently, options for preserving fertility in prepubertal boys are limited compared to girls, who increasingly have access to ovarian tissue preservation. Adolescents and adults have more options available, but ethical considerations remain complex and diverse.
Collapse
Affiliation(s)
- Albert Pasten González
- Pediatric Surgical Oncology Unit, Department of Pediatric Surgery, SJD Barcelona Children’s Hospital, Universitat de Barcelona, 08950 Barcelona, Spain; (A.P.G.); (M.P.M.G.); (R.C.T.)
- Pediatric Cancer Center Barcelona, SJD Barcelona Children’s Hospital, Universitat de Barcelona, 08950 Barcelona, Spain;
| | - Cristina Salvador Alarcón
- Department of Obstetrics and Gynecology, SJD Barcelona Children’s Hospital, Universitat de Barcelona, 08950 Barcelona, Spain;
| | - Jaume Mora
- Pediatric Cancer Center Barcelona, SJD Barcelona Children’s Hospital, Universitat de Barcelona, 08950 Barcelona, Spain;
| | - Marta P. Martín Gimenez
- Pediatric Surgical Oncology Unit, Department of Pediatric Surgery, SJD Barcelona Children’s Hospital, Universitat de Barcelona, 08950 Barcelona, Spain; (A.P.G.); (M.P.M.G.); (R.C.T.)
- Pediatric Cancer Center Barcelona, SJD Barcelona Children’s Hospital, Universitat de Barcelona, 08950 Barcelona, Spain;
| | - Rosalia Carrasco Torrents
- Pediatric Surgical Oncology Unit, Department of Pediatric Surgery, SJD Barcelona Children’s Hospital, Universitat de Barcelona, 08950 Barcelona, Spain; (A.P.G.); (M.P.M.G.); (R.C.T.)
- Pediatric Cancer Center Barcelona, SJD Barcelona Children’s Hospital, Universitat de Barcelona, 08950 Barcelona, Spain;
| | - Lucas Krauel
- Pediatric Surgical Oncology Unit, Department of Pediatric Surgery, SJD Barcelona Children’s Hospital, Universitat de Barcelona, 08950 Barcelona, Spain; (A.P.G.); (M.P.M.G.); (R.C.T.)
- Pediatric Cancer Center Barcelona, SJD Barcelona Children’s Hospital, Universitat de Barcelona, 08950 Barcelona, Spain;
| |
Collapse
|
7
|
Jensen CFS, Mamsen LS, Wang D, Fode M, Giwercman A, Jørgensen N, Ohl DA, Fedder J, Hoffmann ER, Yding Andersen C, Sønksen J. Results from the first autologous grafting of adult human testis tissue: a case report. Hum Reprod 2024; 39:303-309. [PMID: 38140699 DOI: 10.1093/humrep/dead243] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/21/2023] [Indexed: 12/24/2023] Open
Abstract
Fertility restoration using autologous testicular tissue transplantation is relevant for infertile men surviving from childhood cancer and, possibly, in men with absent or incomplete spermatogenesis resulting in the lack of spermatozoa in the ejaculate (non-obstructive azoospermia, NOA). Currently, testicular tissue from pre-pubertal boys extracted before treatment with gonadotoxic cancer therapy can be cryopreserved with good survival of spermatogonial stem cells. However, strategies for fertility restoration, after successful cancer treatment, are still experimental and no clinical methods have yet been developed. Similarly, no clinically available treatments can help men with NOA to become biological fathers after failed attempts of testicular surgical sperm retrieval. We present a case of a 31-year-old man with NOA who had three pieces of testis tissue (each ∼2 × 4 × 2 mm3) extracted and cryopreserved in relation to performing microdissection testicular sperm extraction (mTESE). Approximately 2 years after mTESE, the thawed tissue pieces were engrafted in surgically created pockets bilaterally under the scrotal skin. Follow-up was performed after 2, 4, and 6 months with assessment of reproductive hormones and ultrasound of the scrotum. After 6 months, all engrafted tissue was extracted and microscopically analyzed for the presence of spermatozoa. Furthermore, parts of the extracted tissue were analyzed histologically and by immunohistochemical analysis. Active blood flow in the engrafted tissue was demonstrated by doppler ultrasound after 6 months. No spermatozoa were found in the extracted tissue. Histological and immunohistochemical analysis demonstrated graft survival with intact clear tubules and normal cell organization. Sertoli cells and spermatocytes with normal morphology were located near the basement membrane. MAGE-A and VASA positive spermatogonia/spermatocytes were detected together with SOX9 positive Sertoli cells. Spermatocytes and/or Sertoli cells positive for γH2AX was also detected. In summary, following autologous grafting of frozen-thawed testis tissue under the scrotal skin in a man with NOA, we demonstrated graft survival after 6 months. No mature spermatozoa were detected; however, this is likely due to the pre-existing spermatogenic failure.
Collapse
Affiliation(s)
- Christian Fuglesang S Jensen
- Department of Urology, Copenhagen University Hospital-Herlev and Gentofte Hospital, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Linn Salto Mamsen
- Laboratory of Reproductive Biology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Danyang Wang
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Laboratory of Reproductive Biology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Mikkel Fode
- Department of Urology, Copenhagen University Hospital-Herlev and Gentofte Hospital, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Aleksander Giwercman
- Department of Translational Medicine and Reproductive Medicine Centre, Lunds University and Skane University Hospital, Malmö, Sweden
| | - Niels Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Dana A Ohl
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Jens Fedder
- Centre of Andrology & Fertility Clinic, Department D, Odense University Hospital, Odense C, Denmark
| | - Eva R Hoffmann
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Claus Yding Andersen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Laboratory of Reproductive Biology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Jens Sønksen
- Department of Urology, Copenhagen University Hospital-Herlev and Gentofte Hospital, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Zampieri N. Fertility Preservation in Pediatric Age: Future Perspective among Andrological Diseases. Life (Basel) 2023; 13:1934. [PMID: 37763337 PMCID: PMC10532987 DOI: 10.3390/life13091934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Male infertility is a condition that has always been less studied and known than female infertility. Male infertility is increasingly present and increasingly diagnosed. Although several causes are known, to date about 40% of the causes are considered idiopathic. The worldwide denasality can only be slowed if awareness campaigns are implemented on all the diseases that can alter fertile potential, especially in young adolescents. Male infertility is, in addition, associated with several medical conditions. In particular, the association between infertility and testicular cancer, cardiovascular disease, autoimmune diseases, and genetic diseases is well known. For this reason, fertility preservation should not be proposed or be only oncological in nature, as there are several diagnosable pediatric pathologies that are associated with altered fertile potential to whose patients we could offer a gamete preservation pathway. In this paper we propose our experience on fertility preservation in pediatric andrological diseases.
Collapse
Affiliation(s)
- Nicola Zampieri
- Pediatric Surgical Unit, Pediatric Fertility Lab, Department of Engineering for Innovation Medicine, University of Verona, Piazzale Stefani, n. 1, 37100 Verona, Italy;
- Pediatric and Infant Surgery, UniCamillus International Medical University, Via di Sant’Alessandro 8, 00131 Rome, Italy
| |
Collapse
|
9
|
Peris-Frau P, Benito-Blanco J, Martínez-Nevado E, Toledano-Díaz A, Castaño C, Velázquez R, Pequeño B, Martinez-Madrid B, Esteso MC, Santiago-Moreno J. DNA integrity and viability of testicular cells from diverse wild species after slow freezing or vitrification. Front Vet Sci 2023; 9:1114695. [PMID: 36727036 PMCID: PMC9884681 DOI: 10.3389/fvets.2022.1114695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction and objective Cryopreservation of testicular tissues offers new possibilities to protect endangered species, genetically valuable individuals or even the fertility potential of prepubertal individuals who have died unexpectedly. However, the use of this technique still remains a challenge. In this study, slow freezing and vitrification of testicular tissue was investigated to find out which cryopreservation method could better preserve the viability and DNA integrity of testicular germ cells in diverse wild species. Methods Testes were obtained post-mortem from 18 artiodactyls (wild boar, roe deer, dwarf goat, mhor gazelle, European mouflon, African forest buffalo, Malayan tapir, dorcas gazelle, Iberian ibex, gnu, red river hog), 5 primates (colobus monkey, capuchin monkey, mandrill), 8 carnivores (gray wolf, Persian leopard, binturong, European mink, American black bear, suricata), and 2 rodents (Patagonian mara). The testicles belonged to adult individuals and were cut into small pieces and cryopreserved by needle immersed vitrification or uncontrolled slow freezing using a passive cooling device. After warming or thawing, testicular tissues were enzymatically digested and two germ cell types were differentiated based on their morphology: rounded cells (spermatogonia, spermatocytes, and early spermatids) and elongated cells (elongated spermatids and spermatozoa). Cell viability was assessed by SYBR-14/propidium iodide while DNA fragmentation by TUNEL assay with fluorescence microscope. Results and discussion Our preliminary results revealed that our uncontrolled slow freezing method better preserved the viability and DNA integrity of elongated cells than vitrification. Such trend was observed in all species, being significant in artiodactyls, carnivores, and primates. Similarly, the viability and DNA integrity of rounded cells was also better maintained in primates by uncontrolled slow freezing, while in carnivores, vitrification by needle immersion showed better results in this type of cells. In artiodactyls and rodents both techniques preserved the viability of rounded cells in a similar manner, although the DNA integrity of these cells was greater after needle immersed vitrification in artiodactyls. Conclusions In conclusion, the effectiveness of each cryopreservation method is affected by the phylogenetic diversity between species and cell type.
Collapse
Affiliation(s)
- Patricia Peris-Frau
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC, Madrid, Spain,*Correspondence: Patricia Peris-Frau ✉
| | - Julia Benito-Blanco
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC, Madrid, Spain
| | | | - Adolfo Toledano-Díaz
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC, Madrid, Spain
| | - Cristina Castaño
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC, Madrid, Spain
| | - Rosario Velázquez
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC, Madrid, Spain
| | - Belén Pequeño
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC, Madrid, Spain
| | - Belén Martinez-Madrid
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Milagros C. Esteso
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC, Madrid, Spain
| | - Julián Santiago-Moreno
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC, Madrid, Spain
| |
Collapse
|
10
|
Hasani Fard AH, Valizadeh M, Mazaheri Z, Hosseini SJ. miR-106b-5p Intensifies the Proliferative Potential of Spermatogonial Stem Cells as a Prerequisite for Male Infertility Treatment. Reprod Sci 2022; 29:3394-3403. [PMID: 35320579 DOI: 10.1007/s43032-022-00884-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/09/2022] [Indexed: 12/14/2022]
Abstract
Although numerous studies have investigated the molecular basis of male infertility, various aspects of this area have remained uncovered. Over the past years, researchers have reported the significant potential of miRNAs in posttranscriptional regulatory roles. By targeting mRNAs, these notable molecules can modulate the processes related to male infertility. On the other side, the outstanding potential of male germline stem cells, SSCs, includes their application in infertility treatment. SSCs retain normal spermatogenesis and fertility by adjusting both SSC self-renewal and differentiation. Therefore, for the characterization and manipulation of SSCs, effective and efficient in vitro culture methods are essential in supporting their maintenance and development. In this regard, the present investigation was undertaken to evaluate the impact of one of the recently conspicuous miRNAs, miR-106b, in SSCs enrichment. As a result, we first found that the SSCs induced with miR-106b-5p highly express TGF-β1, which is known as a regulator of epigenetic modifiers and downstream genes. We next sought to show that self-renewal markers, including c-Myc, Oct-4, and Sox2, are increased in the induced SSC group. The intended miRNA also induced the inhibitor of differentiation 4 (ID4) and aided to remain unmethylated in SSCs. Additionally, for the tumorigenicity possibility of the manipulation, we indicated that PTEN, a tumor-suppressor gene, expressed remarkably in the induced SSCs. In conclusion, our findings showed that miR-106b-5p enhances the proliferative potential of SSCs, making it a substantial factor for therapeutic strategies of male infertility.
Collapse
Affiliation(s)
- Amir Hossein Hasani Fard
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Valizadeh
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Mazaheri
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Jalil Hosseini
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Roshandel E, Mehravar M, Nikoonezhad M, Alizadeh AM, Majidi M, Salimi M, Hajifathali A. Cell-Based Therapy Approaches in Treatment of Non-obstructive Azoospermia. Reprod Sci 2022; 30:1482-1494. [PMID: 36380137 PMCID: PMC9666961 DOI: 10.1007/s43032-022-01115-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022]
Abstract
The rate of infertility has globally increased in recent years for a variety of reasons. One of the main causes of infertility in men is azoospermia that is defined by the absence of sperm in the ejaculate and classified into two categories: obstructive azoospermia and non-obstructive azoospermia. In non-obstructive azoospermia, genital ducts are not obstructed, but the testicles do not produce sperm at all, due to various reasons. Non-obstructive azoospermia in most cases has no therapeutic options other than assisted reproductive techniques, which in most cases require sperm donors. Here we discuss cell-based therapy approaches to restore fertility in men with non-obstructive azoospermia including cell-based therapies of non-obstructive azoospermia using regenerative medicine and cell-based therapies of non-obstructive azoospermia by paracrine and anti-inflammatory pathway, technical and ethical challenges for using different cell sources and alternative options will be described, and then the more effectual approaches will be mentioned as future trends.
Collapse
Affiliation(s)
- Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Maryam Mehravar
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Maryam Nikoonezhad
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Afshin Mohammad Alizadeh
- Department of Internal Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Majidi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Salimi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| |
Collapse
|
12
|
Cheng H, Shang D, Zhou R. Germline stem cells in human. Signal Transduct Target Ther 2022; 7:345. [PMID: 36184610 PMCID: PMC9527259 DOI: 10.1038/s41392-022-01197-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
The germline cells are essential for the propagation of human beings, thus essential for the survival of mankind. The germline stem cells, as a unique cell type, generate various states of germ stem cells and then differentiate into specialized cells, spermatozoa and ova, for producing offspring, while self-renew to generate more stem cells. Abnormal development of germline stem cells often causes severe diseases in humans, including infertility and cancer. Primordial germ cells (PGCs) first emerge during early embryonic development, migrate into the gentile ridge, and then join in the formation of gonads. In males, they differentiate into spermatogonial stem cells, which give rise to spermatozoa via meiosis from the onset of puberty, while in females, the female germline stem cells (FGSCs) retain stemness in the ovary and initiate meiosis to generate oocytes. Primordial germ cell-like cells (PGCLCs) can be induced in vitro from embryonic stem cells or induced pluripotent stem cells. In this review, we focus on current advances in these embryonic and adult germline stem cells, and the induced PGCLCs in humans, provide an overview of molecular mechanisms underlying the development and differentiation of the germline stem cells and outline their physiological functions, pathological implications, and clinical applications.
Collapse
Affiliation(s)
- Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China.
| | - Dantong Shang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
13
|
Ren F, Xi H, Qiao P, Li Y, Xian M, Zhu D, Hu J. Single-cell transcriptomics reveals male germ cells and Sertoli cells developmental patterns in dairy goats. Front Cell Dev Biol 2022; 10:944325. [PMID: 35938151 PMCID: PMC9355508 DOI: 10.3389/fcell.2022.944325] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Spermatogenesis holds considerable promise for human-assisted reproduction and livestock breeding based on stem cells. It occurs in seminiferous tubules within the testis, which mainly comprise male germ cells and Sertoli cells. While the developmental progression of male germ cells and Sertoli cells has been widely reported in mice, much less is known in other large animal species, including dairy goats. In this study, we present the data of single cell RNA sequencing (scRNA-seq) for 25,373 cells from 45 (pre-puberty), 90 (puberty), and 180-day-old (post-puberty) dairy goat testes. We aimed to identify genes that are associated with key developmental events in male germ cells and Sertoli cells. We examined the development of spermatogenic cells and seminiferous tubules from 15, 30, 45, 60, 75, 90, 180, and 240-day-old buck goat testes. scRNA-seq clustering analysis of testicular cells from pre-puberty, puberty, and post-puberty goat testes revealed several cell types, including cell populations with characteristics of spermatogonia, early spermatocytes, spermatocytes, spermatids, Sertoli cells, Leydig cells, macrophages, and endothelial cells. We mapped the timeline for male germ cells development from spermatogonia to spermatids and identified gene signatures that define spermatogenic cell populations, such as AMH, SOHLH1, INHA, and ACTA2. Importantly, using immunofluorescence staining for different marker proteins (UCHL1, C-KIT, VASA, SOX9, AMH, and PCNA), we explored the proliferative activity and development of male germ cells and Sertoli cells. Moreover, we identified the expression patterns of potential key genes associated with the niche-related key pathways in male germ cells of dairy goats, including testosterone, retinoic acid, PDGF, FGF, and WNT pathways. In summary, our study systematically investigated the elaborate male germ cells and Sertoli cells developmental patterns in dairy goats that have so far remained largely unknown. This information represents a valuable resource for the establishment of goat male reproductive stem cells lines, induction of germ cell differentiation in vitro, and the exploration of sequential cell fate transition for spermatogenesis and testicular development at single-cell resolution.
Collapse
Affiliation(s)
- Fa Ren
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Huaming Xi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Pengyun Qiao
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yu Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ming Xian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Dawei Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jianhong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- *Correspondence: Jianhong Hu,
| |
Collapse
|
14
|
Gao X, Shi X, Zhou S, Chen C, Hu C, Xia Q, Li X, Gao W, Ding Y, Zuo Q, Zhang Y, Li B. DNA hypomethylation activation Wnt/TCF7L2/TDRD1 pathway promotes spermatogonial stem cell formation. J Cell Physiol 2022; 237:3640-3650. [DOI: 10.1002/jcp.30822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaomin Gao
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Xiang Shi
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Shujian Zhou
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Chen Chen
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Cai Hu
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Qian Xia
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Xinlin Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Wen Gao
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Ying Ding
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Yani Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| |
Collapse
|
15
|
Hildorf SE. Clinical aspects of histological and hormonal parameters in boys with cryptorchidism: Thesis for PhD degree. APMIS 2022; 130 Suppl 143:1-58. [PMID: 35822689 PMCID: PMC9542020 DOI: 10.1111/apm.13247] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Simone Engmann Hildorf
- Department of Pediatric Surgery and Department of PathologyCopenhagen University Hospital RigshospitaletCopenhagenDenmark
| |
Collapse
|
16
|
Yang X, Li B, Tian H, Cheng X, Zhou T, Zhao J. Curcumenol Mitigates the Inflammation and Ameliorates the Catabolism Status of the Intervertebral Discs In Vivo and In Vitro via Inhibiting the TNFα/NFκB Pathway. Front Pharmacol 2022; 13:905966. [PMID: 35795557 PMCID: PMC9252100 DOI: 10.3389/fphar.2022.905966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/11/2022] [Indexed: 11/25/2022] Open
Abstract
Low back pain (LBP) caused by intervertebral disc degeneration (IVDD) is accredited to the release of inflammatory cytokines followed by biomechanical and structural deterioration. In our study, we used a plant-derived medicine, curcumenol, to treat IVDD. A cell viability test was carried out to evaluate the possibility of using curcumenol. RNA-seq was used to determine relative pathways involved with curcumenol addition. Using TNFα as a trigger of inflammation, the activation of the NF-κB signaling pathway and expression of the MMP family were determined by qPCR and western blotting. Nucleus pulposus (NP) cells and the rats’ primary NP cells were cultured. The catabolism status was evaluated by an ex vivo model. A lumbar instability mouse model was carried out to show the effects of curcumenol in vivo. In general, RNA-seq revealed that multiple signaling pathways changed with curcumenol addition, especially the TNFα/NF-κB pathway. So, the NP cells and primary NP cells were induced to suffer inflammation with the activated TNFα/NF-κB signaling pathway and increased expression of the MMP family, such as MMP3, MMP9, and MMP13, which would be mitigated by curcumenol. Owing to the protective effects of curcumenol, the height loss and osteophyte formation of the disc could be prevented in the lumbar instability mouse model in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Zhao
- *Correspondence: Tangjun Zhou, ; Jie Zhao,
| |
Collapse
|
17
|
Diao L, Turek PJ, John CM, Fang F, Reijo Pera RA. Roles of Spermatogonial Stem Cells in Spermatogenesis and Fertility Restoration. Front Endocrinol (Lausanne) 2022; 13:895528. [PMID: 35634498 PMCID: PMC9135128 DOI: 10.3389/fendo.2022.895528] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 01/21/2023] Open
Abstract
Spermatogonial stem cells (SSCs) are a group of adult stem cells in the testis that serve as the foundation of continuous spermatogenesis and male fertility. SSCs are capable of self-renewal to maintain the stability of the stem cell pool and differentiation to produce mature spermatozoa. Dysfunction of SSCs leads to male infertility. Therefore, dissection of the regulatory network of SSCs is of great significance in understanding the fundamental molecular mechanisms of spermatogonial stem cell function in spermatogenesis and the pathogenesis of male infertility. Furthermore, a better understanding of SSC biology will allow us to culture and differentiate SSCs in vitro, which may provide novel stem cell-based therapy for assisted reproduction. This review summarizes the latest research progress on the regulation of SSCs, and the potential application of SSCs for fertility restoration through in vivo and in vitro spermatogenesis. We anticipate that the knowledge gained will advance the application of SSCs to improve male fertility. Furthermore, in vitro spermatogenesis from SSCs sets the stage for the production of SSCs from induced pluripotent stem cells (iPSCs) and subsequent spermatogenesis.
Collapse
Affiliation(s)
- Lei Diao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | | | | | - Fang Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Renee A. Reijo Pera
- McLaughlin Research Institute, Touro College of Osteopathic Medicine – Montana (TouroCOM-MT), Great Falls, MT, United States
- Research Division, Touro College of Osteopathic Medicine – Montana (TouroCOM-MT), Great Falls, MT, United States
| |
Collapse
|
18
|
Sanou I, van Maaren J, Eliveld J, Lei Q, Meißner A, de Melker AA, Hamer G, van Pelt AMM, Mulder CL. Spermatogonial Stem Cell-Based Therapies: Taking Preclinical Research to the Next Level. Front Endocrinol (Lausanne) 2022; 13:850219. [PMID: 35444616 PMCID: PMC9013905 DOI: 10.3389/fendo.2022.850219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/07/2022] [Indexed: 01/15/2023] Open
Abstract
Fertility preservation via biobanking of testicular tissue retrieved from testicular biopsies is now generally recommended for boys who need to undergo gonadotoxic treatment prior to the onset of puberty, as a source of spermatogonial stem cells (SSCs). SSCs have the potential of forming spermatids and may be used for therapeutic fertility approaches later in life. Although in the past 30 years many milestones have been reached to work towards SSC-based fertility restoration therapies, including transplantation of SSCs, grafting of testicular tissue and various in vitro and ex vivo spermatogenesis approaches, unfortunately, all these fertility therapies are still in a preclinical phase and not yet available for patients who have become infertile because of their treatment during childhood. Therefore, it is now time to take the preclinical research towards SSC-based therapy to the next level to resolve major issues that impede clinical implementation. This review gives an outline of the state of the art of the effectiveness and safety of fertility preservation and SSC-based therapies and addresses the hurdles that need to be taken for optimal progression towards actual clinical implementation of safe and effective SSC-based fertility treatments in the near future.
Collapse
Affiliation(s)
- Iris Sanou
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam University Medical Center (UMC), Amsterdam Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Jillis van Maaren
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam University Medical Center (UMC), Amsterdam Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Jitske Eliveld
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam University Medical Center (UMC), Amsterdam Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Qijing Lei
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam University Medical Center (UMC), Amsterdam Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Andreas Meißner
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam University Medical Center (UMC), Amsterdam Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, Netherlands
- Department of Urology, Center for Reproductive Medicine, Amsterdam University Medical Center (UMC), Amsterdam Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Annemieke A de Melker
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam University Medical Center (UMC), Amsterdam Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Geert Hamer
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam University Medical Center (UMC), Amsterdam Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Ans M M van Pelt
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam University Medical Center (UMC), Amsterdam Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Callista L Mulder
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam University Medical Center (UMC), Amsterdam Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
19
|
Wang D, Hildorf S, Ntemou E, Dong L, Pors SE, Mamsen LS, Fedder J, Hoffmann ER, Clasen-Linde E, Cortes D, Thorup J, Andersen CY. Characterization and Survival of Human Infant Testicular Cells After Direct Xenotransplantation. Front Endocrinol (Lausanne) 2022; 13:853482. [PMID: 35360067 PMCID: PMC8960121 DOI: 10.3389/fendo.2022.853482] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/11/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Cryopreservation of prepubertal testicular tissue preserves spermatogonial stem cells (SSCs) that may be used to restore fertility in men at risk of infertility due to gonadotoxic treatments for either a malignant or non-malignant disease. Spermatogonial stem cell-based transplantation is a promising fertility restoration technique. Previously, we performed xenotransplantation of propagated SSCs from prepubertal testis and found human SSCs colonies within the recipient testes six weeks post-transplantation. In order to avoid the propagation step of SSCs in vitro that may cause genetic and epigenetic changes, we performed direct injection of single cell suspension in this study, which potentially may be safer and easier to be applied in future clinical applications. METHODS Testis biopsies were obtained from 11 infant boys (median age 1.3 years, range 0.5-3.5) with cryptorchidism. Following enzymatic digestion, dissociated single-cell suspensions were prelabeled with green fluorescent dye and directly transplanted into seminiferous tubules of busulfan-treated mice. Six to nine weeks post-transplantation, the presence of gonocytes and SSCs was determined by whole-mount immunofluorescence for a number of germ cell markers (MAGEA, GAGE, UCHL1, SALL4, UTF1, and LIN28), somatic cell markers (SOX9, CYP17A1). RESULTS Following xenotransplantation human infant germ cells, consisting of gonocytes and SSCs, were shown to settle on the basal membrane of the recipient seminiferous tubules and form SSC colonies with expression of MAGEA, GAGE, UCHL1, SALL4, UTF1, and LIN28. The colonization efficiency was approximately 6%. No human Sertoli cells were detected in the recipient mouse testes. CONCLUSION Xenotransplantation, without in vitro propagation, of testicular cell suspensions from infant boys with cryptorchidism resulted in colonization of mouse seminiferous tubules six to nine weeks post-transplantation. Spermatogonial stem cell-based transplantation could be a therapeutic treatment for infertility of prepubertal boys with cryptorchidism and boys diagnosed with cancer. However, more studies are required to investigate whether the low number of the transplanted SSC is sufficient to secure the presence of sperm in the ejaculate of those patients over time.
Collapse
Affiliation(s)
- Danyang Wang
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Danyang Wang,
| | - Simone Hildorf
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatric Surgery, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Elissavet Ntemou
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Lihua Dong
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Susanne Elisabeth Pors
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Linn Salto Mamsen
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Jens Fedder
- Centre of Andrology & Fertility Clinic, Department D, Odense University Hospital, Odense C, Denmark
- Research Unit of Human Reproduction, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Eva R. Hoffmann
- Danish National Research Foundation (DNRF) Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erik Clasen-Linde
- Department of Pathology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Dina Cortes
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
| | - Jørgen Thorup
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatric Surgery, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Jensen CFS, Wang D, Mamsen LS, Giwercman A, Jørgensen N, Fode M, Ohl D, Dong L, Hildorf SE, Pors SE, Fedder J, Ntemou E, Andersen CY, Sønksen J. Sertoli and Germ Cells Within Atrophic Seminiferous Tubules of Men With Non-Obstructive Azoospermia. Front Endocrinol (Lausanne) 2022; 13:825904. [PMID: 35721721 PMCID: PMC9201000 DOI: 10.3389/fendo.2022.825904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Infertile men with non-obstructive azoospermia (NOA) have impaired spermatogenesis. Dilated and un-dilated atrophic seminiferous tubules are often present in the testes of these patients, with the highest likelihood of active spermatogenesis in the dilated tubules. Little is known about the un-dilated tubules, which in NOA patients constitute the majority. To advance therapeutic strategies for men with NOA who fail surgical sperm retrieval we aimed to characterize the spermatogonial stem cell microenvironment in atrophic un-dilated tubules. METHODS Testis biopsies approximately 3x3x3 mm3 were obtained from un-dilated areas from 34 patients. They were classified as hypospermatogenesis (HS) (n=5), maturation arrest (MA) (n=14), and Sertoli cell only (SCO) (n= 15). Testis samples from five fertile men were included as controls. Biopsies were used for histological analysis, RT-PCR analysis and immunofluorescence of germ and Sertoli cell markers. RESULTS Anti-Müllerian hormone mRNA and protein expression was increased in un-dilated tubules in all three NOA subtypes, compared to the control, showing an immature state of Sertoli cells (p<0.05). The GDNF mRNA expression was significantly increased in MA (P=0.0003). The BMP4 mRNA expression showed a significant increase in HS, MA, and SCO (P=0.02, P=0.0005, P=0.02, respectively). The thickness of the tubule wall was increased 2.2-fold in the SCO-NOA compared to the control (p<0.05). In germ cells, we found the DEAD-box helicase 4 (DDX4) and melanoma-associated antigen A4 (MAGE-A4) mRNA and protein expression reduced in NOA (MAGE-A: 46% decrease in HS, 53% decrease in MA, absent in SCO). In HS-NOA, the number of androgen receptor positive Sertoli cells was reduced 30% with a similar pattern in mRNA expression. The γH2AX expression was increased in SCO as compared to HS and MA. However, none of these differences reached statistical significance probably due to low number of samples. CONCLUSIONS Sertoli cells were shown to be immature in un-dilated tubules of three NOA subtypes. The increased DNA damage in Sertoli cells and thicker tubule wall in SCO suggested a different mechanism for the absence of spermatogenesis from SCO to HS and MA. These results expand insight into the differences in un-dilated tubules from the different types of NOA patients.
Collapse
Affiliation(s)
- Christian Fuglesang Skjødt Jensen
- Department of Urology, Herlev and Gentofte Hospital, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Danyang Wang
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Linn Salto Mamsen
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Aleksander Giwercman
- Department of Translational Medicine and Reproductive Medicine Centre, Lunds University and Skane University Hospital, Malmö, Sweden
| | - Niels Jørgensen
- Department of Growth and Reproduction, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Mikkel Fode
- Department of Urology, Herlev and Gentofte Hospital, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Dana Ohl
- Department of Urology, University of Michigan, Ann Arbor, MI, United States
| | - Lihua Dong
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Simone Engmann Hildorf
- Centre of Andrology & Fertility Clinic, Department D, Odense University Hospital, Odense C, Denmark
| | - Susanne Elisabeth Pors
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Jens Fedder
- Centre of Andrology & Fertility Clinic, Department D, Odense University Hospital, Odense C, Denmark
| | - Elissavet Ntemou
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
- *Correspondence: Elissavet Ntemou,
| | - Claus Yding Andersen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Jens Sønksen
- Department of Urology, Herlev and Gentofte Hospital, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Ruthig VA, Lamb DJ. Updates in Sertoli Cell-Mediated Signaling During Spermatogenesis and Advances in Restoring Sertoli Cell Function. Front Endocrinol (Lausanne) 2022; 13:897196. [PMID: 35600584 PMCID: PMC9114725 DOI: 10.3389/fendo.2022.897196] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/31/2022] [Indexed: 01/16/2023] Open
Abstract
Since their initial description by Enrico Sertoli in 1865, Sertoli cells have continued to enchant testis biologists. Testis size and germ cell carrying capacity are intimately tied to Sertoli cell number and function. One critical Sertoli cell function is signaling from Sertoli cells to germ cells as part of regulation of the spermatogenic cycle. Sertoli cell signals can be endocrine or paracrine in nature. Here we review recent advances in understanding the interplay of Sertoli cell endocrine and paracrine signals that regulate germ cell state. Although these findings have long-term implications for treating male infertility, recent breakthroughs in Sertoli cell transplantation have more immediate implications. We summarize the surge of advances in Sertoli cell ablation and transplantation, both of which are wedded to a growing understanding of the unique Sertoli cell niche in the transitional zone of the testis.
Collapse
Affiliation(s)
- Victor A. Ruthig
- Department of Urology, Weill Cornell Medicine, New York, NY, United States
- Sexual Medicine Lab, Weill Cornell Medicine, New York, NY, United States
| | - Dolores J. Lamb
- Department of Urology, Weill Cornell Medicine, New York, NY, United States
- Center for Reproductive Genomics, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Dolores J. Lamb,
| |
Collapse
|
22
|
Patra T, Gupta MK. Solid surface vitrification of goat testicular cell suspension enriched for spermatogonial stem cells. Cryobiology 2021; 104:8-14. [PMID: 34822805 DOI: 10.1016/j.cryobiol.2021.11.177] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/09/2021] [Accepted: 11/21/2021] [Indexed: 01/13/2023]
Abstract
This study reports solid surface vitrification (SSV) of goat testicular cell suspensions (TCS) enriched for spermatogonial stem cells (SSCs). The TCS was isolated from pre-pubertal goat testis by enzymatic digestion, enriched for SSCs by filtration and differential plating, and were vitrified-warmed by SSV. The study showed that SSV could successfully vitrify goat TCS although the percentage of live cells in the vitrified-warmed group was lower (74.8 ± 4.1%) than in non-vitrified control (80.6 ± 6.27%). The vitrified-warmed TCS formed putative SSC colonies upon their in vitro culture, but the colony size of vitrified-warmed cells (24.3 ± 1.8 μm) was smaller than those of non-vitrified warmed cells (58.4 ± 2.5 μm). Mitochondrial activity (0.40 vs. 0.38 A U.), population doubling time (33.45 ± 1.25 h vs. 31.86 ± 1.90 h), and the cell proliferation rate (0.72 ± 0.10 vs. 0.75 ± 0.11 per day) of total cells (including putative SSCs and other somatic cells) did not differ (p > 0.05) between control and SSV vitrified-warmed groups. However, during in vitro culture for 96 h, vitrified-warmed cells showed significantly lower (0.75 vs. 1.33 A U.; p < 0.05) mitochondrial activity than non-vitrified controls. The DCFDA assay showed that ROS activity was significantly (p < 0.05) higher in vitrified-warmed cells (52.8 ± 4.1 A U) than non-vitrified control cells (32.8 ± 2.1 AU). In conclusion, our results suggest that SSC-enriched goat TCS could be successfully cryopreserved by SSV. However, ROS-induced damages to cell cytoplasmic components reduce their cellular proliferation and require further improvement in the protocol. To the best of our knowledge, this study is the first report on the SSV of SSC-enriched goat TCS.
Collapse
Affiliation(s)
- Tanushree Patra
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
23
|
Shetty G, Mitchell JM, Lam TN, Phan TT, Zhang J, Tailor RC, Peters KA, Penedo MC, Hanna CB, Clark AT, Orwig KE, Meistrich ML. Postpubertal spermatogonial stem cell transplantation restores functional sperm production in rhesus monkeys irradiated before and after puberty. Andrology 2021; 9:1603-1616. [PMID: 33960147 PMCID: PMC8815151 DOI: 10.1111/andr.13033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cancer treatment of prepubertal patients impacts future fertility due to the abolition of spermatogonial stem cells (SSCs). In macaques, spermatogenesis could be regenerated by intratesticular transplantation of SSCs, but no studies have involved cytotoxic treatment before puberty and transplantation after puberty, which would be the most likely clinical scenario. OBJECTIVES To evaluate donor-derived functional sperm production after SSC transplantation to adult monkeys that had received testicular irradiation during the prepubertal period. MATERIALS AND METHODS We obtained prepubertal testis tissue by unilaterally castrating six prepubertal monkeys and 2 weeks later irradiated the remaining testes with 6.9 Gy. However, because spermatogenic recovery was observed, we irradiated them again 14 months later with 7 Gy. Three of the monkeys were treated with GnRH-antagonist (GnRH-ant) for 8 weeks. The cryopreserved testis cells from the castrated testes were then allogeneically transplanted into the intact testes of all monkeys. Tissues were harvested 10 months later for analyses. RESULTS In three of the six monkeys, 61%, 38%, and 11% of the epididymal sperm DNA were of the donor genotype. The ability to recover donor-derived sperm production was not enhanced by the GnRH-ant pretreatment. However, the extent of filling seminiferous tubules during the transplantation procedure was correlated with the eventual production of donor spermatozoa. The donor epididymal spermatozoa from the recipient with 61% donor contribution were capable of fertilizing rhesus eggs and forming embryos. Although the transplantation was done into the rete testis, two GnRH-ant-treated monkeys, which did not produce donor-derived epididymal spermatozoa, displayed irregular tubular cords in the interstitium containing testicular spermatozoa derived from the transplanted donor cells. DISCUSSION AND CONCLUSION The results further support that sperm production can be restored in non-human primates from tissues cryopreserved prior to prepubertal and post-pubertal gonadotoxic treatment by transplantation of these testicular cells after puberty into seminiferous tubules.
Collapse
Affiliation(s)
- Gunapala Shetty
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Jennifer M. Mitchell
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Truong N.A. Lam
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Thien T. Phan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Jie Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Ramesh C. Tailor
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Karen A. Peters
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | | | - Carol B. Hanna
- Assisted Reproductive Technology Core, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Amander T. Clark
- Department of Molecular, Cell and Developmental Biology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095
| | - Kyle E. Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Marvin L. Meistrich
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
24
|
Cellular Therapy via Spermatogonial Stem Cells for Treating Impaired Spermatogenesis, Non-Obstructive Azoospermia. Cells 2021; 10:cells10071779. [PMID: 34359947 PMCID: PMC8304133 DOI: 10.3390/cells10071779] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/04/2021] [Accepted: 07/12/2021] [Indexed: 12/18/2022] Open
Abstract
Male infertility is a major health problem affecting about 8–12% of couples worldwide. Spermatogenesis starts in the early fetus and completes after puberty, passing through different stages. Male infertility can result from primary or congenital, acquired, or idiopathic causes. The absence of sperm in semen, or azoospermia, results from non-obstructive causes (pretesticular and testicular), and post-testicular obstructive causes. Several medications such as antihypertensive drugs, antidepressants, chemotherapy, and radiotherapy could lead to impaired spermatogenesis and lead to a non-obstructive azoospermia. Spermatogonial stem cells (SSCs) are the basis for spermatogenesis and fertility in men. SSCs are characterized by their capacity to maintain the self-renewal process and differentiation into spermatozoa throughout the male reproductive life and transmit genetic information to the next generation. SSCs originate from gonocytes in the postnatal testis, which originate from long-lived primordial germ cells during embryonic development. The treatment of infertility in males has a poor prognosis. However, SSCs are viewed as a promising alternative for the regeneration of the impaired or damaged spermatogenesis. SSC transplantation is a promising technique for male infertility treatment and restoration of spermatogenesis in the case of degenerative diseases such as cancer, radiotherapy, and chemotherapy. The process involves isolation of SSCs and cryopreservation from a testicular biopsy before starting cancer treatment, followed by intra-testicular stem cell transplantation. In general, treatment for male infertility, even with SSC transplantation, still has several obstacles. The efficiency of cryopreservation, exclusion of malignant cells contamination in cancer patients, and socio-cultural attitudes remain major challenges to the wider application of SSCs as alternatives. Furthermore, there are limitations in experience and knowledge regarding cryopreservation of SSCs. However, the level of infrastructure or availability of regulatory approval to process and preserve testicular tissue makes them tangible and accurate therapy options for male infertility caused by non-obstructive azoospermia, though in their infancy, at least to date.
Collapse
|
25
|
Reis AB, Reis FM, Salles PG, Almeida FRCL, Martello R, Assis WA, Caldeira-Brant AL, Tatsuo ES, Chiarini-Garcia H. A fertility-oriented method for histological processing of testicular biopsies in men with azoospermia. Syst Biol Reprod Med 2021; 67:314-321. [PMID: 33899622 DOI: 10.1080/19396368.2021.1892866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The present study was designed to evaluate whether tissue preparation by glutaraldehyde and glycol methacrylate (G/GMA) improves the diagnostic assessment of testicular biopsies from azoospermic men when compared to the standard tissue preparation using Bouin's solution and paraffin. We prospectively included a total of 21 testicular biopsies of sexually mature men aged 29-50 years with infertility and azoospermia. One testicular biopsy fragment from each patient was processed by the G/GMA method, whereas another tissue fragment was contemporarily processed by the conventional Bouin/paraffin (B/P) method. The G/GMA method provided better resolution of cytological details of the seminiferous epithelium, changing the final diagnosis in four cases. The medians of Bergmann's spermatogenesis scores were 0.25 (interquartile range 0.04-0.88) for B/P preparations and 0.79 (interquartile range 0.17-0.96) for G/GMA preparations. Both techniques allowed accurate prediction of sperm recovery from the biopsies (B/P, area under the receiver operating characteristics [ROC] curve 0.88, 95% confidence interval [CI] 0.75-1.00; G/GMA, area under the ROC curve 0.94, 95% CI 0.86-1.00). We conclude that human testicular biopsy preparation with G/GMA improved image resolution under light microscopy and produced more reliable results for the evaluation of spermatogenesis in comparison with B/P, allowing a more precise fertility-oriented diagnosis in azoospermic men.Abbreviations: B/P: Bouin/paraffin; GMA: glycol methacrylate; G/GMA: glutaraldehyde and glycol methacrylate; ICSI: intracytoplasmic sperm injection; OA: obstructive azoospermia; NOA: nonobstructive azoospermia; TESE: testicular sperm extraction.
Collapse
Affiliation(s)
| | | | | | | | - Reginaldo Martello
- Division of Urology, Universidade Federal De Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | |
Collapse
|
26
|
Strategies for cryopreservation of testicular cells and tissues in cancer and genetic diseases. Cell Tissue Res 2021; 385:1-19. [PMID: 33791878 DOI: 10.1007/s00441-021-03437-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/18/2021] [Indexed: 12/15/2022]
Abstract
Cryopreservation of testicular cells and tissues is useful for the preservation and restoration of fertility in pre-pubertal males expecting gonadotoxic treatment for cancer and genetic diseases causing impaired spermatogenesis. A number of freezing and vitrification protocols have thus been tried and variable results have been reported in terms of cell viability spermatogenesis progression and the production of fertile spermatozoa. A few studies have also reported the production of live offspring from cryopreserved testicular stem cells and tissues in rodents but their replication in large animals and human have been lacking. Advancement in in vitro spermatogenesis system has improved the possibility of producing fertile spermatozoa from the cryopreserved testis and has reduced the dependency on transplantation. This review provides an update on various cryopreservation strategies for fertility preservation in males expecting gonadotoxic treatment. It also discusses various methods of assessing and ameliorating cryoinjuries. Newer developments on in vitro spermatogenesis and testicular tissue engineering for in vitro sperm production from cryopreserved SSCs and testicular tissue are also discussed.
Collapse
|
27
|
Spermatogonial Stem Cell Transplantation in Large Animals. Animals (Basel) 2021; 11:ani11040918. [PMID: 33805058 PMCID: PMC8064064 DOI: 10.3390/ani11040918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary The spermatogonial stem cell (SSC) is the only adult stem cell in males to transmit genetic information to offspring. SSC transplantation (SSCT) is a laboratory technique to regenerate spermatogenesis in recipient males, thus can be used as a novel breeding tool to benefit animal production. Although successful SSCT in rodent models has been established, progress in realizing SSCT in large animals has been limited. Here we discuss what we learned in this area from past experiments and highlight possible directions in developing effective SSCT protocol in large animals. Abstract Spermatogonial stem cell transplantation (SSCT) can restore male fertility through transfer of germline between donor and recipient males. From an agricultural perspective, SSCT could be an important next-generation reproductive and breeding tool in livestock production. Current SSCT approaches in large animals remain inefficient and many technical details need further investigation. This paper reviews the current knowledge on SSCT in large animals, addressing (1) donor spermatogonial stem cell (SSC) preparation, (2) recipient male treatment, and (3) SSC injection, homing, and detection. The major studies showing unequivocal evidence of donor SSC-derived spermatogenesis in large animals (mainly in livestock for breeding purpose) are summarized to discuss the current status of the field and future directions.
Collapse
|
28
|
Wyns C, Kanbar M, Giudice MG, Poels J. Fertility preservation for prepubertal boys: lessons learned from the past and update on remaining challenges towards clinical translation. Hum Reprod Update 2020; 27:433-459. [PMID: 33326572 DOI: 10.1093/humupd/dmaa050] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/25/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Childhood cancer incidence and survivorship are both on the rise. However, many lifesaving treatments threaten the prepubertal testis. Cryopreservation of immature testicular tissue (ITT), containing spermatogonial stem cells (SSCs), as a fertility preservation (FP) option for this population is increasingly proposed worldwide. Recent achievements notably the birth of non-human primate (NHP) progeny using sperm developed in frozen-thawed ITT autografts has given proof of principle of the reproductive potential of banked ITT. Outlining the current state of the art on FP for prepubertal boys is crucial as some of the boys who have cryopreserved ITT since the early 2000s are now in their reproductive age and are already seeking answers with regards to their fertility. OBJECTIVE AND RATIONALE In the light of past decade achievements and observations, this review aims to provide insight into relevant questions for clinicians involved in FP programmes. Have the indications for FP for prepubertal boys changed over time? What is key for patient counselling and ITT sampling based on the latest achievements in animals and research performed with human ITT? How far are we from clinical application of methods to restore reproductive capacity with cryostored ITT? SEARCH METHODS An extensive search for articles published in English or French since January 2010 to June 2020 using keywords relevant to the topic of FP for prepubertal boys was made in the MEDLINE database through PubMed. Original articles on fertility preservation with emphasis on those involving prepubertal testicular tissue, as well as comprehensive and systematic reviews were included. Papers with redundancy of information or with an absence of a relevant link for future clinical application were excluded. Papers on alternative sources of stem cells besides SSCs were excluded. OUTCOMES Preliminary follow-up data indicate that around 27% of boys who have undergone testicular sampling as an FP measure have proved azoospermic and must therefore solely rely on their cryostored ITT to ensure biologic parenthood. Auto-transplantation of ITT appears to be the first technique that could enter pilot clinical trials but should be restricted to tissue free of malignant cells. While in vitro spermatogenesis circumvents the risk linked to cancer cell contamination and has led to offspring in mice, complete spermatogenesis has not been achieved with human ITT. However, generation of haploid germ cells paves the way to further studies aimed at completing the final maturation of germ cells and increasing the efficiency of the processes. WIDER IMPLICATIONS Despite all the research done to date, FP for prepubertal boys remains a relatively young field and is often challenging to healthcare providers, patients and parents. As cryopreservation of ITT is now likely to expand further, it is important not only to acknowledge some of the research questions raised on the topic, e.g. the epigenetic and genetic integrity of gametes derived from strategies to restore fertility with banked ITT but also to provide healthcare professionals worldwide with updated knowledge to launch proper multicollaborative care pathways in the field and address clinical issues that will come-up when aiming for the child's best interest.
Collapse
Affiliation(s)
- Christine Wyns
- Andrology lab, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Marc Kanbar
- Andrology lab, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Maria Grazia Giudice
- Andrology lab, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jonathan Poels
- Andrology lab, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|