1
|
Peruhova M, Stoyanova D, Miteva DG, Kitanova M, Mirchev MB, Velikova T. Genetic factors that predict response and failure of biologic therapy in inflammatory bowel disease. World J Exp Med 2025; 15:97404. [DOI: 10.5493/wjem.v15.i1.97404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/09/2024] [Accepted: 11/14/2024] [Indexed: 12/26/2024] Open
Abstract
Inflammatory bowel disease (IBD) represents a significant disease burden marked by chronic inflammation and complications that adversely affect patients’ quality of life. Effective diagnostic strategies involve clinical assessments, endoscopic evaluations, imaging studies, and biomarker testing, where early diagnosis is essential for effective management and prevention of long-term complications, highlighting the need for continual advancements in diagnostic methods. The intricate interplay between genetic factors and the outcomes of biological therapy is of critical importance. Unraveling the genetic determinants that influence responses and failures to biological therapy holds significant promise for optimizing treatment strategies for patients with IBD on biologics. Through an in-depth examination of current literature, this review article synthesizes critical genetic markers associated with therapeutic efficacy and resistance in IBD. Understanding these genetic actors paves the way for personalized approaches, informing clinicians on predicting, tailoring, and enhancing the effectiveness of biological therapies for improved outcomes in patients with IBD.
Collapse
Affiliation(s)
- Milena Peruhova
- Department of Gastroenterology, University Hospital Heart and Brain, Burgas 1000, Bulgaria
| | - Daniela Stoyanova
- Department of Gastroenterology, Military Medical Academy, Sofia 1606, Bulgaria
| | | | - Meglena Kitanova
- Department of Genetics, Faculty of Biology, Sofia University St. Kliment Ohridski, Sofia 1164, Bulgaria
| | | | - Tsvetelina Velikova
- Department of Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| |
Collapse
|
2
|
Kumar P, Kedia S, Ahuja V. Target potential of miRNAs in ulcerative colitis: what do we know? Expert Opin Ther Targets 2024; 28:829-841. [PMID: 39307951 DOI: 10.1080/14728222.2024.2408423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION The global rise in ulcerative colitis (UC) incidence highlights the urgent need for enhanced diagnostic and therapeutic strategies. Recent advances in genome-wide association studies (GWAS) have identified genetic loci associated with UC, providing insights into the disease's molecular mechanisms, including immune modulation, mucosal defense, and epithelial barrier function. Despite these findings, many GWAS signals are located in non-coding regions and are linked to low risk, suggesting that protein-coding genes alone do not fully explain UC's pathophysiology. Emerging research emphasizes the potential of microRNAs (miRNAs) as biomarkers and therapeutic targets due to their crucial role in UC. This review explores the current understanding of miRNAs in UC, including their mechanisms of action and their potential as both biomarkers and therapeutic targets. The present review provides the latest update on their potential as a biomarker and therapeutic target. AREAS COVERED This review synthesizes an extensive literature search on miRNAs in UC, focusing on their roles in the mucosal barrier, innate and adaptive immunity, and their potential applications as biomarkers and therapeutic modalities. EXPERT OPINION While miRNAs present promising opportunities as biomarkers and novel therapeutic agents in UC, challenges in validation, specificity, delivery, and clinical application need to be addressed through rigorous, large-scale studies.
Collapse
Affiliation(s)
- Peeyush Kumar
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical sciences, New Delhi, India
| | - Saurabh Kedia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical sciences, New Delhi, India
| | - Vineet Ahuja
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical sciences, New Delhi, India
| |
Collapse
|
3
|
McCormack NM, Calabrese KA, Sun CM, Tully CB, Heier CR, Fiorillo AA. Deletion of miR-146a enhances therapeutic protein restoration in model of dystrophin exon skipping. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102228. [PMID: 38975000 PMCID: PMC11225849 DOI: 10.1016/j.omtn.2024.102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 05/22/2024] [Indexed: 07/09/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle disease caused by the absence of dystrophin protein. One current DMD therapeutic strategy, exon skipping, produces a truncated dystrophin isoform using phosphorodiamidate morpholino oligomers (PMOs). However, the potential of exon skipping therapeutics has not been fully realized as increases in dystrophin protein have been minimal in clinical trials. Here, we investigate how miR-146a-5p, which is highly elevated in dystrophic muscle, impacts dystrophin protein levels. We find inflammation strongly induces miR-146a in dystrophic, but not wild-type myotubes. Bioinformatics analysis reveals that the dystrophin 3' UTR harbors a miR-146a binding site, and subsequent luciferase assays demonstrate miR-146a binding inhibits dystrophin translation. In dystrophin-null mdx52 mice, co-injection of miR-146a reduces dystrophin restoration by an exon 51 skipping PMO. To directly investigate how miR-146a impacts therapeutic dystrophin rescue, we generated mdx52 with body-wide miR-146a deletion (146aX). Administration of an exon skipping PMO via intramuscular or intravenous injection markedly increases dystrophin protein levels in 146aX vs. mdx52 muscles while skipped dystrophin transcript levels are unchanged supporting a post-transcriptional mechanism of action. Together, these data show that miR-146a expression opposes therapeutic dystrophin restoration, suggesting miR-146a inhibition warrants further research as a potential DMD exon skipping co-therapy.
Collapse
Affiliation(s)
- Nikki M. McCormack
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| | - Kelsey A. Calabrese
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| | - Christina M. Sun
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| | - Christopher B. Tully
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| | - Christopher R. Heier
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| | - Alyson A. Fiorillo
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| |
Collapse
|
4
|
Minea H, Singeap AM, Minea M, Juncu S, Muzica C, Sfarti CV, Girleanu I, Chiriac S, Miftode ID, Stanciu C, Trifan A. The Contribution of Genetic and Epigenetic Factors: An Emerging Concept in the Assessment and Prognosis of Inflammatory Bowel Diseases. Int J Mol Sci 2024; 25:8420. [PMID: 39125988 PMCID: PMC11313574 DOI: 10.3390/ijms25158420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Inflammatory bowel disease (IBD) represents heterogeneous and relapsing intestinal conditions with a severe impact on the quality of life of individuals and a continuously increasing prevalence. In recent years, the development of sequencing technology has provided new means of exploring the complex pathogenesis of IBD. An ideal solution is represented by the approach of precision medicine that investigates multiple cellular and molecular interactions, which are tools that perform a holistic, systematic, and impartial analysis of the genomic, transcriptomic, proteomic, metabolomic, and microbiomics sets. Hence, it has led to the orientation of current research towards the identification of new biomarkers that could be successfully used in the management of IBD patients. Multi-omics explores the dimension of variation in the characteristics of these diseases, offering the advantage of understanding the cellular and molecular mechanisms that affect intestinal homeostasis for a much better prediction of disease development and choice of treatment. This review focuses on the progress made in the field of prognostic and predictive biomarkers, highlighting the limitations, challenges, and also the opportunities associated with the application of genomics and epigenomics technologies in clinical practice.
Collapse
Affiliation(s)
- Horia Minea
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Ana-Maria Singeap
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Manuela Minea
- Department of Microbiology, The National Institute of Public Health, 700464 Iasi, Romania;
| | - Simona Juncu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Cristina Muzica
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Catalin Victor Sfarti
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Irina Girleanu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Stefan Chiriac
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Ioana Diandra Miftode
- Department of Radiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Radiology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Carol Stanciu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Anca Trifan
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| |
Collapse
|
5
|
Adegbola PI, Adetutu A. Genetic and epigenetic modulations in toxicity: The two-sided roles of heavy metals and polycyclic aromatic hydrocarbons from the environment. Toxicol Rep 2024; 12:502-519. [PMID: 38774476 PMCID: PMC11106787 DOI: 10.1016/j.toxrep.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 05/24/2024] Open
Abstract
This study emphasizes the importance of considering the metabolic and toxicity mechanisms of environmental concern chemicals in real-life exposure scenarios. Furthermore, environmental chemicals may require metabolic activation to become toxic, and competition for binding sites on receptors can affect the severity of toxicity. The multicomplex process of chemical toxicity is reflected in the activation of multiple pathways during toxicity of which AhR activation is major. Real-life exposure to a mixture of concern chemicals is common, and the composition of these chemicals determines the severity of toxicity. Nutritional essential elements can mitigate the toxicity of toxic heavy metals, while the types and ratio of composition of PAH can either increase or decrease toxicity. The epigenetic mechanisms of heavy metals and PAH toxicity involves either down-regulation or up-regulation of some non-coding RNAs (ncRNAs) whereas specific small RNAs (sRNAs) may have dual role depending on the tissue and circumstance of expression. Similarly, decrease DNA methylation and histone modification are major players in heavy metals and PAH mediated toxicity and FLT1 hypermethylation is a major process in PAH induced carcinogenesis. Overall, this review provides the understanding of the metabolism of environmental concern chemicals, emphasizing the importance of considering mixed compositions and real-life exposure scenarios in assessing their potential effects on human health and diseases development as well as the dual mechanism of toxicity via genetic or epigenetic axis.
Collapse
Affiliation(s)
- Peter Ifeoluwa Adegbola
- Department of Biochemistry and Forensic Science, First Technical University, Ibadan, Nigeria
| | - Adewale Adetutu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
6
|
Tran F, Scharmacher A, Baran N, Mishra N, Wozny M, Chavez SP, Bhardwaj A, Hinz S, Juzenas S, Bernardes JP, Sievers LK, Lessing M, Aden K, Lassen A, Bergfeld A, Weber HJ, Neas L, Vetrano S, Schreiber S, Rosenstiel P. Dynamic changes in extracellular vesicle-associated miRNAs elicited by ultrasound in inflammatory bowel disease patients. Sci Rep 2024; 14:10925. [PMID: 38740826 DOI: 10.1038/s41598-024-61532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Blood-based biomarkers that reliably indicate disease activity in the intestinal tract are an important unmet need in the management of patients with IBD. Extracellular vesicles (EVs) are cell-derived membranous microparticles, which reflect the cellular and functional state of their site of site of origin. As ultrasound waves may lead to molecular shifts of EV contents, we hypothesized that application of ultrasound waves on inflamed intestinal tissue in IBD may amplify the inflammation-specific molecular shifts in EVs like altered EV-miRNA expression, which in turn can be detected in the peripheral blood. 26 patients with IBD were included in the prospective clinical study. Serum samples were collected before and 30 min after diagnostic transabdominal ultrasound. Differential miRNA expression was analyzed by sequencing. Candidate inducible EV-miRNAs were functionally assessed in vitro by transfection of miRNA mimics and qPCR of predicted target genes. Serum EV-miRNA concentration at baseline correlated with disease severity, as determined by clinical activity scores and sonographic findings. Three miRNAs (miR-942-5p, mir-5588, mir-3195) were significantly induced by sonography. Among the significantly regulated EV-miRNAs, miR-942-5p was strongly induced in higher grade intestinal inflammation and correlated with clinical activity in Crohn's disease. Prediction of target regulation and transfection of miRNA mimics inferred a role of this EV-miRNA in regulating barrier function in inflammation. Induction of mir-5588 and mir-3195 did not correlate with inflammation grade. This proof-of-concept trial highlights the principle of induced molecular shifts in EVs from inflamed tissue through transabdominal ultrasound. These inducible EVs and their molecular cargo like miRNA could become novel biomarkers for intestinal inflammation in IBD.
Collapse
Affiliation(s)
- Florian Tran
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany.
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany.
| | - Alena Scharmacher
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Nathan Baran
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Neha Mishra
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Marek Wozny
- Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, Italy
| | - Samuel Pineda Chavez
- Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, Italy
| | - Archana Bhardwaj
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Sophia Hinz
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Simonas Juzenas
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
- Institute of Biotechnology, Life Science Centre, Vilnius University, Vilnius, Lithuania
| | - Joana P Bernardes
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Laura Katharina Sievers
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Matthias Lessing
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Arne Lassen
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Arne Bergfeld
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Hauke Jann Weber
- Department of Gastroenterology, Asklepios Westklinikum, 22559, Hamburg, Germany
- Institute of Infection Medicine, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, 24105, Kiel, Germany
| | - Lennart Neas
- Department of Internal Medicine III, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Stefania Vetrano
- Department of Biomedical Sciences, Humanitas University, 20072, Pieve Emanuele, Italy
- IBD Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089, Rozzano, Italy
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Christian Albrecht University Kiel, Campus Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| |
Collapse
|
7
|
Oliver T, Nguyen NY, Tully CB, McCormack NM, Sun CM, Fiorillo AA, Heier CR. The glucocorticoid receptor acts locally to protect dystrophic muscle and heart during disease. Dis Model Mech 2024; 17:dmm050397. [PMID: 38770680 PMCID: PMC11139035 DOI: 10.1242/dmm.050397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/28/2024] [Indexed: 05/22/2024] Open
Abstract
Absence of dystrophin results in muscular weakness, chronic inflammation and cardiomyopathy in Duchenne muscular dystrophy (DMD). Pharmacological corticosteroids are the DMD standard of care; however, they have harsh side effects and unclear molecular benefits. It is uncertain whether signaling by physiological corticosteroids and their receptors plays a modifying role in the natural etiology of DMD. Here, we knocked out the glucocorticoid receptor (GR, encoded by Nr3c1) specifically in myofibers and cardiomyocytes within wild-type and mdx52 mice to dissect its role in muscular dystrophy. Double-knockout mice showed significantly worse phenotypes than mdx52 littermate controls in measures of grip strength, hang time, inflammatory pathology and gene expression. In the heart, GR deletion acted additively with dystrophin loss to exacerbate cardiomyopathy, resulting in enlarged hearts, pathological gene expression and systolic dysfunction, consistent with imbalanced mineralocorticoid signaling. The results show that physiological GR functions provide a protective role during muscular dystrophy, directly contrasting its degenerative role in other disease states. These data provide new insights into corticosteroids in disease pathophysiology and establish a new model to investigate cell-autonomous roles of nuclear receptors and mechanisms of pharmacological corticosteroids.
Collapse
MESH Headings
- Animals
- Mice
- Cardiomyopathies/pathology
- Cardiomyopathies/metabolism
- Dystrophin/metabolism
- Dystrophin/genetics
- Dystrophin/deficiency
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Mice, Knockout
- Muscle, Skeletal/pathology
- Muscle, Skeletal/metabolism
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/metabolism
- Myocardium/pathology
- Myocardium/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/drug effects
- Phenotype
- Receptors, Glucocorticoid/metabolism
Collapse
Affiliation(s)
- Trinitee Oliver
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
- Department of Biology, Howard University, Washington, DC 20059, USA
- Graduate School of Biomedical Sciences, Cedars-Sinai Medical Center, West Hollywood, CA 90048, USA
| | - Nhu Y. Nguyen
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Christopher B. Tully
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
| | - Nikki M. McCormack
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
| | - Christina M. Sun
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
| | - Alyson A. Fiorillo
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20037, USA
- Center for Inherited Muscle Research, Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Christopher R. Heier
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20037, USA
- Center for Inherited Muscle Research, Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
8
|
Oliveira ECSD, Quaglio AEV, Grillo TG, Di Stasi LC, Sassaki LY. MicroRNAs in inflammatory bowel disease: What do we know and what can we expect? World J Gastroenterol 2024; 30:2184-2190. [PMID: 38690020 PMCID: PMC11056918 DOI: 10.3748/wjg.v30.i16.2184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/09/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024] Open
Abstract
MicroRNAs (miRNAs), small non-coding RNAs composed of 18-24 nucleotides, are potent regulators of gene expression, contributing to the regulation of more than 30% of protein-coding genes. Considering that miRNAs are regulators of inflammatory pathways and the differentiation of intestinal epithelial cells, there is an interest in exploring their importance in inflammatory bowel disease (IBD). IBD is a chronic and multifactorial disease of the gastrointestinal tract; the main forms are Crohn's disease and ulcerative colitis. Several studies have investigated the dysregulated expression of miRNAs in IBD, demonstrating their important roles as regulators and potential biomarkers of this disease. This editorial presents what is known and what is expected regarding miRNAs in IBD. Although the important regulatory roles of miRNAs in IBD are clearly established, biomarkers for IBD that can be applied in clinical practice are lacking, emphasizing the importance of further studies. Discoveries regarding the influence of miRNAs on the inflammatory process and the exploration of their role in gene regulation are expected to provide a basis for the use of miRNAs not only as potent biomarkers in IBD but also as therapeutic targets for the control of inflammatory processes in personalized medicine.
Collapse
Affiliation(s)
| | | | - Thais Gagno Grillo
- Department of Internal Medicine, Medical School, São Paulo State University (Unesp), Botucatu 18618-686, São Paulo, Brazil
| | - Luiz Claudio Di Stasi
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, São Paulo, Brazil
| | - Ligia Yukie Sassaki
- Department of Internal Medicine, Medical School, São Paulo State University (Unesp), Botucatu 18618-686, São Paulo, Brazil
| |
Collapse
|
9
|
Kumar M, Murugesan S, Ibrahim N, Elawad M, Al Khodor S. Predictive biomarkers for anti-TNF alpha therapy in IBD patients. J Transl Med 2024; 22:284. [PMID: 38493113 PMCID: PMC10943853 DOI: 10.1186/s12967-024-05058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal condition characterized by severe gut inflammation, commonly presenting as Crohn's disease, ulcerative colitis or categorized as IBD- unclassified. While various treatments have demonstrated efficacy in adult IBD patients, the advent of anti-TNF therapies has significantly revolutionized treatment outcomes and clinical management. These therapies have played a pivotal role in achieving clinical and endoscopic remission, promoting mucosal healing, averting disease progression, and diminishing the necessity for surgery. Nevertheless, not all patients exhibit positive responses to these therapies, and some may experience a loss of responsiveness over time. This review aims to present a comprehensive examination of predictive biomarkers for monitoring the therapeutic response to anti-TNF therapy in IBD patients. It will explore their limitations and clinical utilities, paving the way for a more personalized and effective therapeutic approach.
Collapse
Affiliation(s)
- Manoj Kumar
- Research Department, Sidra Medicine, Doha, Qatar
| | | | - Nazira Ibrahim
- Division of Gastroenterology, Hepatology and Nutrition, Sidra Medicine, Doha, Qatar
| | - Mamoun Elawad
- Division of Gastroenterology, Hepatology and Nutrition, Sidra Medicine, Doha, Qatar
| | | |
Collapse
|
10
|
Guglielmi G, Crucitta S, Bertani L, Ruglioni M, Baiano Svizzero G, Ceccarelli L, Del Re M, Danesi R, Costa F, Fogli S. Expression of Circulating let-7e and miR-126 May Predict Clinical Remission in Patients With Crohn's Disease Treated With Anti-TNF-α Biologics. Inflamm Bowel Dis 2024; 30:441-446. [PMID: 37696681 DOI: 10.1093/ibd/izad181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND The identification of new biomarkers predictive of response to antitumor necrosis factor alpha (anti-TNF-α) monoclonal antibodies remains an unmet medical need in Crohn's disease (CD) because a high percentage of patients show no clinical improvement after treatment or can lose response over time. MicroRNAs (miRNAs) can regulate inflammatory and immunological responses and were found to play a role in CD. METHODS Baseline serum samples from 37 CD patients previously treated with infliximab or adalimumab, as per clinical practice, were obtained from the serum library at the Gastroenterology Unit of the University Hospital of Pisa, Italy. Patients were categorized as responders or nonresponders based on the following treatment outcomes: clinical remission at weeks 14 and 54 and endoscopic remission at week 54. The expression levels of a panel of selected miRNAs were analyzed by real-time polymerase chain reaction. Comparisons of miRNA expression between responders and nonresponders and statistical analyses were performed by MedCalc and GraphPad Prism software. Receiver operating characteristic curve analyses were calculated to evaluate the predictive performance of potential biomarkers. RESULTS Patients in clinical remission at week 14 had a lower let-7e expression, whereas those in clinical remission at week 54 had lower levels of circulating miR-126 than nonresponders. The receiver operating characteristic curve analysis identified optimal cutoff values with assay sensitivity and specificity of 92.9% and 61.1%, for let-7e, and 62.5% and 83.3%, for miR-126, respectively. CONCLUSION These results provide evidence that expression levels of circulating let-7e and miR-126 at baseline may predict clinical remission in CD patients treated with anti-TNF-α biologics.
Collapse
Affiliation(s)
- Giorgio Guglielmi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lorenzo Bertani
- IBD Unit, Department of General Surgery and Gastroenterology, University Hospital of Pisa, Pisa, Italy
| | - Martina Ruglioni
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giovanni Baiano Svizzero
- IBD Unit, Department of General Surgery and Gastroenterology, University Hospital of Pisa, Pisa, Italy
| | - Linda Ceccarelli
- IBD Unit, Department of General Surgery and Gastroenterology, University Hospital of Pisa, Pisa, Italy
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesco Costa
- IBD Unit, Department of General Surgery and Gastroenterology, University Hospital of Pisa, Pisa, Italy
| | - Stefano Fogli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
11
|
Casertano M, Trotta MC, Cenni S, Creoli M, Miele E, Martinelli M, Lepre CC, Russo M, Alfano R, D'Amico M, Strisciuglio C. Infliximab therapy decreases the expression of serum and faecal miR-126 and miR-20a in paediatric Crohn's disease: A pilot study. Acta Paediatr 2024; 113:590-597. [PMID: 38140840 DOI: 10.1111/apa.17072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/17/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
AIM We aimed to evaluate the serum and faecal expression of miR-126 and miR-20a in children with Crohn's disease (CD) during infliximab (IFX) therapy. METHODS In this prospective observational study, serum and faeces from CD patients were collected before IFX therapy (T0), after induction (T1) and after 6 months from IFX (T2). IFX levels were determined by Enzyme-linked immunosorbent assay at T1 and T2. miRNAs were profiled through Real-Time RT-PCR. The activity of disease was evaluated through the Paediatric Crohn's disease activity index (PCDAI), serum C-reactive protein (CRP) and faecal calprotectin. RESULTS Nine CD children were enrolled. Serum and faecal miR-126 and miR-20a levels were higher at T0 and showed a time-dependent decrease, being significantly down-regulated after IFX treatment at T2. Specifically, IFX levels recorded at T1 and T2 negatively correlated with the serum and faecal expression of miR-126 and miR-20a. Serum and faecal changes of miR-126 and miR20-a were positively associated with the decrease of the inflammatory marker CRP and PDCAI at all time points. CONCLUSION In children with CD, IFX therapy decreases the expression of serum and faecal miR-126 and miR-20a, suggesting an involvement of these two miRNAs in the action of the drug.
Collapse
Affiliation(s)
- Marianna Casertano
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
- Department of Translational Medical Science, Section of Pediatrics, University of Naples "Federico II", Naples, Italy
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sabrina Cenni
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mara Creoli
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Erasmo Miele
- Department of Translational Medical Science, Section of Pediatrics, University of Naples "Federico II", Naples, Italy
| | - Massimo Martinelli
- Department of Translational Medical Science, Section of Pediatrics, University of Naples "Federico II", Naples, Italy
| | - Caterina Claudia Lepre
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- PhD Course in Translational Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marina Russo
- PhD Course of National Interest in Public Administration and Innovation for Disability and Social Inclusion, Department of Mental, Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- School of Pharmacology and Clinical Toxicology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Roberto Alfano
- Department of Advanced Medical and Surgical Sciences "DAMSS", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele D'Amico
- Therapeutic Monitoring Unit for Biological Drugs, UOC Clinic Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Caterina Strisciuglio
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
12
|
Puca P, Capobianco I, Coppola G, Di Vincenzo F, Trapani V, Petito V, Laterza L, Pugliese D, Lopetuso LR, Scaldaferri F. Cellular and Molecular Determinants of Biologic Drugs Resistance and Therapeutic Failure in Inflammatory Bowel Disease. Int J Mol Sci 2024; 25:2789. [PMID: 38474034 DOI: 10.3390/ijms25052789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The advent of biologic drugs has revolutionized the treatment of Inflammatory Bowel Disease, increasing rates of response and mucosal healing in comparison to conventional therapies by allowing the treatment of corticosteroid-refractory cases and reducing corticosteroid-related side effects. However, biologic therapies (anti-TNFα inhibitors, anti-α4β7 integrin and anti-IL12/23) are still burdened by rates of response that hover around 40% (in biologic-naïve patients) or lower (for biologic-experienced patients). Moreover, knowledge of the mechanisms underlying drug resistance or loss of response is still scarce. Several cellular and molecular determinants are implied in therapeutic failure; genetic predispositions, in the form of single nucleotide polymorphisms in the sequence of cytokines or Human Leukocyte Antigen, or an altered expression of cytokines and other molecules involved in the inflammation cascade, play the most important role. Accessory mechanisms include gut microbiota dysregulation. In this narrative review of the current and most recent literature, we shed light on the mentioned determinants of therapeutic failure in order to pave the way for a more personalized approach that could help avoid unnecessary treatments and toxicities.
Collapse
Affiliation(s)
- Pierluigi Puca
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ivan Capobianco
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gaetano Coppola
- IBD Unit, UOC CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Federica Di Vincenzo
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Valentina Trapani
- Alleanza Contro il Cancro, Istituto Superiore di Sanità, 00144 Rome, Italy
| | - Valentina Petito
- IBD Unit, UOC CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Lucrezia Laterza
- IBD Unit, UOC CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Daniela Pugliese
- IBD Unit, UOC CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Loris Riccardo Lopetuso
- IBD Unit, UOC CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Franco Scaldaferri
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- IBD Unit, UOC CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
13
|
Abdelazim SA, Shaker OG, Ali O, El-Tawil M, Senousy MA. Differential expression of serum miR-486 and miR-25 in ulcerative colitis and Crohn's disease: Correlations with disease activity, extent, and location. Pathol Res Pract 2023; 252:154910. [PMID: 37939427 DOI: 10.1016/j.prp.2023.154910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
Novel reliable biomarkers of inflammatory bowel disease (IBD) are clinically imperative due to potential limitations of endoscopic techniques. MicroRNAs (miRNAs) have emerged as non-invasive biomarkers of IBD; however, the full disease-specific miRNAs signature for IBD subtypes remains elusive. We evaluated the diagnostic role of circulating miR-486 and miR-25 in IBD patients and their potential ability to discriminate IBD subtypes; ulcerative colitis (UC) and Crohn's disease (CD). Sixty UC patients, 60 CD patients, and 60 healthy controls were recruited. Serum miRNA expression was determined using RT-qPCR. Bioinformatics was employed for target gene and protein-protein interaction (PPI) network analyses. Serum miR-486 was upregulated in CD patients, but didn't change in UC patients compared to controls. Conversely, serum miR-25 was decreased in both CD and UC patients compared to controls. Only miR-486 was differentially expressed between UC and CD patients. Receiver-operating characteristic analysis revealed that serum miR-486 was superior in CD diagnosis (AUC=0.945) and significantly distinguished CD and UC patients, whereas miR-25 showed discriminative potential for both UC and CD from controls. In the multivariate logistic analysis only miR-486 was associated with the risk of CD diagnosis. Serum miR-486 was correlated with CD activity index and location of disease in CD patients, whereas miR-25 was correlated with the type/extent of UC. PPI network analysis revealed common target genes and signaling pathways for both miRNAs. Conclusively, serum miR-486 and miR-25 might serve as new biomarkers of IBD, with serum miR-486 could be employed in risk stratification of IBD subtypes and has the ground for clinical utility in CD diagnosis, whereas miR-25 has potential for UC and CD diagnosis.
Collapse
Affiliation(s)
- Samy A Abdelazim
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Olfat G Shaker
- Medical Biochemistry and Molecular Biology department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Omaima Ali
- Department of Biochemistry, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia 41636, Egypt; General division for Biological Control and Research, Egyptian Drug Authority, Cairo 12618 Egypt
| | - Mai El-Tawil
- Neurology department, Kasr Al-Ainy Hospital, Cairo, Egypt
| | - Mahmoud A Senousy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt
| |
Collapse
|
14
|
McCormack NM, Calabrese KA, Sun CM, Tully CB, Heier CR, Fiorillo AA. Deletion of miR-146a enhances therapeutic protein restoration in model of dystrophin exon skipping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540042. [PMID: 37214870 PMCID: PMC10197665 DOI: 10.1101/2023.05.09.540042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle disease caused by the absence of dystrophin protein. One current DMD therapeutic strategy, exon skipping, produces a truncated dystrophin isoform using phosphorodiamidate morpholino oligomers (PMOs). However, the potential of exon skipping therapeutics has not been fully realized as increases in dystrophin protein have been minimal in clinical trials. Here, we investigate how miR-146a-5p, which is highly elevated in dystrophic muscle, impacts dystrophin protein levels. We find inflammation strongly induces miR-146a in dystrophic, but not wild-type myotubes. Bioinformatics analysis reveals that the dystrophin 3'UTR harbors a miR-146a binding site, and subsequent luciferase assays demonstrate miR-146a binding inhibits dystrophin translation. In dystrophin-null mdx52 mice, co-injection of miR-146a reduces dystrophin restoration by an exon 51 skipping PMO. To directly investigate how miR-146a impacts therapeutic dystrophin rescue, we generated mdx52 with body-wide miR-146a deletion (146aX). Administration of an exon skipping PMO via intramuscular or intravenous injection markedly increases dystrophin protein levels in 146aX versus mdx52 muscles; skipped dystrophin transcript levels are unchanged, suggesting a post-transcriptional mechanism-of-action. Together, these data show that miR-146a expression opposes therapeutic dystrophin restoration, suggesting miR-146a inhibition warrants further research as a potential DMD exon skipping co-therapy.
Collapse
Affiliation(s)
- Nikki M. McCormack
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
| | - Kelsey A. Calabrese
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
| | - Christina M. Sun
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
| | - Christopher B. Tully
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
| | - Christopher R. Heier
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Alyson A. Fiorillo
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
15
|
McCormack NM, Nguyen NY, Tully CB, Oliver T, Fiorillo AA, Heier CR. Vamorolone improves Becker muscular dystrophy and increases dystrophin protein in bmx model mice. iScience 2023; 26:107161. [PMID: 37534133 PMCID: PMC10391915 DOI: 10.1016/j.isci.2023.107161] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 08/04/2023] Open
Abstract
There is no approved therapy for Becker muscular dystrophy (BMD), a genetic muscle disease caused by in-frame dystrophin deletions. We previously developed the dissociative corticosteroid vamorolone for treatment of the allelic, dystrophin-null disease Duchenne muscular dystrophy. We hypothesize vamorolone can treat BMD by safely reducing inflammatory signaling in muscle and through a novel mechanism of increasing dystrophin protein via suppression of dystrophin-targeting miRNAs. Here, we test this in the bmx mouse model of BMD. Daily oral treatment with vamorolone or prednisolone improves bmx grip strength and hang time phenotypes. Both drugs reduce myofiber size and decrease the percentage of centrally nucleated fibers. Vamorolone shows improved safety versus prednisolone by avoiding or reducing key side effects to behavior and growth. Intriguingly, vamorolone increases dystrophin protein in both heart and skeletal muscle. These data indicate that vamorolone, nearing approval for Duchenne, shows efficacy in bmx mice and therefore warrants clinical investigation in BMD.
Collapse
Affiliation(s)
- Nikki M. McCormack
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| | - Nhu Y. Nguyen
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| | - Christopher B. Tully
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| | - Trinitee Oliver
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
- Department of Biology, Howard University, Washington, DC, USA
| | - Alyson A. Fiorillo
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, USA
| | - Christopher R. Heier
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, USA
| |
Collapse
|
16
|
Shen P, Yu J, Yan C, Yang D, Tong C, Wang X. Analysis of differentially expressed microRNAs in bovine mammary epithelial cells treated with lipoteichoic acid. J Anim Physiol Anim Nutr (Berl) 2023; 107:463-474. [PMID: 35997417 DOI: 10.1111/jpn.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
Mastitis is one of the most common diseases of dairy cattle and can be caused by physical stress, chemicals and microbial infection. Staphylococcus aureus is the most common pathogens that induce mastitis in dairy cattle. In this study, bovine mammary epithelial cells (BMECs) were treated either with lipoteichoic acid (LTA, 30 µg/ml) or 1 × phosphate-buffer saline (PBS, control) and RNA-Seq was applied to explore the effect of LTA on the expression microRNAs (miRNAs) in BMECs. Compared to the control group, 43 miRNAs were significantly up-regulated and eight miRNAs were significantly down-regulated. Additionally, 724 genes were significantly up-regulated and 13 genes were significantly down-regulated in LTA group relative to the control group. Bta-miR-196a, bta-miR-2285aj-5p, bta-miR-143, bta-miR-2433, bta-miR-2284f and bta-miR-2368-3p were selected from 51 differentially expressed miRNAs and are discussed in this manuscript. Target gene prediction revealed that the target genes of these six miRNAs were all differentially expressed, including MT1E, SPDYA, FGL1, TLR2, PAPOLG, ZDHHC17 and SMC4. Subsequently, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the target genes with differentially expressed miRNAs were enriched in mitogen-activated protein kinase (MAPK) signalling pathway, rheumatoid arthritis and cancer. Therefore, the results of this study provided new evidences for the molecular mechanism of LTA-induced mastitis, which may provide new targets for the diagnosis and treatment of mastitis in dairy cattle.
Collapse
Affiliation(s)
- Puxiu Shen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jingcheng Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chenbo Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dexin Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chao Tong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xinzhuang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
17
|
Sakurai T, Saruta M. Positioning and Usefulness of Biomarkers in Inflammatory Bowel Disease. Digestion 2023; 104:30-41. [PMID: 36404714 PMCID: PMC9843547 DOI: 10.1159/000527846] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Mucosal healing (MH) was proposed to be an ideal treatment goal for patients with inflammatory bowel disease (IBD). Instead of endoscopy to confirm MH, biomarkers are frequently used and have become an indispensable modality for the clinical examination of patients with IBD. SUMMARY Common biomarkers of IBD include C-reactive protein (CRP), erythrocyte sedimentation rate, antineutrophil cytoplasmic antibodies, anti-Saccharomyces cerevisiae antibodies, leucine-rich α2 glycoprotein, fecal calprotectin (FCP), and the fecal immunochemical test. Biomarkers play five major roles in the management of IBD: (1) diagnosing and distinguishing between IBD and non-IBD or ulcerative colitis and Crohn's disease; (2) predicting treatment response, especially before administrating biologics; (3) monitoring and grasping endoscopic or histological disease activity; (4) replacing endoscopy for diagnosing MH, including endoscopic and histological remission; and (5) predicting recurrence before disease activity appears through symptoms. Many reports have demonstrated the usefulness of CRP and FCP for those five roles; however, they have limitations for diagnosing MH or predicting treatment response. In general, FCP has better ability in those positions than CRP; additionally, leucine-rich α2 glycoprotein can diagnose endoscopic disease activity better than CRP. The novel biomarker, prostaglandin E-major urinary metabolite, and anti-αvβ6 antibody are expected to be noninvasive and reliable biomarkers; however, more evidence is required for future studies. Oncostatin M and microRNA are also prospects, in addition to other familiar and novel biomarkers. KEY MESSAGES Each biomarker has a useful feature; therefore, we should consider their features and use appropriate biomarkers for the five roles to enable noninvasive and smooth management of IBD.
Collapse
|
18
|
Ahmed SA, Mendonca P, Elhag R, Soliman KFA. Anticancer Effects of Fucoxanthin through Cell Cycle Arrest, Apoptosis Induction, Angiogenesis Inhibition, and Autophagy Modulation. Int J Mol Sci 2022; 23:16091. [PMID: 36555740 PMCID: PMC9785196 DOI: 10.3390/ijms232416091] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer accounts for one in seven deaths worldwide and is the second leading cause of death in the United States, after heart disease. One of the standard cancer treatments is chemotherapy which sometimes can lead to chemoresistance and treatment failure. Therefore, there is a great need for novel therapeutic approaches to treat these patients. Novel natural products have exhibited anticancer effects that may be beneficial in treating many kinds of cancer, having fewer side effects, low toxicity, and affordability. Numerous marine natural compounds have been found to inhibit molecular events and signaling pathways associated with various stages of cancer development. Fucoxanthin is a well-known marine carotenoid of the xanthophyll family with bioactive compounds. It is profusely found in brown seaweeds, providing more than 10% of the total creation of natural carotenoids. Fucoxanthin is found in edible brown seaweed macroalgae such as Undaria pinnatifida, Laminaria japonica, and Eisenia bicyclis. Many of fucoxanthin's pharmacological properties include antioxidant, anti-tumor, anti-inflammatory, antiobesity, anticancer, and antihypertensive effects. Fucoxanthin inhibits many cancer cell lines' proliferation, angiogenesis, migration, invasion, and metastasis. In addition, it modulates miRNA and induces cell cycle growth arrest, apoptosis, and autophagy. Moreover, the literature shows fucoxanthin's ability to inhibit cytokines and growth factors such as TNF-α and VEGF, which stimulates the activation of downstream signaling pathways such as PI3K/Akt autophagy, and pathways of apoptosis. This review highlights the different critical mechanisms by which fucoxanthin inhibits diverse cancer types, such as breast, prostate, gastric, lung, and bladder development and progression. Moreover, this article reviews the existing literature and provides critical supportive evidence for fucoxanthin's possible therapeutic use in cancer.
Collapse
Affiliation(s)
- Shade’ A. Ahmed
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| | - Patricia Mendonca
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA
| | - Rashid Elhag
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
19
|
Boros É, Hegedűs Z, Kellermayer Z, Balogh P, Nagy I. Global alteration of colonic microRNAome landscape associated with inflammatory bowel disease. Front Immunol 2022; 13:991346. [PMID: 36177008 PMCID: PMC9513375 DOI: 10.3389/fimmu.2022.991346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is characterized by chronic inflammation of the gastrointestinal tract that associates with, among others, increased risk of colorectal cancer. There is a growing evidence that miRNAs have important roles in pathological processes, such as inflammation or carcinogenesis. Understanding the molecular mechanisms such as alterations in microRNAome upon chronic intestinal inflammation is critical for understanding the exact pathomechanism of IBD. Hence, we conducted a genome wide microRNAome analysis by applying miRNA-Seq in a rat model of experimental colitis, validated the data by QPCR, examined the expression of a selection of precursor and mature miRNAs, performed in depth biological interpretation using Ingenuity Pathway Analysis and tested the obtained results on samples derived from human patients. We identified specific, interdependent expression pattern of activator/repressor transcription factors, miRNAs and their direct targets in the inflamed colon samples. Particularly, decreased expression of the miR-200 family members (miR-200a/b/c,-141, and -429) and miR-27b correlates with the reduced level of their enhancers (HNF1B, E2F1), elevated expression of their repressors (ZEB2, NFKB1) and increased expression of their target genes (ZEB2, RUNX1). Moreover, the marked upregulation of six miR-27b target genes (IFI16, GCA, CYP1B1, RUNX1, MEF2C and MMP13) in the inflamed colon tissues is a possible direct consequence of the lack of repression due to the downregulated miRNA-27b expression. Our data indicate that changes in microRNAome are associated with the pathophysiology of IBD, consequently, microRNAs offer potential targets for the diagnosis, prognosis and treatment of IBD.
Collapse
Affiliation(s)
- Éva Boros
- Seqomics Biotechnology Ltd., Mórahalom, Hungary
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Zoltán Hegedűs
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Zoltán Kellermayer
- Department of Immunology and Biotechnology, University of Pécs, Pécs, Hungary
- Lymphoid Organogenesis Research Group, Szentágothai János Research Center, University of Pécs, Pécs, Hungary
| | - Péter Balogh
- Department of Immunology and Biotechnology, University of Pécs, Pécs, Hungary
- Lymphoid Organogenesis Research Group, Szentágothai János Research Center, University of Pécs, Pécs, Hungary
| | - István Nagy
- Seqomics Biotechnology Ltd., Mórahalom, Hungary
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| |
Collapse
|
20
|
Li Y, Tan S, Shen Y, Guo L. miR‑146a‑5p negatively regulates the IL‑1β‑stimulated inflammatory response via downregulation of the IRAK1/TRAF6 signaling pathway in human intestinal epithelial cells. Exp Ther Med 2022; 24:615. [PMID: 36160881 PMCID: PMC9468834 DOI: 10.3892/etm.2022.11552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/28/2022] [Indexed: 11/09/2022] Open
Abstract
The primary pathophysiological alteration caused by inflammatory bowel disease (IBD) is prolonged, excessive inflammatory response to stimulation factors, which leads to intestinal mucosal lesions. microRNA (miR)-146a-5p is broadly activated in the mucosal immune response. At present, the biogenesis, function and role of miR-146a-5p in intestinal epithelial cells (IECs) during the pathogenesis of IBD remain elusive. The human colon cancer epithelial Caco-2 cell line was cultured with 10 ng/ml recombinant human IL-1β for 3 h to establish an in vitro IECs inflammatory model. Relative levels of miR-146a-5p and inflammatory factors (IL-6, IL-1β, TNF-α and IP-10) were measured by reverse transcription-quantitative PCR (RT-qPCR) and western blotting. Transfection of miR-146a-5p mimic or inhibitor into Caco-2 cells was performed to identify the influence of miR-146a-5p on Caco-2 cell inflammatory factors expression. The targeting relationship between miR-146a-5p and interleukin 1 receptor associated kinase 1 (IRAK1)/tumor necrosis factor receptor-associated factor 6 (TRAF6) was predicted by TargetScan 8.0. The present study demonstrated that miR-146a-5p and inflammatory factors (IL-6, IL-1β, TNF-α and IP-10) were upregulated in a dose- and time-dependent manner in IL-1β-stimulated Caco-2 cells. Moreover, upregulation of miR-146a-5p negatively regulated the expression of inflammatory factors, but the downregulation of miR-146a-5p increased their expression. The results of the present study demonstrated that miR-146a-5p decreased the expression of the inflammatory factors through targeted downregulation of IRAK1/TRAF6. These results suggest that miR-146a-5p negatively regulates the IL-1β-stimulated inflammatory response via downregulation of the IRAK1/TRAF6 signaling pathway in human IECs. Therefore, miR-146a-5p may act as an important diagnostic biomarker and treatment target of IBD.
Collapse
Affiliation(s)
- Yanli Li
- Department of Medical Microbiology and Immunology, College of Basic Medicine, Dali University, Dali, Yunnan 671003, P.R. China
| | - Shilian Tan
- Department of Medical Microbiology and Immunology, College of Basic Medicine, Dali University, Dali, Yunnan 671003, P.R. China
| | - Yuanying Shen
- Department of Medical Microbiology and Immunology, College of Basic Medicine, Dali University, Dali, Yunnan 671003, P.R. China
| | - Le Guo
- Department of Medical Microbiology and Immunology, College of Basic Medicine, Dali University, Dali, Yunnan 671003, P.R. China
| |
Collapse
|
21
|
MicroRNAs as Innovative Biomarkers for Inflammatory Bowel Disease and Prediction of Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23147991. [PMID: 35887337 PMCID: PMC9318064 DOI: 10.3390/ijms23147991] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) includes ulcerative colitis (UC) and Crohn’s disease (CD). These are autoimmune diseases of the gastrointestinal tract with a chronic relapsing and remitting course. Due to complex interactions between multiple factors in the etiology of IBD, the discovery of new predictors of disease course and response to therapy, and the development of effective therapies is a significant challenge. The dysregulation of microRNAs (miRNAs), a class of conserved endogenous, small non-coding RNA molecules with a length of 18–25 nucleotides, that regulate gene expression by an RNA interference process, is implicated in the complex pathogenetic context of IBD. Both tissue-derived, circulating, and fecal microRNAs have been explored as promising biomarkers in the diagnosis and the prognosis of disease severity of IBD. In this review, we summarize the expressed miRNA profile in blood, mucosal tissue, and stool and highlight the role of miRNAs as biomarkers with potential diagnostic and therapeutic applications in ulcerative colitis and Crohn’s disease. Moreover, we discuss the new perspectives in developing a new screening model for the detection of colorectal cancer (CRC) based on fecal miRNAs.
Collapse
|
22
|
Vieujean S, Caron B, Haghnejad V, Jouzeau JY, Netter P, Heba AC, Ndiaye NC, Moulin D, Barreto G, Danese S, Peyrin-Biroulet L. Impact of the Exposome on the Epigenome in Inflammatory Bowel Disease Patients and Animal Models. Int J Mol Sci 2022; 23:7611. [PMID: 35886959 PMCID: PMC9321337 DOI: 10.3390/ijms23147611] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory disorders of the gastrointestinal tract that encompass two main phenotypes, namely Crohn's disease and ulcerative colitis. These conditions occur in genetically predisposed individuals in response to environmental factors. Epigenetics, acting by DNA methylation, post-translational histones modifications or by non-coding RNAs, could explain how the exposome (or all environmental influences over the life course, from conception to death) could influence the gene expression to contribute to intestinal inflammation. We performed a scoping search using Medline to identify all the elements of the exposome that may play a role in intestinal inflammation through epigenetic modifications, as well as the underlying mechanisms. The environmental factors epigenetically influencing the occurrence of intestinal inflammation are the maternal lifestyle (mainly diet, the occurrence of infection during pregnancy and smoking); breastfeeding; microbiota; diet (including a low-fiber diet, high-fat diet and deficiency in micronutrients); smoking habits, vitamin D and drugs (e.g., IBD treatments, antibiotics and probiotics). Influenced by both microbiota and diet, short-chain fatty acids are gut microbiota-derived metabolites resulting from the anaerobic fermentation of non-digestible dietary fibers, playing an epigenetically mediated role in the integrity of the epithelial barrier and in the defense against invading microorganisms. Although the impact of some environmental factors has been identified, the exposome-induced epimutations in IBD remain a largely underexplored field. How these environmental exposures induce epigenetic modifications (in terms of duration, frequency and the timing at which they occur) and how other environmental factors associated with IBD modulate epigenetics deserve to be further investigated.
Collapse
Affiliation(s)
- Sophie Vieujean
- Hepato-Gastroenterology and Digestive Oncology, University Hospital CHU of Liège, 4000 Liege, Belgium;
| | - Bénédicte Caron
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| | - Vincent Haghnejad
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| | - Jean-Yves Jouzeau
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Patrick Netter
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Anne-Charlotte Heba
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), National Institute of Health and Medical Research, University of Lorraine, F-54000 Nancy, France; (A.-C.H.); (N.C.N.)
| | - Ndeye Coumba Ndiaye
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), National Institute of Health and Medical Research, University of Lorraine, F-54000 Nancy, France; (A.-C.H.); (N.C.N.)
| | - David Moulin
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Guillermo Barreto
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Universidad de la Salud del Estado de Puebla, Puebla 72000, Mexico
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and University Vita-Salute San Raffaele, 20132 Milan, Italy;
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| |
Collapse
|
23
|
Wu J, Wu Y, Feng W, Chen Q, Wang D, Liu M, Yu H, Zhang Y, Wang T. Role of Microbial Metabolites of Histidine in the Development of Colitis. Mol Nutr Food Res 2022; 66:e2101175. [PMID: 35585003 DOI: 10.1002/mnfr.202101175] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/17/2022] [Indexed: 12/31/2022]
Abstract
SCOPE Colitis is a chronic relapsing inflammatory disease of colon. Clinical studies show that meat-rich diet plays a critical role in the relapse of colitis. However, it is unclear whether the microbial metabolites of histidine, which is an amino acid widely found in meat, have an impact on the health of the intestine. METHODS AND RESULTS Six metabolites of histidine are given to IEC-6 cells. The cell activity measurement shows that imidazole propionate (IMP) is the most detrimental metabolite. Then, IMP is injected to mice by rectal administration, with blood and colon tissues collected for the measurement of colitis related parameters. The results show that treatment with IMP significantly increased NF-κB, iNOS, and IL-6, decreased number of goblet cell, and inhibited expressions of miR-146b. However, overexpression of miR-146b in mice rescues the decline of the physical condition. Additionally, Notch receptor 1 (Notch1) is identified as a target gene of miR-146b. Further analysis shows that miR-146b restored the abundance of goblet cells by regulating Notch1 signaling pathway. CONCLUSION IMP is able to induce intestinal inflammation, impairs the intestinal barrier, and affects the proliferation of goblet cells. The underlined mechanism may partially contribute to the dysregulation of miR-146b/Notch1 axis.
Collapse
Affiliation(s)
- Jiaqi Wu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae (Tianjin University of Traditional Chinese Medicine), Ministry of Education, 312 Anshanxi Road, Nankai District, Tianjin, 300193, China
| | - Yuzheng Wu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae (Tianjin University of Traditional Chinese Medicine), Ministry of Education, 312 Anshanxi Road, Nankai District, Tianjin, 300193, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China
| | - Wen Feng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae (Tianjin University of Traditional Chinese Medicine), Ministry of Education, 312 Anshanxi Road, Nankai District, Tianjin, 300193, China
| | - Qian Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae (Tianjin University of Traditional Chinese Medicine), Ministry of Education, 312 Anshanxi Road, Nankai District, Tianjin, 300193, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China
| | - Dan Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae (Tianjin University of Traditional Chinese Medicine), Ministry of Education, 312 Anshanxi Road, Nankai District, Tianjin, 300193, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China
| | - Mengyang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae (Tianjin University of Traditional Chinese Medicine), Ministry of Education, 312 Anshanxi Road, Nankai District, Tianjin, 300193, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae (Tianjin University of Traditional Chinese Medicine), Ministry of Education, 312 Anshanxi Road, Nankai District, Tianjin, 300193, China
| | - Yi Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine. 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae (Tianjin University of Traditional Chinese Medicine), Ministry of Education, 312 Anshanxi Road, Nankai District, Tianjin, 300193, China
| |
Collapse
|
24
|
Elhag DA, Kumar M, Saadaoui M, Akobeng AK, Al-Mudahka F, Elawad M, Al Khodor S. Inflammatory Bowel Disease Treatments and Predictive Biomarkers of Therapeutic Response. Int J Mol Sci 2022; 23:ijms23136966. [PMID: 35805965 PMCID: PMC9266456 DOI: 10.3390/ijms23136966] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 02/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic immune-mediated inflammation of the gastrointestinal tract with a highly heterogeneous presentation. It has a relapsing and remitting clinical course that necessitates lifelong monitoring and treatment. Although the availability of a variety of effective therapeutic options including immunomodulators and biologics (such as TNF, CAM inhibitors) has led to a paradigm shift in the treatment outcomes and clinical management of IBD patients, some patients still either fail to respond or lose their responsiveness to therapy over time. Therefore, according to the recent Selecting Therapeutic Targets in Inflammatory Bowel Disease (STRIDE-II) recommendations, continuous disease monitoring from symptomatic relief to endoscopic healing along with short- and long-term therapeutic responses are critical for providing IBD patients with a tailored therapy algorithm. Moreover, considering the high unmet need for novel therapeutic approaches for IBD patients, various new modulators of cytokine signaling events (for example, JAK/TYK inhibitors), inhibitors of cytokines (for example IL-12/IL-23, IL-22, IL-36, and IL-6 inhibitors), anti-adhesion and migration strategies (for example, β7 integrin, sphingosine 1-phosphate receptors, and stem cells), as well as microbial-based therapeutics to decolonize the bed buds (for example, fecal microbiota transplantation and bacterial inhibitors) are currently being evaluated in different phases of controlled clinical trials. This review aims to offer a comprehensive overview of available treatment options and emerging therapeutic approaches for IBD patients. Furthermore, predictive biomarkers for monitoring the therapeutic response to different IBD therapies are also discussed.
Collapse
Affiliation(s)
- Duaa Ahmed Elhag
- Research Department, Sidra Medicine, Doha 26999, Qatar; (D.A.E.); (M.K.); (M.S.)
| | - Manoj Kumar
- Research Department, Sidra Medicine, Doha 26999, Qatar; (D.A.E.); (M.K.); (M.S.)
| | - Marwa Saadaoui
- Research Department, Sidra Medicine, Doha 26999, Qatar; (D.A.E.); (M.K.); (M.S.)
| | - Anthony K. Akobeng
- Division of Gastroenterology, Hepatology and Nutrition, Sidra Medicine, Doha 26999, Qatar; (A.K.A.); (F.A.-M.); (M.E.)
| | - Fatma Al-Mudahka
- Division of Gastroenterology, Hepatology and Nutrition, Sidra Medicine, Doha 26999, Qatar; (A.K.A.); (F.A.-M.); (M.E.)
| | - Mamoun Elawad
- Division of Gastroenterology, Hepatology and Nutrition, Sidra Medicine, Doha 26999, Qatar; (A.K.A.); (F.A.-M.); (M.E.)
| | - Souhaila Al Khodor
- Research Department, Sidra Medicine, Doha 26999, Qatar; (D.A.E.); (M.K.); (M.S.)
- Correspondence:
| |
Collapse
|
25
|
Luceri C, D’Ambrosio M, Bigagli E, Cinci L, Russo E, Staderini F, Cricchio M, Giudici F, Scaringi S. Involvement of MIR-126 and MMP9 in the Pathogenesis of Intra-Abdominal Fistulizing Crohn’s Disease: A Brief Research Report. Front Surg 2022; 9:822407. [PMID: 35620197 PMCID: PMC9127299 DOI: 10.3389/fsurg.2022.822407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/22/2022] [Indexed: 11/15/2022] Open
Abstract
Background Intra-abdominal fistulas are complications that affect a significant proportion of Crohn’s disease patients, often requiring surgery. The aim of the present work was to correlate the occurrence of intestinal fistulization to the clinico-pathological features of these patients and to the plasma levels of MMP9, a gelatinase involved in the pathophysiology of fistula formation, and of miR-126, appearing to modulate MMP9 expression. Methods In a series of 31 consecutive Crohn’s patients admitted to surgery due to therapeutic failure and/or complicated disease, we identified nine cases of abdominal fistulas, mainly entero-enteric fistulas. MMP9 protein was determined in plasma and at the intestinal level using immunometric assays. Circulating miR-126 was also measured in all plasma samples by real-time PCR. Results Comparing patients with and without intra-abdominal fistulas, we did not observe differences in terms of age, gender, disease location and duration, number of previous surgeries and pre-biologic medications. However, cases with intra-abdominal fistulas had a significantly higher CDAI (p < 0.0001) and a significantly lower circulating miR-126 (p < 0.05). Patients with intra-abdominal fistulas had also a significantly higher amount of circulating MMP9 (p < 0.0001) and this data was correlated with an increased expression of MMP9 protein in the mucosa and with reduced levels of circulating miR-126. Receiver operating characteristic (ROC) analysis pointed out the ability of circulating MMP9 to discriminate patients with and without intra-abdominal fistulas. Conclusions These data confirm that circulating MMP9 can be used for the identification of cases with intra-abdominal fistulas and suggest that miR-126 may be also involved in the pathogenesis of this complication and that it may be further investigated as a new therapeutic strategy or for monitoring therapeutic response in these patients.
Collapse
Affiliation(s)
- Cristina Luceri
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Mario D’Ambrosio
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Elisabetta Bigagli
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Lorenzo Cinci
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Edda Russo
- Department of Surgery and Translational Medicine, Section of Surgery, University of Florence, Florence, Italy
- Surgical Unit, Careggi Teaching Hospital, Florence, Italy
| | - Fabio Staderini
- Department of Surgery and Translational Medicine, Section of Surgery, University of Florence, Florence, Italy
- Surgical Unit, Careggi Teaching Hospital, Florence, Italy
| | - Marta Cricchio
- Department of Surgery and Translational Medicine, Section of Surgery, University of Florence, Florence, Italy
- Surgical Unit, Careggi Teaching Hospital, Florence, Italy
| | - Francesco Giudici
- Department of Surgery and Translational Medicine, Section of Surgery, University of Florence, Florence, Italy
- Surgical Unit, Careggi Teaching Hospital, Florence, Italy
- Correspondence: Francesco Giudici
| | - Stefano Scaringi
- Department of Surgery and Translational Medicine, Section of Surgery, University of Florence, Florence, Italy
- Surgical Unit, Careggi Teaching Hospital, Florence, Italy
| |
Collapse
|
26
|
Gasparetto M, Strisciuglio C, Assa A, Gerasimidis K, Giachero F, Novak J, Robinson P, Tél B, Zilbauer M, Jenke A. Making Research Flourish Through ESPGHAN: A Position Paper From the ESPGHAN Special Interest Group for Basic and Translational Research. J Pediatr Gastroenterol Nutr 2022; 74:301-312. [PMID: 34310437 DOI: 10.1097/mpg.0000000000003250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
ABSTRACT Recent research breakthroughs have emerged from applied basic research throughout all scientific areas, including adult and paediatric gastroenterology, hepatology and nutrition (PGHAN). The research landscape within the European Society of Paediatric Gastroenterology and Nutrition (ESPGHAN) is also inevitably changing from clinical research to studies involving applied laboratory research. This position paper aims to depict the current status quo of basic science and translational research within ESPGHAN, and to delineate how the society could invest in research in the present and future time. The paper also explores which research areas in the field of PGHAN represent the current and future priorities, and what type of support is needed across the ESPGHAN working groups (WGs) and special interest groups (SIGs) to fulfil their research goals.
Collapse
Affiliation(s)
- Marco Gasparetto
- Royal London Children's Hospital, Barts Health NHS Trust, London, UK
| | - Caterina Strisciuglio
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Amit Assa
- Department of Pediatrics, Assuta Ashdod University Hospital, Ashdod, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Federica Giachero
- Clinical, Molecular, Genetics and Epigenetics Faculty of Health, Center for Biochemical Education and Research (ZBAF), Witten-Herdecke University, Witten; Evangelisches Krankenhaus Oberhausen, Children's Hospital, Paediatrics, Oberhausen, Germany
| | - Jan Novak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Philip Robinson
- Wellcome Sanger Institute, Cambridge; Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Bálint Tél
- Semmelweis University, 1st Department of Paediatrics, Budapest, Hungary
| | - Matthias Zilbauer
- University Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Andreas Jenke
- Children's Hospital Kassel, Witten/Herdecke University, Kassel, Germany
| |
Collapse
|
27
|
Xu J, Xu HM, Yang MF, Liang YJ, Peng QZ, Zhang Y, Tian CM, Wang LS, Yao J, Nie YQ, Li DF. New Insights Into the Epigenetic Regulation of Inflammatory Bowel Disease. Front Pharmacol 2022; 13:813659. [PMID: 35173618 PMCID: PMC8841592 DOI: 10.3389/fphar.2022.813659] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/06/2022] [Indexed: 01/10/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the colonic mucosa. Environmental factors, genetics, intestinal microbiota, and the immune system are all involved in the pathophysiology of IBD. Lately, accumulating evidence has shown that abnormal epigenetic changes in DNA methylation, histone markers, and non-coding RNA expression greatly contribute to the development of the entire disease. Epigenetics regulates many functions, such as maintaining the homeostasis of the intestinal epithelium and regulating the immune system of the immune cells. In the present study, we systematically summarized the latest advances in epigenetic modification of IBD and how epigenetics reveals new mechanisms of IBD. Our present review provided new insights into the pathophysiology of IBD. Moreover, exploring the patterns of DNA methylation and histone modification through epigenetics can not only be used as biomarkers of IBD but also as a new target for therapeutic intervention in IBD patients.
Collapse
Affiliation(s)
- Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hao-ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Mei-feng Yang
- Department of Hematology, Yantian District People’s Hospital, Shenzhen, China
| | | | - Quan-zhou Peng
- Department of Pathology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, China
| | - Cheng-mei Tian
- Department of Emergency, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Li-sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- *Correspondence: De-feng Li, ; Li-sheng Wang, ; Jun Yao, ; Yu-qiang Nie,
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- *Correspondence: De-feng Li, ; Li-sheng Wang, ; Jun Yao, ; Yu-qiang Nie,
| | - Yu-qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: De-feng Li, ; Li-sheng Wang, ; Jun Yao, ; Yu-qiang Nie,
| | - De-feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- *Correspondence: De-feng Li, ; Li-sheng Wang, ; Jun Yao, ; Yu-qiang Nie,
| |
Collapse
|
28
|
Li QQ, Zhang HH, Dai SX. New Insights and Advances in Pathogenesis and Treatment of Very Early Onset Inflammatory Bowel Disease. Front Pediatr 2022; 10:714054. [PMID: 35299671 PMCID: PMC8921506 DOI: 10.3389/fped.2022.714054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/25/2022] [Indexed: 12/26/2022] Open
Abstract
Very early onset inflammatory bowel disease (VEO-IBD) is characterized by multifactorial chronic recurrent intestinal inflammation. Compared with elderly patients, those with VEO-IBD have a more serious condition, not responsive to conventional treatments, with a poor prognosis. Recent studies found that genetic and immunologic abnormalities are closely related to VEO-IBD. Intestinal immune homeostasis monogenic defects (IIHMDs) are changed through various mechanisms. Recent studies have also revealed that abnormalities in genes and immune molecular mechanisms are closely related to VEO-IBD. IIHMDs change through various mechanisms. Epigenetic factors can mediate the interaction between the environment and genome, and genetic factors and immune molecules may be involved in the pathogenesis of the environment and gut microbiota. These discoveries will provide new directions and ideas for the treatment of VEO-IBD.
Collapse
Affiliation(s)
- Qi-Qi Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hui-Hong Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Shi-Xue Dai
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Gastroenterology, Guangdong Provincial Geriatrics Institute, National Key Clinical Specialty, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, South China University of Technology, Guangzhou, China
| |
Collapse
|
29
|
Salvador-Martín S, Melgarejo-Ortuño A, López-Fernández LA. Biomarkers for Optimization and Personalization of Anti-TNFs in Pediatric Inflammatory Bowel Disease. Pharmaceutics 2021; 13:pharmaceutics13111786. [PMID: 34834201 PMCID: PMC8617733 DOI: 10.3390/pharmaceutics13111786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022] Open
Abstract
The use of biological drugs has improved outcomes in pediatric inflammatory bowel disease (IBD). Prediction of the response to biological drugs would be extremely useful in IBD, and even more so in children, who are still growing physically and psychologically. Specific clinical, biochemical, and genetic parameters are considered predictive of response to biological drugs, although few studies have been carried out in children with IBD. In this review, we present current evidence on biological treatments used in pediatric IBD and the available biomarkers of response. We examine demographics, clinical characteristics, biomarkers (genetic, genomic, and cellular), and microbiota.
Collapse
Affiliation(s)
- Sara Salvador-Martín
- Servicio de Farmacia, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (S.S.-M.); (A.M.-O.)
| | - Alejandra Melgarejo-Ortuño
- Servicio de Farmacia, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (S.S.-M.); (A.M.-O.)
| | - Luis A. López-Fernández
- Servicio de Farmacia, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (S.S.-M.); (A.M.-O.)
- Spanish Clinical Research Network (SCReN), 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
30
|
Zhou J, Liu J, Gao Y, Shen L, Li S, Chen S. miRNA-Based Potential Biomarkers and New Molecular Insights in Ulcerative Colitis. Front Pharmacol 2021; 12:707776. [PMID: 34305614 PMCID: PMC8298863 DOI: 10.3389/fphar.2021.707776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic non-specific inflammatory bowel disease, which usually manifests as abdominal pain, diarrhea and hematochezia. The disease often recurs and is difficult to cure. At present, the pathogenesis is not clear, but it is believed that the disease is caused by a complex interaction among immunity, heredity, environment and intestinal microflora disorders. MicroRNA (miRNA) is endogenous single-stranded non-coding RNA of 17–25 nucleotides (nts). They target the 3'Untranslated Region of a target gene and inhibit or degrade the target gene according to the extent of complementary bases. As important gene expression regulators, miRNAs are involved in regulating the expression of most human genes, and play an important role in the pathogenesis of many autoimmune diseases including UC. Studies in recent years have illustrated that abnormal expression of miRNA occurs very early in disease pathogenesis. Moreover, this abnormal expression is highly related to disease activity of UC and colitis-associated cancer, and involves virtually all key UC-related mechanisms, such as immunity and intestinal microbiota dysregulation. Recently, it was discovered that miRNA is highly stable outside the cell in the form of microvesicles, exosomes or apoptotic vesicles, which raises the possibility that miRNA may serve as a novel diagnostic marker for UC. In this review, we summarize the biosynthetic pathway and the function of miRNA, and summarize the usefulness of miRNA for diagnosis, monitoring and prognosis of UC. Then, we described four types of miRNAs involved in regulating the mechanisms of UC occurrence and development: 1) miRNAs are involved in regulating immune cells; 2) affect the intestinal epithelial cells barrier; 3) regulate the homeostasis between gut microbiota and the host; and 4) participate in the formation of tumor in UC. Altogether, we aim to emphasize the close relationship between miRNA and UC as well as to propose that the field has value for developing potential biomarkers as well as therapeutic targets for UC.
Collapse
Affiliation(s)
- Jing Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jialing Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yangyang Gao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liwei Shen
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sheng Li
- Center for Health Policy & Drug Affairs Operation Management, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Simin Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
31
|
A Comparative In Vitro Evaluation of the Anti-Inflammatory Effects of a Tisochrysis lutea Extract and Fucoxanthin. Mar Drugs 2021; 19:md19060334. [PMID: 34207952 PMCID: PMC8230663 DOI: 10.3390/md19060334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/13/2023] Open
Abstract
In this study, we compared the effects of a Tisochrysis lutea (T. lutea) F&M-M36 methanolic extract with those of fucoxanthin (FX) at equivalent concentration, on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The T. lutea F&M-M36 methanolic extract contained 4.7 mg of FX and 6.22 mg of gallic acid equivalents of phenols per gram. HPLC analysis revealed the presence of simple phenolic acid derivatives. The T. lutea F&M-M36 extract exhibited a potent and concentration-dependent inhibitory activity against COX-2 dependent PGE2 production compared to FX alone. Compared to LPS, T. lutea F&M-M36 extract and FX reduced the expression of IL-6 and of Arg1 and enhanced that of IL-10 and of HO-1; T. lutea F&M-M36 extract also significantly abated the expression of NLRP3, enhanced mir-223 expression and reduced that of mir-146b, compared to LPS (p < 0.05). These findings indicate that T. lutea F&M-M36 methanolic extract has a peculiar anti-inflammatory activity against COX-2/PGE2 and NLRP3/mir-223 that might be attributable to the known anti-inflammatory effects of simple phenolic compounds found in the extract that may synergize with FX. Our data suggest that T. lutea F&M-M36 may serve as a source of anti-inflammatory compounds to be further evaluated in in vivo models of inflammation.
Collapse
|
32
|
Evaluation of anti-TNF therapeutic response in patients with inflammatory bowel disease: Current and novel biomarkers. EBioMedicine 2021; 66:103329. [PMID: 33862588 PMCID: PMC8054158 DOI: 10.1016/j.ebiom.2021.103329] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Neutralizing tumour necrosis factor (TNF) antibodies have been widely used to treat inflammatory bowel disease (IBD) in the clinical practice. In this review, the principal biomarker analysis revealed that faecal calprotectin, C-reactive protein, serum or mucosal concentrations of anti-TNF monoclonal antibodies (mAbs) and antibodies to anti-TNF mAbs are commonly used as current biomarkers in the evaluation of anti-TNF therapeutic efficacy. However, mucosal cytokine transcripts. microRNAs, proteomics and faecal and mucosal gut microbiota profile and mucosal histological features are reported to be novel candidates of biomarkers with high clinical utility in the evaluation of anti-TNF therapeutic efficacy in patients with IBD. Therefore, a robust validation of novel promising biomarkers and comparison studies between current used and novel biomarkers are urgently required to improve their value in the evaluation of therapeutic efficacy and optimization of personalized medicine and identification of IBD candidates for anti-TNF therapy in future clinical practice.
Collapse
|
33
|
Ochoa-Martínez ÁC, Varela-Silva JA, Orta-García ST, Carrizales-Yáñez L, Pérez-Maldonado IN. Lead (Pb) exposure is associated with changes in the expression levels of circulating miRNAS (miR-155, miR-126) in Mexican women. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 83:103598. [PMID: 33516900 DOI: 10.1016/j.etap.2021.103598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
The environmental contamination with lead (Pb) is considered a critical issue worldwide. Therefore, this study aimed to evaluate the expression levels of circulating miRNAs (miR-155, miR-126, and miR-145) in Mexican women exposed to Pb. Blood lead levels (BLL) were assessed in enrolled women (n = 190) using an atomic absorption method. Also, serum miRNAs expression levels were quantified through a real-time PCR assay. A mean BLL of 10.5 ± 4.50 μg/dL was detected. Overexpression of miR-155 was detected in highly exposed women. Besides, a significant simple positive relationship (p < 0.05) was found between BLL and serum miR-155 expression levels. Additionally, a significant inverse correlation (p < 0.05) was determined between BLL and serum miR-126 expression levels, as downregulation of miR-126 expression levels was observed in highly exposed women. The findings in this study are the concern, as epigenetic changes detected may represent a connection between health illnesses and Pb exposure.
Collapse
Affiliation(s)
- Ángeles C Ochoa-Martínez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - José A Varela-Silva
- Facultad de Enfermería, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico
| | - Sandra Teresa Orta-García
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Enfermería, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico
| | - Leticia Carrizales-Yáñez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Iván N Pérez-Maldonado
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| |
Collapse
|
34
|
De Martinis M, Ginaldi L, Allegra A, Sirufo MM, Pioggia G, Tonacci A, Gangemi S. The Osteoporosis/Microbiota Linkage: The Role of miRNA. Int J Mol Sci 2020; 21:E8887. [PMID: 33255179 PMCID: PMC7727697 DOI: 10.3390/ijms21238887] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Hundreds of trillions of bacteria are present in the human body in a mutually beneficial symbiotic relationship with the host. A stable dynamic equilibrium exists in healthy individuals between the microbiota, host organism, and environment. Imbalances of the intestinal microbiota contribute to the determinism of various diseases. Recent research suggests that the microbiota is also involved in the regulation of the bone metabolism, and its alteration may induce osteoporosis. Due to modern molecular biotechnology, various mechanisms regulating the relationship between bone and microbiota are emerging. Understanding the role of microbiota imbalances in the development of osteoporosis is essential for the development of potential osteoporosis prevention and treatment strategies through microbiota targeting. A relevant complementary mechanism could be also constituted by the permanent relationships occurring between microbiota and microRNAs (miRNAs). miRNAs are a set of small non-coding RNAs able to regulate gene expression. In this review, we recapitulate the physiological and pathological meanings of the microbiota on osteoporosis onset by governing miRNA production. An improved comprehension of the relations between microbiota and miRNAs could furnish novel markers for the identification and monitoring of osteoporosis, and this appears to be an encouraging method for antagomir-guided tactics as therapeutic agents.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.G.); (M.M.S.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.G.); (M.M.S.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.G.); (M.M.S.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy;
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
35
|
Heier CR, Zhang A, Nguyen NY, Tully CB, Panigrahi A, Gordish-Dressman H, Pandey SN, Guglieri M, Ryan MM, Clemens PR, Thangarajh M, Webster R, Smith EC, Connolly AM, McDonald CM, Karachunski P, Tulinius M, Harper A, Mah JK, Fiorillo AA, Chen YW. Multi-Omics Identifies Circulating miRNA and Protein Biomarkers for Facioscapulohumeral Dystrophy. J Pers Med 2020; 10:jpm10040236. [PMID: 33228131 PMCID: PMC7711540 DOI: 10.3390/jpm10040236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022] Open
Abstract
The development of therapeutics for muscle diseases such as facioscapulohumeral dystrophy (FSHD) is impeded by a lack of objective, minimally invasive biomarkers. Here we identify circulating miRNAs and proteins that are dysregulated in early-onset FSHD patients to develop blood-based molecular biomarkers. Plasma samples from clinically characterized individuals with early-onset FSHD provide a discovery group and are compared to healthy control volunteers. Low-density quantitative polymerase chain reaction (PCR)-based arrays identify 19 candidate miRNAs, while mass spectrometry proteomic analysis identifies 13 candidate proteins. Bioinformatic analysis of chromatin immunoprecipitation (ChIP)-seq data shows that the FSHD-dysregulated DUX4 transcription factor binds to regulatory regions of several candidate miRNAs. This panel of miRNAs also shows ChIP signatures consistent with regulation by additional transcription factors which are up-regulated in FSHD (FOS, EGR1, MYC, and YY1). Validation studies in a separate group of patients with FSHD show consistent up-regulation of miR-100, miR-103, miR-146b, miR-29b, miR-34a, miR-454, miR-505, and miR-576. An increase in the expression of S100A8 protein, an inflammatory regulatory factor and subunit of calprotectin, is validated by Enzyme-Linked Immunosorbent Assay (ELISA). Bioinformatic analyses of proteomics and miRNA data further support a model of calprotectin and toll-like receptor 4 (TLR4) pathway dysregulation in FSHD. Moving forward, this panel of miRNAs, along with S100A8 and calprotectin, merit further investigation as monitoring and pharmacodynamic biomarkers for FSHD.
Collapse
Affiliation(s)
- Christopher R. Heier
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (H.G.-D.); (A.A.F.)
- Correspondence: (C.R.H.); (Y.-W.C.)
| | - Aiping Zhang
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA; (A.Z.); (N.Y.N.); (C.B.T.); (A.P.); (S.N.P.)
| | - Nhu Y Nguyen
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA; (A.Z.); (N.Y.N.); (C.B.T.); (A.P.); (S.N.P.)
| | - Christopher B. Tully
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA; (A.Z.); (N.Y.N.); (C.B.T.); (A.P.); (S.N.P.)
| | - Aswini Panigrahi
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA; (A.Z.); (N.Y.N.); (C.B.T.); (A.P.); (S.N.P.)
| | - Heather Gordish-Dressman
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (H.G.-D.); (A.A.F.)
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA; (A.Z.); (N.Y.N.); (C.B.T.); (A.P.); (S.N.P.)
| | - Sachchida Nand Pandey
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA; (A.Z.); (N.Y.N.); (C.B.T.); (A.P.); (S.N.P.)
| | | | - Monique M. Ryan
- The Royal Children’s Hospital, Melbourne University, Parkville, Victoria 3052, Australia;
| | - Paula R. Clemens
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | - Mathula Thangarajh
- Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA;
| | | | - Edward C. Smith
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27705, USA;
| | - Anne M. Connolly
- Nationwide Children’s Hospital, The Ohio State University, Columbus, OH 43205, USA;
| | - Craig M. McDonald
- Department of Physical Medicine and Rehabilitation, University of California at Davis Medical Center, Sacramento, CA 95817, USA;
| | - Peter Karachunski
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Mar Tulinius
- Department of Pediatrics, Gothenburg University, Queen Silvia Children’s Hospital, 41685 Göteborg, Sweden;
| | - Amy Harper
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Jean K. Mah
- Deparment of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, T2N T3B, Calgary, AB 6A81N4, Canada;
| | - Alyson A. Fiorillo
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (H.G.-D.); (A.A.F.)
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA; (A.Z.); (N.Y.N.); (C.B.T.); (A.P.); (S.N.P.)
| | - Yi-Wen Chen
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA; (A.Z.); (N.Y.N.); (C.B.T.); (A.P.); (S.N.P.)
- Correspondence: (C.R.H.); (Y.-W.C.)
| | | |
Collapse
|