1
|
Ikuta S, Saito Y, Takata S, Nakatani Y, Nagatomo I, Shiba S, Takeda Y, Totoki Y, Mizutani S, Sunakawa H, Ikematsu H, Takamaru H, Kumanogoh A, Yachida S. Variability in non-tumor areas of colorectal cancer patients as revealed by endoscopic intestinal step biopsies. Mol Cancer 2024; 23:249. [PMID: 39511621 PMCID: PMC11546198 DOI: 10.1186/s12943-024-02159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
A comprehensive endoscopic small and large intestinal untargeted step biopsy procedure was conducted to compare gene expression between the normal intestinal mucosa of healthy individuals and that of patients with colorectal tumors. From 78 participants (healthy individuals [n = 17], patients with colorectal conventional adenomas [n = 6], patients with Tis-T1 colorectal cancer [n = 41], patients with T2-4 colorectal cancer [n = 14]), biopsies of normal mucosa of the terminal ileum, right-sided colon (cecum and ascending colon), and left-sided colorectum (descending colon, sigmoid colon, and rectum) were obtained using a lower gastrointestinal endoscope. RNA was extracted from all samples, and total transcriptome sequencing was performed. Transcriptome data from 388 samples was analyzed. DNA was also extracted from tumor biopsy tissues and analyzed for whole-exome sequencing. In healthy individuals, gene expression differed significantly among the terminal ileum, right-sided colon, and left-sided colorectum, presumably linked to embryological factors. There were differences in gene expression in the normal mucosa in colorectal cancer patients, compared to healthy controls. Patients with tumors, especially T2-4 colorectal cancer, showed considerable variation in gene expression in non-tumor tissues, even in the terminal ileum distant from the tumor site. Based on endoscopic biopsies, the results imply cancer-predisposing conditions in seemingly normal tissues. The present study points to the importance of small intestine and cancer-predisposing conditions in the colon of colorectal cancer patients, with possible implications for developing novel immunotherapy and other therapeutic modalities.
Collapse
Affiliation(s)
- Shoko Ikuta
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Yutaka Saito
- Endoscopy Division, National Cancer Center Hospital, Chuo-ku, Tokyo, 104-0045, Japan
| | - So Takata
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Yoichiro Nakatani
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Izumi Nagatomo
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Osaka, Japan
- Health and Counseling Center, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Satoshi Shiba
- Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Yasushi Totoki
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Sayaka Mizutani
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Hironori Sunakawa
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Kashiwa, 277-8577, Chiba, Japan
| | - Hiroaki Ikematsu
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Kashiwa, 277-8577, Chiba, Japan
| | - Hiroyuki Takamaru
- Endoscopy Division, National Cancer Center Hospital, Chuo-ku, Tokyo, 104-0045, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, 565-0871, Osaka, Japan
- Department of Immunopathology, Immunology Frontier Research Center (IFReC), World Premier International Research Center Initiative (WPI), Osaka University, Suita, 565- 0871, Osaka, Japan
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, 565-0871, Osaka, Japan
- Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology (AMED-CREST), Chiyoda-ku, 100-0004, Tokyo, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, 565- 0871, Osaka, Japan
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, 565-0871, Osaka, Japan.
| |
Collapse
|
2
|
Yamamoto N, Urabe Y, Nakahara H, Nakamura T, Shimizu D, Konishi H, Ishibashi K, Ariyoshi M, Miyamoto R, Mizuno J, Takasago T, Ishikawa A, Tsuboi A, Tanaka H, Yamashita K, Hiyama Y, Kishida Y, Takigawa H, Kuwai T, Arihiro K, Shimamoto F, Oka S. Genetic Analysis of Biopsy Tissues from Colorectal Tumors in Patients with Ulcerative Colitis. Cancers (Basel) 2024; 16:3271. [PMID: 39409892 PMCID: PMC11475702 DOI: 10.3390/cancers16193271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Colorectal neoplasia developing from ulcerative colitis mucosa (CRNUC) can be divided into ulcerative colitis-associated neoplasia (UCAN) and non-UCAN; however, it is often difficult to distinguish UCAN from non-UCAN during a biopsy diagnosis. We investigated whether a genomic analysis could improve the diagnostic accuracy of UCAN using biopsy specimens. METHODS In step 1, 14 CRNUCs were used to examine whether the genomic landscape of biopsy and resection specimens matched. In step 2, we investigated the relationship between the genomic landscapes and the pathological diagnosis of 26 CRNUCs. The cancer genome was analyzed by deep sequencing using a custom panel of 27 genes found to be mutated in our previous CRNUC analysis. RESULTS In step 1, of the 27 candidate genes, 14 were mutated. The concordance rate of the pathogenic mutations in these 14 genes between the biopsy and resection specimens was 29% (4/14), while that of the pathogenic mutations in TP53 and KRAS was 79% (11/14). In step 2, the pathological diagnosis of biopsy specimens using only hematoxylin and eosin (HE) staining had a sensitivity of 33% and an accuracy of 38% for UCAN diagnosis. On the other hand, the combination of the HE pathology and p53 immunohistochemical staining had a sensitivity of 73% and an accuracy of 85% for UCAN diagnosis, while the combination of HE staining and a TP53 mutation had a sensitivity of 87% and an accuracy of 88% for UCAN diagnosis. CONCLUSIONS An evaluation of TP53 mutations in biopsy specimens may be useful for diagnosing UCAN. However, further studies with larger sample sizes are required before this can be applied in clinical practice.
Collapse
Affiliation(s)
- Noriko Yamamoto
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Yuji Urabe
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Hikaru Nakahara
- Department of Clinical and Molecular Genetics, Hiroshima University Hospital, Hiroshima 734-8551, Japan;
| | - Takeo Nakamura
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Daisuke Shimizu
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Hirona Konishi
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Kazuki Ishibashi
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Misa Ariyoshi
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Ryo Miyamoto
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Junichi Mizuno
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Takeshi Takasago
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Akira Ishikawa
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Akiyoshi Tsuboi
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Hidenori Tanaka
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Ken Yamashita
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Yuichi Hiyama
- Clinical Research Center in Hiroshima, Hiroshima University Hospital, Hiroshima 734-8551, Japan;
| | - Yoshihiro Kishida
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Hidehiko Takigawa
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| | - Toshio Kuwai
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
- Gastrointestinal Endoscopy and Medicine, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Koji Arihiro
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima 734-8551, Japan;
| | - Fumio Shimamoto
- Faculty of Health Sciences, Hiroshima Cosmopolitan University, Hiroshima 734-0014, Japan;
| | - Shiro Oka
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (N.Y.); (T.N.); (D.S.); (H.K.); (K.I.); (M.A.); (R.M.); (J.M.); (T.T.); (A.T.); (H.T.); (K.Y.); (Y.K.); (H.T.); (T.K.); (S.O.)
| |
Collapse
|
3
|
Tang Y, Fan Y. Combined KRAS and TP53 mutation in patients with colorectal cancer enhance chemoresistance to promote postoperative recurrence and metastasis. BMC Cancer 2024; 24:1155. [PMID: 39289671 PMCID: PMC11409552 DOI: 10.1186/s12885-024-12776-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/06/2024] [Indexed: 09/19/2024] Open
Abstract
The response of patients with colorectal cancer to chemotherapy is tightly correlated with their genomic variation. Among these, APC, TP53, KRAS, PIK3CA are the most frequently mutated genes in advanced colorectal cancer patients. However, the precise correlation between these mutations and the therapeutic effects of chemotherapy remains elusive. Here, we conducted genome sequencing to identify commonly mutated genes in colorectal cancer patients and comprehensively assessed their sensitivity to chemotherapy drugs by monitoring computer tomography (CT) scans and carcinoembryonic antigen (CEA) levels. Surprisingly, we discovered that the objective response rate to the standard first-line chemotherapy among patients harboring combined KRAS and TP53 mutations is dismal, and these patients are predisposed to recurrence and metastasis. Furthermore, advanced-stage patients with concurrent KRAS and TP53 mutations are susceptible to developing cancer-associated cachexia due to chemotherapy resistance or forced cessation of treatment. Our findings underscore the urgent need for the development of innovative and novel chemotherapeutic strategies to effectively manage colorectal cancer patients harboring combined KRAS and TP53 mutations.
Collapse
Affiliation(s)
- YiMeng Tang
- Department of General Surgery, The Third Hospital of MianYang, Sichuan Mental Health Center, MianYang, 621000, China
| | - Yao Fan
- Department of General Surgery, The Third Hospital of MianYang, Sichuan Mental Health Center, MianYang, 621000, China.
| |
Collapse
|
4
|
Li J, Ji Y, Chen N, Dai L, Deng H. Colitis-associated carcinogenesis: crosstalk between tumors, immune cells and gut microbiota. Cell Biosci 2023; 13:194. [PMID: 37875976 PMCID: PMC10594787 DOI: 10.1186/s13578-023-01139-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. One of the main causes of colorectal cancer is inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD). Intestinal epithelial cells (IECs), intestinal mesenchymal cells (IMCs), immune cells, and gut microbiota construct the main body of the colon and maintain colon homeostasis. In the development of colitis and colitis-associated carcinogenesis, the damage, disorder or excessive recruitment of different cells such as IECs, IMCs, immune cells and intestinal microbiota play different roles during these processes. This review aims to discuss the various roles of different cells and the crosstalk of these cells in transforming intestinal inflammation to cancer, which provides new therapeutic methods for chemotherapy, targeted therapy, immunotherapy and microbial therapy.
Collapse
Affiliation(s)
- Junshu Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China
| | - Yanhong Ji
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China
| | - Na Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China
| | - Lei Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China.
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China.
| |
Collapse
|
5
|
Yang Y, Hua Y, Chen W, Zheng H, Wu H, Qin S, Huang S. Therapeutic targets and pharmacological mechanisms of Coptidis Rhizoma against ulcerative colitis: Findings of system pharmacology and bioinformatics analysis. Front Pharmacol 2022; 13:1037856. [PMID: 36532769 PMCID: PMC9748441 DOI: 10.3389/fphar.2022.1037856] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/26/2022] [Indexed: 08/09/2023] Open
Abstract
Evidence of the advantages of Coptidis Rhizoma (CR) for the treatment of ulcerative colitis (UC) is accumulating. However, research revealing the targets and molecular mechanisms of CR against UC is scarce. In this research, a bioinformatics analysis was performed to carry out the physicochemical properties and biological activities of phytochemicals in CR and analyze the binding activities, targets, biological functions and mechanisms of CR against UC. This research shows that the CR's key phytochemicals, which are named Coptisine, Berberrubine, Berlambine, Berberine, Epiberberine, Obacunone, Worenine, Quercetin, (R)-Canadine, Magnograndiolide, Palmatine and Moupinamide, have ideal physicochemical properties and bioactivity. A total of 1,904 potential phytochemical targets and 17,995 UC-related targets are identified, and we finally acquire 233 intersection targets between key phytochemicals and disease. A protein-protein interaction network of 233 common targets was constructed; and six hub targets were acquired with a degree greater than or equal to median, namely TP53, HSP90AA1, STAT3, ESR1, MYC, and RELA. The enrichment analysis suggested that the core targets may exert an impact on anti-inflammatory, immunoregulatory, anti-oxidant and anti-fibrosis functions mainly through the PI3K/ART signaling pathway, Th17 differentiation signaling pathway, inflammatory bowel disease signaling pathway, etcetera. Also, a molecular docking analysis shows that the key phytochemicals have strong affinity for binding to the core targets. Finally, the interaction network of CR, phytochemicals, targets, GO functions, KEGG pathways and UC is constructed. This study indicates that the key phytochemicals in CR have superior drug likeness and bioactivity, and the molecular mechanism of key phytochemicals against UC may be via the signaling pathway mentioned above. The potential and critical pharmacological mechanisms provide a direction for future research.
Collapse
Affiliation(s)
- Yuanming Yang
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, Guangdong, China
| | - Yiwei Hua
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weihuan Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Haomeng Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Shumin Qin
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Shaogang Huang
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Yang Chunbo Academic Experience Inheritance Studio of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
6
|
Fukumoto Y, Kobayashi Y, Takemura S, Maeda K, Nakamura F, Inatomi O, Andoh A, Ban H. A case of appendix adenocarcinoma associated with ulcerative colitis. Clin Case Rep 2021; 9:e04768. [PMID: 34484784 PMCID: PMC8405520 DOI: 10.1002/ccr3.4768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic relapsing inflammatory disorder of the colon. Patients with UC have an increased risk of developing colorectal cancer. However, appendix adenocarcinoma associated with UC is extremely rare.
Collapse
Affiliation(s)
- Yohsuke Fukumoto
- Division of GastroenterologyKusatsu General HospitalKusatsuJapan
| | - Yuh Kobayashi
- Division of GastroenterologyKusatsu General HospitalKusatsuJapan
| | | | - Kiyosumi Maeda
- Division of RadiologyKusatsu General HospitalKusatsuJapan
| | | | - Osamu Inatomi
- Department of MedicineShiga University of Medical ScienceKusatsuJapan
| | - Akira Andoh
- Department of MedicineShiga University of Medical ScienceKusatsuJapan
| | - Hiromitsu Ban
- Division of GastroenterologyKusatsu General HospitalKusatsuJapan
| |
Collapse
|