1
|
Zheng T, Roda G, Zabana Y, Escudero-Hernández C, Liu X, Chen Y, Camargo Tavares L, Bonfiglio F, Mellander MR, Janczewska I, Vigren L, Sjöberg K, Ohlsson B, Almer S, Halfvarson J, Miehlke S, Madisch A, Lieb W, Kupčinskas J, Weersma RK, Bujanda L, Julià A, Marsal S, Esteve M, Guagnozzi D, Fernández-Bañares F, Ferrer C, Peter I, Ludvigsson JF, Pardi D, Verhaegh B, Jonkers D, Pierik M, Münch A, Franke A, Bresso F, Khalili H, Colombel JF, D'Amato M. Human Leukocyte Antigen Signatures as Pathophysiological Discriminants of Microscopic Colitis Subtypes. J Crohns Colitis 2024; 18:349-359. [PMID: 37768647 DOI: 10.1093/ecco-jcc/jjad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/29/2023] [Accepted: 09/26/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND AND AIMS Microscopic colitis [MC] is currently regarded as an inflammatory bowel disease that manifests as two subtypes: collagenous colitis [CC] and lymphocytic colitis [LC]. Whether these represent a clinical continuum or distinct entities is, however, an open question. Genetic investigations may contribute important insight into their respective pathophysiologies. METHODS We conducted a genome-wide association study [GWAS] meta-analysis in 1498 CC, 373 LC patients, and 13 487 controls from Europe and the USA, combined with publicly available MC GWAS data from UK Biobank and FinnGen [2599 MC cases and 552 343 controls in total]. Human leukocyte antigen [HLA] alleles and polymorphic residues were imputed and tested for association, including conditional analyses for the identification of key causative variants and residues. Genetic correlations with other traits and diagnoses were also studied. RESULTS We detected strong HLA association with CC, and conditional analyses highlighted the DRB1*03:01 allele and its residues Y26, N77, and R74 as key to this association (best p = 1.4 × 10-23, odds ratio [OR] = 1.96). Nominally significant genetic correlations were detected between CC and pneumonia [rg = 0.77; p = 0.048] and oesophageal diseases [rg = 0.45, p = 0.023]. An additional locus was identified in MC GWAS analyses near the CLEC16A and RMI2 genes on chromosome 16 [rs35099084, p = 2.0 × 10-8, OR = 1.31]. No significant association was detected for LC. CONCLUSION Our results suggest CC and LC have distinct pathophysiological underpinnings, characterised by an HLA predisposing role only in CC. This challenges existing classifications, eventually calling for a re-evaluation of the utility of MC umbrella definitions.
Collapse
Affiliation(s)
- Tenghao Zheng
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Giulia Roda
- Biostructures and Biosystems National Institute, Rome, Italy
| | - Yamile Zabana
- Gastroenterology Department, Hospital Universitari Mútua de Terrassa, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| | - Celia Escudero-Hernández
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Xingrong Liu
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ye Chen
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Ferdinando Bonfiglio
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Lina Vigren
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Klas Sjöberg
- Department of Clinical Sciences, Lund University, Skane University Hospital, Malmo, Sweden
| | - Bodil Ohlsson
- Department of Clinical Sciences, Lund University, Skane University Hospital, Malmo, Sweden
| | - Sven Almer
- Division of Gastroenterology, Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Halfvarson
- Department of Gastroenterology, Faculty of Medicine and Health, Orebro University Hospital, Örebro, Sweden
| | - Stephan Miehlke
- Centre for Digestive Diseases, Internal Medicine Centre Eppendorf, and Centre for Oesophageal Disorders, University Hospital Eppendorf, Hamburg, Germany
| | - Ahmed Madisch
- Department of Gastroenterology, CRH Clinic Siloah, Hannover, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Juozas Kupčinskas
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Luis Bujanda
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, Universidad del País Vasco, San Sebastian, Spain
| | - Antonio Julià
- Rheumatology Research Group, Vall d' Hebron Research Institute, Barcelona, Spain
| | - Sara Marsal
- Rheumatology Research Group, Vall d' Hebron Research Institute, Barcelona, Spain
| | - Maria Esteve
- Gastroenterology Department, Hospital Universitari Mútua de Terrassa, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| | - Danila Guagnozzi
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron University Hospital, Neuro-Immuno-Gastroenterology Group, Digestive System Research Unit, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Fernando Fernández-Bañares
- Gastroenterology Department, Hospital Universitari Mútua de Terrassa, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| | - Carmen Ferrer
- Pathology Department, Hospital Universitari Mútua de Terrassa, Barcelona, Spain
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonas F Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Darrell Pardi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Bas Verhaegh
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Daisy Jonkers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Marieke Pierik
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Andreas Münch
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Gastroenterology and Hepatology, Linköping University, Linköping, Sweden
- Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Francesca Bresso
- Division of Gastroenterology, Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Hamed Khalili
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Jean-Frederic Colombel
- Dr Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mauro D'Amato
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Gastrointestinal Genetics Lab, CIC bioGUNE - BRTA, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Department of Medicine and Surgery, LUM University, Casamassima, Italy
| |
Collapse
|
2
|
Daferera N, Nyström S, Hjortswang H, Ignatova S, Jenmalm MC, Ström M, Münch A. Mucosa associated invariant T and natural killer cells in active and budesonide treated collagenous colitis patients. Front Immunol 2022; 13:981740. [PMID: 36591297 PMCID: PMC9798420 DOI: 10.3389/fimmu.2022.981740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Collagenous colitis (CC) is an inflammatory bowel disease, which usually responds to budesonide treatment. Our aim was to study the immunological background of the disease. Methods Analyses of peripheral and mucosal MAIT (mucosa associated invariant T cells) and NK (natural killer) cells were performed with flow cytometry. Numbers of mucosal cells were calculated using immunohistochemistry. We studied the same patients with active untreated CC (au-CC) and again while in remission on budesonide treatment. Budesonide refractory patients and healthy controls were also included. The memory marker CD45R0 and activation marker CD154 and CD69 were used to further study the cells. Finally B cells, CD4+ and CD8+ T cells were also analysed. Results The percentages of circulating CD56dimCD16+ NK cells as well as MAIT cells (CD3+TCRVa7.2+CD161+) were decreased in au-CC compared to healthy controls. This difference was not seen in the mucosa; where we instead found increased numbers of mucosal CD4+ T cells and CD8+ T cells in au-CC. Mucosal immune cell numbers were not affected by budesonide treatment. In refractory CC we found increased mucosal numbers of MAIT cells, CD4+ and CD8+ T cells compared to au-CC. Discussion Patients with active collagenous colitis have lower percentages of circulating MAIT and NK cells. However, there was no change of these cells in the colonic mucosa. Most mucosal cell populations were increased in budesonide refractory as compared to au-CC patients, particularly the number of MAIT cells. This may indicate that T cell targeting therapy could be an alternative in budesonide refractory CC.
Collapse
Affiliation(s)
- Niki Daferera
- Department of Gastroenterology, Faculty of Health Sciences, Linköping University, Linköping, Sweden,*Correspondence: Niki Daferera,
| | - Sofia Nyström
- Department of Biomedical and Clinical Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden,Department of Clinical Immunology and Transfusion Medicine, Linköping University, Linköping, Sweden
| | - Henrik Hjortswang
- Department of Gastroenterology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Simone Ignatova
- Department of Pathology, Linköping University, Linköping, Sweden
| | - Maria C. Jenmalm
- Department of Biomedical and Clinical Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Magnus Ström
- Department of Gastroenterology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Andreas Münch
- Department of Gastroenterology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
3
|
Honjo H, Watanabe T, Tomooka M, Matsubara T, Kono M, Sekai I, Hara A, Kurimoto M, Yoshikawa K, Masuta Y, Otsuka Y, Takada R, Yoshikawa T, Kamata K, Minaga K, Matsui S, Kimura M, Kudo M. Case Report: Regulatory T Cell-Independent Induction of Remission in a Patient With Collagenous Colitis. Front Med (Lausanne) 2021; 8:678268. [PMID: 34350195 PMCID: PMC8326450 DOI: 10.3389/fmed.2021.678268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/25/2021] [Indexed: 11/24/2022] Open
Abstract
Collagenous colitis (CC), a prototypical microscopic colitis, is a chronic inflammatory disorder of the colon. The diagnosis of CC depends on the pathological examination. The colonic mucosa of patients with CC is characterized by the presence of a substantially thickened collagen band (>10μm) under the surface epithelium. In addition, intraepithelial and lamina propria lymphocytes are markedly increased in patients with CC. However, the roles played by the lymphocytes accumulating in the colonic mucosa of patients with CC are poorly defined. Recent studies indicate that T cells infiltrating the colonic mucosa of patients with CC are mainly represented by CD4+ T cells, CD8+ T cells, and forkhead box P3 (FOXP3)+ regulatory T cells (Tregs). Given that activation of CD4+/CD8+ T cells and FOXP3+ Tregs usually mediates pro-inflammatory and anti-inflammatory responses, respectively, alterations in the colonic numbers of these adaptive T cells might be related to the resolution of colitis in patients with CC. We determined alterations in the composition of colonic T cells by extensive immunohistochemical (IHC) analyses in a case of CC successfully treated with budesonide and metronidazole. Colonic lamina propria immune cells mainly comprised CD3+ T cells, CD4+ T cells, CD8+ T cells, CD68+ macrophages, and FOXP3+ Tregs, but not CD20+ B cells or myeloperoxidase (MPO)+ granulocytes in the active phase. During remission, the numbers of CD3+ T cells, CD4+ T cells, CD8+ T cells, and CD68+ macrophages did not change significantly in the colonic lamina propria, whereas FOXP3+ Tregs were markedly decreased, suggesting that induction of remission was achieved in a Treg-independent manner. Thus, our study indicates that accumulation of FOXP3+ Tregs in the colonic mucosa of patients with CC might be a counter-regulatory mechanism reflecting persistent inflammation and that induction of remission might be achieved without activation of Tregs.
Collapse
Affiliation(s)
- Hajime Honjo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Mizuki Tomooka
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Takuya Matsubara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Masashi Kono
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Ikue Sekai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Akane Hara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Masayuki Kurimoto
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Keisuke Yoshikawa
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yasuhiro Masuta
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yasuo Otsuka
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Ryutaro Takada
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Tomoe Yoshikawa
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Ken Kamata
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Shigenaga Matsui
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Masatomo Kimura
- Department of Diagnostic Pathology, Kindai University Hospital, Osaka, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
4
|
Escudero-Hernández C, van Beelen Granlund A, Bruland T, Sandvik AK, Koch S, Østvik AE, Münch A. Transcriptomic Profiling of Collagenous Colitis Identifies Hallmarks of Nondestructive Inflammatory Bowel Disease. Cell Mol Gastroenterol Hepatol 2021; 12:665-687. [PMID: 33930606 PMCID: PMC8267496 DOI: 10.1016/j.jcmgh.2021.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS The pathophysiology of the inflammatory bowel disease collagenous colitis (CC) is poorly described. Our aim was to use RNA sequencing of mucosal samples from patients with active CC, CC in remission, refractory CC, ulcerative colitis (UC), and control subjects to gain insight into CC pathophysiology, identify genetic signatures linked to CC, and uncover potentially druggable disease pathways. METHODS We performed whole transcriptome sequencing of CC samples from patients before and during treatment with the corticosteroid drug budesonide, CC steroid-refractory patients, UC patients, and healthy control subjects (n = 9-13). Bulk mucosa and laser-captured microdissected intestinal epithelial cell (IEC) gene expression were analyzed by gene set enrichment and gene set variation analyses to identify significant pathways and cells, respectively, altered in CC. Leading genes and cells were validated using reverse-transcription quantitative polymerase chain reaction or immunohistochemistry. RESULTS We identified an activation of the adaptive immune response to bacteria and viruses in active CC that could be mediated by dendritic cells. Moreover, IECs display hyperproliferation and increased antigen presentation in active CC. Further analysis revealed that genes related to the immune response (DUOX2, PLA2G2A, CXCL9), DNA transcription (CTR9), protein processing (JOSD1, URI1), and ion transport (SLC9A3) remained dysregulated even after budesonide-induced remission. Budesonide-refractory CC patients fail to restore normal gene expression, and displayed a transcriptomic profile close to UC. CONCLUSIONS Our study confirmed the implication of innate and adaptive immune responses in CC, governed by IECs and dendritic cells, respectively, and identified ongoing epithelial damage. Refractory CC could share pathomechanisms with UC.
Collapse
Affiliation(s)
| | - Atle van Beelen Granlund
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Torunn Bruland
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Clinic of Medicine, St Olav's University Hospital, Trondheim, Norway
| | - Arne Kristian Sandvik
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Clinic of Medicine, St Olav's University Hospital, Trondheim, Norway; Department of Gastroenterology and Hepatology, St Olav's University Hospital, Trondheim, Norway
| | - Stefan Koch
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
| | - Ann Elisabet Østvik
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Clinic of Medicine, St Olav's University Hospital, Trondheim, Norway; Department of Gastroenterology and Hepatology, St Olav's University Hospital, Trondheim, Norway
| | - Andreas Münch
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Gastroenterology and Hepatology, Linköping University, Linköping, Sweden; Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|