1
|
Kim SY, Kim J, Kim H, Chang YT, Kwon HY, Lee JL, Yoon YS, Kim CW, Hong SM, Shin JH, Hong SW, Hwang SW, Ye BD, Byeon JS, Yang SK, Son BH, Myung SJ. Fluorescence-guided tumor visualization of colorectal cancer using tumor-initiating probe yellow in preclinical models. Sci Rep 2024; 14:26946. [PMID: 39505985 PMCID: PMC11542034 DOI: 10.1038/s41598-024-76312-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Fluorescence-guided surgery has emerged as an innovative technique with promising applications in the treatment of various tumors, including colon cancer. Tumor-initiating probe yellow (TiY) has been discovered for identifying tumorigenic cells by unbiased phenotypic screening with thousands of diversity-oriented fluorescence library (DOFL) compounds in a patient-derived lung cancer cell model. This study demonstrated the clinical feasibility of TiY for tumor-specific fluorescence imaging in the tissues of patients with colorectal cancer (CRC). To evaluate the efficacy of TiY in tumor imaging, surgical specimens were obtained, consisting of 36 tissues from 18 patients with CRC, for ex vivo molecular fluorescence imaging, histology, and immunohistochemistry. Orthotopic and chemically induced CRC mice models were administered TiY topically, and distinct tumor lesions were observed in 10 min by real-time fluorescence colonoscopy and ex vivo imaging. In a hepatic metastasis mouse model using splenic injection, TiY accumulation was detected in metastatic liver lesions through fluorescence imaging. Correlation analysis between TiY intensity and protein expression, assessed via immunohistochemistry and Western blotting, revealed a positive correlation between TiY and vimentin and Zeb1, which are known as epithelial-mesenchymal transition (EMT) markers of cancers. A comparative analysis of TiY with other FDA-approved fluorescence probes such as ICG revealed greater quantitative differences in TiY fluorescence intensity between tumor and normal tissues than those observed with ICG. Altogether, these results demonstrated that TiY has a strong potential for visualizing CRC by fluorescence imaging in various preclinical models, which can be further translated for clinical use such as fluorescence-guided surgery. Furthermore, our data indicate that TiY is preferentially uptaken by cells with EMT induction and progression, and overexpressing vimentin and Zeb1 in patients with CRC.
Collapse
Affiliation(s)
- Sun Young Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jinhyeon Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hajung Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hwa-Young Kwon
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jong Lyul Lee
- Division of Colon and Rectal Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yong Sik Yoon
- Division of Colon and Rectal Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chan Wook Kim
- Division of Colon and Rectal Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung-Mo Hong
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin-Ho Shin
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung Wook Hong
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung Wook Hwang
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Byong Duk Ye
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeong-Sik Byeon
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Suk-Kyun Yang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Byung Ho Son
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Seung-Jae Myung
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Edis Biotech, Songpa-gu, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Kim J, Kim H, Yoon YS, Kim CW, Hong SM, Kim S, Choi D, Chun J, Hong SW, Hwang SW, Park SH, Yang DH, Ye BD, Byeon JS, Yang SK, Kim SY, Myung SJ. Investigation of artificial intelligence integrated fluorescence endoscopy image analysis with indocyanine green for interpretation of precancerous lesions in colon cancer. PLoS One 2023; 18:e0286189. [PMID: 37228164 DOI: 10.1371/journal.pone.0286189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Indocyanine green (ICG) has been used in clinical practice for more than 40 years and its safety and preferential accumulation in tumors has been reported for various tumor types, including colon cancer. However, reports on clinical assessments of ICG-based molecular endoscopy imaging for precancerous lesions are scarce. We determined visualization ability of ICG fluorescence endoscopy in colitis-associated colon cancer using 30 lesions from an azoxymethane/dextran sulfate sodium (AOM/DSS) mouse model and 16 colon cancer patient tissue-samples. With a total of 60 images (optical, fluorescence) obtained during endoscopy observation of mouse colon cancer, we used deep learning network to predict four classes (Normal, Dysplasia, Adenoma, and Carcinoma) of colorectal cancer development. ICG could detect 100% of carcinoma, 90% of adenoma, and 57% of dysplasia, with little background signal at 30 min after injection via real-time fluorescence endoscopy. Correlation analysis with immunohistochemistry revealed a positive correlation of ICG with inducible nitric oxide synthase (iNOS; r > 0.5). Increased expression of iNOS resulted in increased levels of cellular nitric oxide in cancer cells compared to that in normal cells, which was related to the inhibition of drug efflux via the ABCB1 transporter down-regulation resulting in delayed retention of intracellular ICG. With artificial intelligence training, the accuracy of image classification into four classes using data sets, such as fluorescence, optical, and fluorescence/optical images was assessed. Fluorescence images obtained the highest accuracy (AUC of 0.8125) than optical and fluorescence/optical images (AUC of 0.75 and 0.6667, respectively). These findings highlight the clinical feasibility of ICG as a detector of precancerous lesions in real-time fluorescence endoscopy with artificial intelligence training and suggest that the mechanism of ICG retention in cancer cells is related to intracellular nitric oxide concentration.
Collapse
Affiliation(s)
- Jinhyeon Kim
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hajung Kim
- Convergence Medicine Research Center, Asan Medical Center, Seoul, Republic of Korea
| | - Yong Sik Yoon
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chan Wook Kim
- Department of Colon and Rectal Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung-Mo Hong
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sungjee Kim
- Department of Chemistry and School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science & Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Doowon Choi
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science & Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Jihyun Chun
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung Wook Hong
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung Wook Hwang
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang Hyoung Park
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong-Hoon Yang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Byong Duk Ye
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeong-Sik Byeon
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Suk-Kyun Yang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sun Young Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung-Jae Myung
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Edis Biotech, Songpa-gu, Seoul, Republic of Korea
| |
Collapse
|
3
|
Kashihara T, Muguruma N, Fujimoto S, Miyamoto Y, Sato Y, Takayama T. Recent Advances in Molecular Imaging of Colorectal Tumors. Digestion 2021; 102:57-64. [PMID: 33271567 DOI: 10.1159/000512168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/08/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Recent endoscopic studies have revealed that small colorectal tumors are often overlooked during colonoscopy, indicating that more sensitive detection methods are needed. SUMMARY Molecular imaging has received considerable attention as a new endoscopic technique with high sensitivity. It generally employs a fluorescence-labeled compound that specifically binds to a molecule on the tumor. Fluorescent probes for molecular imaging are largely classified as 2 types: a fluorescence-labeled antibody targeting a molecule specifically expressed on the tumor cell surface such as epidermal growth factor receptor or vascular endothelial growth factor (VEGF); and a fluorescence-labeled small molecule compound targeting a molecule specifically expressed in tumor cells including c-Met, glutathione S-transferase, γ-glutamyltranspeptidase, cathepsin, or endothelin A receptor. These probes successfully detected colorectal tumors in several animal studies. Moreover, 3 recent human clinical trials evaluating endoscopic molecular imaging for colorectal tumors have been reported. In one study, a Cy5-labeled synthetic peptide against c-Met was developed, and fluorescent endoscopic observation with this probe detected a greater number of colorectal adenomas than with white light observation. Another trial used IR800-labeled anti-VEGF antibody, which sensitively detected human colorectal adenomas by fluorescent endoscopy. Last, a fluorescent probe with synthetic peptide against BRAF-positive cells was able to visualize sessile serrated lesions. The fluorescent probes accumulated at very high levels in colorectal tumor cells but at lower levels in surrounding nonneoplastic mucosa. Key Messages: We expect that molecular imaging techniques with fluorescent probes will soon lead to the establishment of a highly sensitive endoscopic method for colorectal tumor detection.
Collapse
Affiliation(s)
- Takanori Kashihara
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Naoki Muguruma
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Shota Fujimoto
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yoshihiko Miyamoto
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yasushi Sato
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tetsuji Takayama
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan,
| |
Collapse
|
4
|
van der Laan JJH, van der Waaij AM, Gabriëls RY, Festen EAM, Dijkstra G, Nagengast WB. Endoscopic imaging in inflammatory bowel disease: current developments and emerging strategies. Expert Rev Gastroenterol Hepatol 2021; 15:115-126. [PMID: 33094654 DOI: 10.1080/17474124.2021.1840352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Developments in enhanced and magnified endoscopy have signified major advances in endoscopic imaging of ileocolonic pathology in inflammatory bowel disease (IBD). Artificial intelligence is increasingly being used to augment the benefits of these advanced techniques. Nevertheless, treatment of IBD patients is frustrated by high rates of non-response to therapy, while delayed detection and failures to detect neoplastic lesions impede successful surveillance. A possible solution is offered by molecular imaging, which adds functional imaging data to mucosal morphology assessment through visualizing biological parameters. Other label-free modalities enable visualization beyond the mucosal surface without the need of tracers. AREAS COVERED A literature search up to May 2020 was conducted in PubMed/MEDLINE in order to find relevant articles that involve the (pre-)clinical application of high-definition white light endoscopy, chromoendoscopy, artificial intelligence, confocal laser endomicroscopy, endocytoscopy, molecular imaging, optical coherence tomography, and Raman spectroscopy in IBD. EXPERT OPINION Enhanced and magnified endoscopy have enabled an improved assessment of the ileocolonic mucosa. Implementing molecular imaging in endoscopy could overcome the remaining clinical challenges by giving practitioners a real-time in vivo view of targeted biomarkers. Label-free modalities could help optimize the endoscopic assessment of mucosal healing and dysplasia detection in IBD patients.
Collapse
Affiliation(s)
- Jouke J H van der Laan
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen , Groningen, The Netherlands
| | - Anne M van der Waaij
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen , Groningen, The Netherlands
| | - Ruben Y Gabriëls
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen , Groningen, The Netherlands
| | - Eleonora A M Festen
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen , Groningen, The Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen , Groningen, The Netherlands
| | - Wouter B Nagengast
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen , Groningen, The Netherlands
| |
Collapse
|
5
|
Kimm MA, Haas H, Stölting M, Kuhlmann M, Geyer C, Glasl S, Schäfers M, Ntziachristos V, Wildgruber M, Höltke C. Targeting Endothelin Receptors in a Murine Model of Myocardial Infarction Using a Small Molecular Fluorescent Probe. Mol Pharm 2019; 17:109-117. [PMID: 31816245 DOI: 10.1021/acs.molpharmaceut.9b00810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The endothelin (ET) axis plays a pivotal role in cardiovascular diseases. Enhanced levels of circulating ET-1 have been correlated with an inferior clinical outcome after myocardial infarction (MI) in humans. Thus, the evaluation of endothelin-A receptor (ETAR) expression over time in the course of myocardial injury and healing may offer valuable information toward the understanding of the ET axis involvement in MI. We developed an approach to track the expression of ETAR with a customized molecular imaging probe in a murine model of MI. The small molecular probe based on the ETAR-selective antagonist 3-(1,3-benzodioxol-5-yl)-5-hydroxy-5-(4-methoxyphenyl)-4-[(3,4,5-trimethoxyphenyl)methyl]-2(5H)-furanone (PD156707) was labeled with fluorescent dye, IRDye800cw. Mice undergoing permanent ligation of the left anterior descending artery (LAD) were investigated at day 1, 7, and 21 post surgery after receiving an intravenous injection of the ETAR probe. Cryosections of explanted hearts were analyzed by cryotome-based CCD, and fluorescence reflectance imaging (FRI) and fluorescence signal intensities (SI) were extracted. Fluorescence-mediated tomography (FMT) imaging was performed to visualize probe distribution in the target region in vivo. An enhanced fluorescence signal intensity in the infarct area was detected in cryoCCD images as early as day 1 after surgery and intensified up to 21 days post MI. FRI was capable of detecting significantly enhanced SI in infarcted regions of hearts 7 days after surgery. In vivo imaging by FMT localized enhanced SI in the apex region of infarcted mouse hearts. We verified the localization of the probe and ETAR within the infarct area by immunohistochemistry (IHC). In addition, neovascularized areas were found in the affected myocardium by CD31 staining. Our study demonstrates that the applied fluorescent probe is capable of delineating ETAR expression over time in affected murine myocardium after MI in vivo and ex vivo.
Collapse
Affiliation(s)
- Melanie A Kimm
- Department of Diagnostic and Interventional Radiology, School of Medicine and Klinikum rechts der Isar , Technical University of Munich , Munich 81675 , Germany
| | - Helena Haas
- Department of Diagnostic and Interventional Radiology, School of Medicine and Klinikum rechts der Isar , Technical University of Munich , Munich 81675 , Germany
| | - Miriam Stölting
- Translational Research Imaging Center, Department of Clinical Radiology , University Hospital Münster , Münster 48149 , Germany
| | - Michael Kuhlmann
- European Institute for Molecular Imaging , University Hospital Münster , Münster 48149 , Germany
| | - Christiane Geyer
- Translational Research Imaging Center, Department of Clinical Radiology , University Hospital Münster , Münster 48149 , Germany
| | - Sarah Glasl
- Institute of Biological and Medical Imaging , Helmholtz Zentrum München , Munich 85764 , Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging , University Hospital Münster , Münster 48149 , Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging , Helmholtz Zentrum München , Munich 85764 , Germany
| | - Moritz Wildgruber
- Department of Diagnostic and Interventional Radiology, School of Medicine and Klinikum rechts der Isar , Technical University of Munich , Munich 81675 , Germany.,Translational Research Imaging Center, Department of Clinical Radiology , University Hospital Münster , Münster 48149 , Germany
| | - Carsten Höltke
- Translational Research Imaging Center, Department of Clinical Radiology , University Hospital Münster , Münster 48149 , Germany
| |
Collapse
|