1
|
Crocker CE, Sharmeen R, Tran TT, Khan AM, Li W, Alcorn JL. Surfactant protein a attenuates generalized and localized neuroinflammation in neonatal mice. Brain Res 2023; 1807:148308. [PMID: 36871846 PMCID: PMC10065943 DOI: 10.1016/j.brainres.2023.148308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Surfactant protein A (SP-A) has important roles in innate immunity and modulation of pulmonary and extrapulmonary inflammation. Given SP-A has been detected in rat and human brain, we sought to determine if SP-A has a role in modulating inflammation in the neonatal mouse brain. Neonatal wildtype (WT) and SP-A-deficient (SP-A-/-) mice were subjected to three models of brain inflammation: systemic sepsis, intraventricular hemorrhage (IVH) and hypoxic-ischemic encephalopathy (HIE). Following each intervention, RNA was isolated from brain tissue and expression of cytokine and SP-A mRNA was determined by real-time quantitative RT-PCR analysis. In the sepsis model, expression of most cytokine mRNAs was significantly increased in brains of WT and SP-A-/- mice with significantly greater expression of all cytokine mRNA levels in SP-A-/- mice compared to WT. In the IVH model, expression of all cytokine mRNAs was significantly increased in WT and SP-A-/- mice and levels of most cytokine mRNAs were significantly increased in SP-A-/- mice compared to WT. In the HIE model, only TNF-α mRNA levels were significantly increased in WT brain tissue while all pro-inflammtory cytokine mRNAs were significantly increased in SP-A-/- mice, and all pro-inflammatory cytokine mRNA levels were significantly higher in SP-A-/- mice compared to WT. SP-A mRNA was not detectable in brain tissue of adult WT mice nor in WT neonates subjected to these models. These results suggest that SP-A-/- neonatal mice subjected to models of neuroinflammation are more susceptible to both generalized and localized neuroinflammation compared to WT mice, thus supporting the hypothesis that SP-A attenuates inflammation in neonatal mouse brain.
Collapse
Affiliation(s)
- Caroline E Crocker
- Division of Neonatology, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Romana Sharmeen
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Thu T Tran
- Division of Neonatology, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Amir M Khan
- Division of Neonatology, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Wen Li
- Division of Clinical and Translational Sciences, Department of Internal Medicine, the University of Texas McGovern Medical School at Houston, Houston, TX 77030, USA; Biostatistics/Epidemiology/Research Design Component, Center for Clinical and Translational Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Joseph L Alcorn
- Division of Neonatology, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Pediatric Research Center, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Pan C, Ning Y, Jia Y, Cheng S, Wen Y, Yang X, Meng P, Li C, Zhang H, Chen Y, Zhang J, Zhang Z, Zhang F. Transcriptome-wide association study identified candidate genes associated with gut microbiota. Gut Pathog 2021; 13:74. [PMID: 34922623 PMCID: PMC8684646 DOI: 10.1186/s13099-021-00474-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/07/2021] [Indexed: 01/18/2023] Open
Abstract
Background Gut microbiota is closely associated with host health and disease occurrence. Host genetic factor plays an important role in shaping gut microbial communities. The specific mechanism of host-regulated gene expression affecting gut microbiota has not been elucidated yet. Here we conducted a transcriptome-wide association study (TWAS) for gut microbiota by leveraging expression imputation from large-scale GWAS data sets. Results TWAS detected multiple tissue-specific candidate genes for gut microbiota, such as FUT2 for genus Bifidobacterium in transverse colon (PPERM.ANL = 1.68 × 10–3) and SFTPD for an unclassified genus of Proteobacteria in transverse colon (PPERM.ANL = 5.69 × 10–3). Fine mapping replicated 3 candidate genes in TWAS, such as HELLS for Streptococcus (PIP = 0.685) in sigmoid colon, ANO7 for Erysipelotrichaceae (PIP = 0.449) in sigmoid colon. Functional analyses detected 94 significant GO terms and 11 pathways for various taxa in total, such as GO_NUCLEOSIDE_DIPHOSPHATASE_ACTIVITY for Butyrivibrio (FDR P = 1.30 × 10–4), KEGG_RENIN_ANGIOTENSIN_SYSTEM for Anaerostipes (FDR P = 3.16 × 10–2). Literature search results showed 12 genes prioritized by TWAS were associated with 12 diseases. For instance, SFTPD for an unclassified genus of Proteobacteria was related to atherosclerosis, and FUT2 for Bifidobacterium was associated with Crohn’s disease. Conclusions Our study results provided novel insights for understanding the genetic mechanism of gut microbiota, and attempted to provide clues for revealing the influence of genetic factors on gut microbiota for the occurrence and development of diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s13099-021-00474-w.
Collapse
Affiliation(s)
- Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, National Health Commission of the People's Republic of China, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Yujie Ning
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, National Health Commission of the People's Republic of China, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, National Health Commission of the People's Republic of China, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, National Health Commission of the People's Republic of China, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, National Health Commission of the People's Republic of China, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, National Health Commission of the People's Republic of China, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, National Health Commission of the People's Republic of China, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Chun'e Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, National Health Commission of the People's Republic of China, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, National Health Commission of the People's Republic of China, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Yujing Chen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, National Health Commission of the People's Republic of China, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Jingxi Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, National Health Commission of the People's Republic of China, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Zhen Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, National Health Commission of the People's Republic of China, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, National Health Commission of the People's Republic of China, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China.
| |
Collapse
|
3
|
Arroyo R, Echaide M, Moreno-Herrero F, Perez-Gil J, Kingma PS. Functional characterization of the different oligomeric forms of human surfactant protein SP-D. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140436. [PMID: 32325256 DOI: 10.1016/j.bbapap.2020.140436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/03/2020] [Accepted: 04/14/2020] [Indexed: 01/16/2023]
Abstract
Surfactant Protein D (SP-D) is a collectin protein that participates in the innate immune defense of the lungs. SP-D mediates the clearance of invading microorganisms by opsonization, aggregation or direct killing, which are lately removed by macrophages. SP-D is found as a mixture of trimers, hexamers, dodecamers and higher order oligomers, "fuzzy balls". However, it is unknown whether there are differences between these oligomeric forms in functions, activity or potency. In the present work, we have obtained fractions enriched in trimers, hexamers and fuzzy balls of full-length recombinant human (rh) SP-D by size exclusion chromatography, in a sufficient amount to perform functional assays. We have evaluated the differences in protein lectin-dependent activity relative to aggregation and binding to E. coli, one of the ligands of SP-D in vivo. Fuzzy balls are the most active oligomeric form in terms of binding and aggregation of bacteria, achieving 2-fold binding higher than hexamers and 50% bacteria aggregation at very short times. Hexamers, recently described as a defined oligomeric form of the protein, have never been isolated or tested in terms of protein activity. rhSP-D hexamers efficiently bind and aggregate bacteria, achieving 50-60% aggregation at final time point and high protein concentrations. Nevertheless, trimers are not able to aggregate bacteria, although they bind to them. Therefore, SP-D potency, in functions that relay on the C-lectin activity of the protein, is proportional to the oligomeric state of the protein.
Collapse
Affiliation(s)
- Raquel Arroyo
- Department of Biochemistry, Faculty of Biology, Complutense University, Madrid, Spain; Research Institute "Hospital 12 de Octubre (imas12)", Madrid, Spain; Division of Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mercedes Echaide
- Department of Biochemistry, Faculty of Biology, Complutense University, Madrid, Spain; Research Institute "Hospital 12 de Octubre (imas12)", Madrid, Spain
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, National Center of Biotechnology, CSIC, Madrid, Spain
| | - Jesus Perez-Gil
- Department of Biochemistry, Faculty of Biology, Complutense University, Madrid, Spain; Research Institute "Hospital 12 de Octubre (imas12)", Madrid, Spain.
| | - Paul S Kingma
- Division of Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
4
|
Colmorten KB, Nexoe AB, Sorensen GL. The Dual Role of Surfactant Protein-D in Vascular Inflammation and Development of Cardiovascular Disease. Front Immunol 2019; 10:2264. [PMID: 31616435 PMCID: PMC6763600 DOI: 10.3389/fimmu.2019.02264] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/09/2019] [Indexed: 12/27/2022] Open
Abstract
Cardiovascular disease (CVD) is responsible for 31% of all global deaths. Atherosclerosis is the major cause of cardiovascular disease and is a chronic inflammatory disorder in the arteries. Atherosclerosis is characterized by the accumulation of cholesterol, extracellular matrix, and immune cells in the vascular wall. Recently, the collectin surfactant protein-D (SP-D), an important regulator of the pulmonary immune response, was found to be expressed in the vasculature. Several in vitro studies have examined the role of SP-D in the vascular inflammation leading to atherosclerosis. These studies show that SP-D plays a dual role in the development of atherosclerosis. In general, SP-D shows anti-inflammatory properties, and dampens local inflammation in the vessel, as well as systemic inflammation. However, SP-D can also exert a pro-inflammatory role, as it stimulates C-C chemokine receptor 2 inflammatory blood monocytes to secrete tumor necrosis-factor α and increases secretion of interferon-γ from natural killer cells. In vivo studies examining the role of SP-D in the development of atherosclerosis agree that SP-D plays a proatherogenic role, with SP-D knockout mice having smaller atherosclerotic plaque areas, which might be caused by a decreased systemic inflammation. Clinical studies examining the association between SP-D and cardiovascular disease have reported a positive association between circulatory SP-D level, carotid intima-media thickness, and coronary artery calcification. Other studies have found that circulatory SP-D is correlated with increased risk of both total and cardiovascular disease mortality. Both in vitro, in vivo, and clinical studies examining the relationship between SP-D and CVDs will be discussed in this review.
Collapse
Affiliation(s)
- Kimmie B Colmorten
- Department of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Anders Bathum Nexoe
- Department of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Grith L Sorensen
- Department of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|