1
|
Kawano SM, Martin J, Medina J, Doherty C, Zheng G, Hsiao E, Evans MJ, de Queiroz K, Pyron RA, Huie JM, Lima R, Langan EM, Peters A, Irschick DJ. Applying 3D Models of Giant Salamanders to Explore Form-Function Relationships in Early Digit-Bearing Tetrapods. Integr Comp Biol 2024; 64:715-728. [PMID: 39096158 PMCID: PMC11428317 DOI: 10.1093/icb/icae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/05/2024] Open
Abstract
Extant salamanders are used as modern analogs of early digit-bearing tetrapods due to general similarities in morphology and ecology, but the study species have been primarily terrestrial and relatively smaller when the earliest digit-bearing tetrapods were aquatic and an order of magnitude larger. Thus, we created a 3D computational model of underwater walking in extant Japanese giant salamanders (Andrias japonicus) using 3D photogrammetry and open-access graphics software (Blender) to broaden the range of testable hypotheses about the incipient stages of terrestrial locomotion. Our 3D model and software protocol represent the initial stages of an open-access pipeline that could serve as a "one-stop-shop" for studying locomotor function, from creating 3D models to analyzing the mechanics of locomotor gaits. While other pipelines generally require multiple software programs to accomplish the different steps in creating and analyzing computational models of locomotion, our protocol is built entirely within Blender and fully customizable with its Python scripting so users can devote more time to creating and analyzing models instead of navigating the learning curves of several software programs. The main value of our approach is that key kinematic variables (e.g. speed, stride length, and elbow flexion) can be easily altered on the 3D model, allowing scientists to test hypotheses about locomotor function and conduct manipulative experiments (e.g. lengthening bones) that are difficult to perform in vivo. The accurate 3D meshes (and animations) generated through photogrammetry also provide exciting opportunities to expand the abundance and diversity of 3D digital animals available for researchers, educators, artists, conservation biologists, etc. to maximize societal impacts.
Collapse
Affiliation(s)
- Sandy M Kawano
- Department of Biological Sciences, The George Washington University, 2029 G Street NW, Washington, DC 20052, USA
| | | | - Joshua Medina
- Department of Biology, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | - Conor Doherty
- Department of Biology, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | - Gary Zheng
- Department of Biology, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | - Emma Hsiao
- Department of Biology, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | - Matthew J Evans
- Smithsonian National Zoo Conservation Biology Institute, 3001 Connecticut Avenue NW, Washington, DC 20008, USA
| | - Kevin de Queiroz
- Division of Amphibians and Reptiles, National Museum of Natural History, 10th Street & Constitution Avenue NW, Washington, DC 20560, USA
| | - R Alexander Pyron
- Department of Biological Sciences, The George Washington University, 2029 G Street NW, Washington, DC 20052, USA
- Division of Amphibians and Reptiles, National Museum of Natural History, 10th Street & Constitution Avenue NW, Washington, DC 20560, USA
| | - Jonathan M Huie
- Department of Biological Sciences, The George Washington University, 2029 G Street NW, Washington, DC 20052, USA
| | - Riley Lima
- Department of Biological Sciences, The George Washington University, 2029 G Street NW, Washington, DC 20052, USA
| | - Esther M Langan
- Division of Amphibians and Reptiles, National Museum of Natural History, 10th Street & Constitution Avenue NW, Washington, DC 20560, USA
| | - Alan Peters
- Smithsonian National Zoo Conservation Biology Institute, 3001 Connecticut Avenue NW, Washington, DC 20008, USA
| | - Duncan J Irschick
- Department of Biology, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| |
Collapse
|
2
|
Aibekova L, Keller RA, Katzke J, Allman DM, Hita-Garcia F, Labonte D, Narendra A, Economo EP. Parallel And Divergent Morphological Adaptations Underlying The Evolution of Jumping Ability in Ants. Integr Org Biol 2023; 5:obad026. [PMID: 37545740 PMCID: PMC10401624 DOI: 10.1093/iob/obad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/16/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023] Open
Abstract
Jumping is a rapid locomotory mode widespread in terrestrial organisms. However, it is a rare specialization in ants. Forward jumping has been reported within four distantly related ant genera: Gigantiops, Harpegnathos, Myrmecia, and Odontomachus. The temporal engagement of legs/body parts during jump, however, varies across these genera. It is unknown what morphological adaptations underlie such behaviors and whether jumping in ants is solely driven directly by muscle contraction or additionally relies on elastic recoil mechanism. We investigated the morphological adaptations for jumping behavior by comparing differences in the locomotory musculature between jumping and non-jumping relatives using X-ray micro-CT and 3D morphometrics. We found that the size-specific volumes of the trochanter depressor muscle (scm6) of the middle and hind legs are 3-5 times larger in jumping ants, and that one coxal remotor muscle (scm2) is reduced in volume in the middle and/or hind legs. Notably, the enlargement in the volume of other muscle groups is directly linked to the legs or body parts engaged during the jump. Furthermore, a direct comparison of the muscle architecture revealed two significant differences between jumping vs. non-jumping ants: First, the relative Physiological Cross-Sectional Area (PCSA) of the trochanter depressor muscles of all three legs were larger in jumping ants, except in the front legs of Odontomachus rixosus and Myrmecia nigrocincta; second, the relative muscle fiber length was shorter in jumping ants compared to non-jumping counterparts, except in the front legs of O. rixosus and M. nigrocincta. These results suggest that the difference in relative muscle volume in jumping ants is largely invested in the area (PCSA), and not in fiber length. There was no clear difference in the pennation angle between jumping and non-jumping ants. Additionally, we report that the hind leg length relative to body length was longer in jumping ants. Based on direct comparison of the observed vs. possible work and power output during jumps, we surmise that direct muscle contractions suffice to explain jumping performance in three species, except for O. rixosus, where the lack of data on jumping performance prevents us from drawing definitive conclusions for this particular species. We suggest that increased investment in jumping-relevant musculature is a primary morphological adaptation that separates jumping from non-jumping ants. These results elucidate the common and idiosyncratic morphological changes underlying this rare adaptation in ants. まとぅみ (Okinawan language-Uchinaaguchi) (Japanese) РЕЗЮМЕ (Kazakh) ZUSAMMENFASSUNG (German).
Collapse
Affiliation(s)
| | - R A Keller
- Museu Nacional de Historia Natural e da Ciência & Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Universidade de Lisboa, Lisbon, Portugal
| | - J Katzke
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - D M Allman
- Ecological Neuroscience Group, School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - F Hita-Garcia
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - D Labonte
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - A Narendra
- Ecological Neuroscience Group, School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - E P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
3
|
Khalife A, Billen J, Economo EP. Evidence of a thoracic crop in workers, soldiers, and queens of Carebara perpusilla ants (Formicidae: Myrmicinae). THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2023; 110:36. [PMID: 37462726 DOI: 10.1007/s00114-023-01866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
The ability to share and store food is paramount in group-living animals, allowing a finely tuned distribution of resources over time and individuals and an enhanced survival over periods of food scarcity. Ants have several ways to store food: one of them is their gastral crop, also known as a "social stomach." Nutrients in the crop can be regurgitated to nestmates through oral trophallaxis (mouth-to-mouth) or proceed to the midgut by opening the proventriculus, a valve connecting the crop to the midgut. However, some ants are also known to have a so-called "thoracic crop," an extension of the esophagus that allows for additional storage space. In this study, we provide the first evidence of a thoracic crop in the genus Carebara, in reproductive (queen) and sterile (soldier and worker) castes. We discuss how the ant body plan allowed for the evolution of a novel food storage structure in the mesothorax.
Collapse
Affiliation(s)
- Adam Khalife
- Laboratory of Entomology, Faculty of Agriculture, Kagawa University, Ikenobe, Kagawa Prefecture, Miki, 761-0795, Japan.
| | - Johan Billen
- Zoological Institute, University of Leuven, 3000, Leuven, Belgium
| | - Evan P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Kunigami District, Okinawa, Japan
| |
Collapse
|
4
|
Cook A, Pandhigunta K, Acevedo MA, Walker A, Didcock RL, Castro JT, O’Neill D, Acharya R, Bhamla MS, Anderson PSL, Ilton M. A Tunable, Simplified Model for Biological Latch Mediated Spring Actuated Systems. Integr Org Biol 2022; 4:obac032. [PMID: 36060863 PMCID: PMC9434652 DOI: 10.1093/iob/obac032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/01/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022] Open
Abstract
We develop a model of latch-mediated spring actuated (LaMSA) systems relevant to comparative biomechanics and bioinspired design. The model contains five components: two motors (muscles), a spring, a latch, and a load mass. One motor loads the spring to store elastic energy and the second motor subsequently removes the latch, which releases the spring and causes movement of the load mass. We develop freely available software to accompany the model, which provides an extensible framework for simulating LaMSA systems. Output from the simulation includes information from the loading and release phases of motion, which can be used to calculate kinematic performance metrics that are important for biomechanical function. In parallel, we simulate a comparable, directly actuated system that uses the same motor and mass combinations as the LaMSA simulations. By rapidly iterating through biologically relevant input parameters to the model, simulated kinematic performance differences between LaMSA and directly actuated systems can be used to explore the evolutionary dynamics of biological LaMSA systems and uncover design principles for bioinspired LaMSA systems. As proof of principle of this concept, we compare a LaMSA simulation to a directly actuated simulation that includes either a Hill-type force-velocity trade-off or muscle activation dynamics, or both. For the biologically-relevant range of parameters explored, we find that the muscle force-velocity trade-off and muscle activation have similar effects on directly actuated performance. Including both of these dynamic muscle properties increases the accelerated mass range where a LaMSA system outperforms a directly actuated one.
Collapse
Affiliation(s)
- Andrés Cook
- Department of Physics, Harvey Mudd College, Claremont, CA 91711
| | | | - Mason A Acevedo
- Department of Physics, Harvey Mudd College, Claremont, CA 91711
| | - Adam Walker
- Department of Physics, Harvey Mudd College, Claremont, CA 91711
| | | | | | - Declan O’Neill
- Department of Physics, Harvey Mudd College, Claremont, CA 91711
| | - Raghav Acharya
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318
| | - M Saad Bhamla
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318
| | - Philip S L Anderson
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | | |
Collapse
|
5
|
Khalife A, Peeters C, Economo EP. Minute workers and large soldiers in the subterranean ant Carebara perpusilla: Musculoskeletal consequences of Haller's rule in the thorax. ARTHROPOD STRUCTURE & DEVELOPMENT 2022; 69:101188. [PMID: 35709611 DOI: 10.1016/j.asd.2022.101188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Many organismal traits vary with body size, often reflecting trade-offs in the face of size-dependent constraints. For example, Haller's rule, the allometric pattern whereby smaller organisms have proportionally larger brains, can have carry-on effects on head design as the brain competes for space with other structures. Ant species with polymorphic worker castes are interesting cases for helping us understand these allometric effects. Here, we examine the effects of miniaturization on the ant power core, the mesosoma (thorax), with particular attention to how the scaling of nervous system structures affects the skeletomuscular elements involved with load bearing and locomotion. Using X-ray computed microtomography (microCT), we studied the thorax of Carebara perpusilla, an African ant species that has minute workers (1.5 mm-long) and larger soldiers (3.0 mm-long), allowing strong intraspecific comparisons. We find that the thoracic nervous system is relatively larger in minute workers, similar to Haller's rule, with consequences on the skeletomuscular organisation. Minute workers have relatively smaller petiole muscles and indirect head muscles, but relatively larger external trochanter muscles and direct head muscles. We link these allometric trade-offs to miniaturization and division of labor, and discuss how thorax design underlies the success of minute ants.
Collapse
Affiliation(s)
- Adam Khalife
- Laboratoire Mer-Molécules-Santé (MMS-BiOSSE), Le Mans Université, 72000, Le Mans, France; Institute of Ecology and Environmental Sciences (iEES-Paris), Sorbonne Université, 75005, Paris, France.
| | - Christian Peeters
- Institute of Ecology and Environmental Sciences (iEES-Paris), Sorbonne Université, 75005, Paris, France.
| | - Evan P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan; Radcliffe Institute for Advanced Study, Harvard University, Cambridge, MA, 02445, USA.
| |
Collapse
|
6
|
Holzman R, Keren T, Kiflawi M, Martin CH, China V, Mann O, Olsson KH. A new theoretical performance landscape for suction feeding reveals adaptive kinematics in a natural population of reef damselfish. J Exp Biol 2022; 225:jeb243273. [PMID: 35647659 PMCID: PMC9339911 DOI: 10.1242/jeb.243273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/20/2022] [Indexed: 11/20/2022]
Abstract
Understanding how organismal traits determine performance and, ultimately, fitness is a fundamental goal of evolutionary eco-morphology. However, multiple traits can interact in non-linear and context-dependent ways to affect performance, hindering efforts to place natural populations with respect to performance peaks or valleys. Here, we used an established mechanistic model of suction-feeding performance (SIFF) derived from hydrodynamic principles to estimate a theoretical performance landscape for zooplankton prey capture. This performance space can be used to predict prey capture performance for any combination of six morphological and kinematic trait values. We then mapped in situ high-speed video observations of suction feeding in a natural population of a coral reef zooplanktivore, Chromis viridis, onto the performance space to estimate the population's location with respect to the topography of the performance landscape. Although the kinematics of the natural population closely matched regions of high performance in the landscape, the population was not located on a performance peak. Individuals were furthest from performance peaks on the peak gape, ram speed and mouth opening speed trait axes. Moreover, we found that the trait combinations in the observed population were associated with higher performance than expected by chance, suggesting that these combinations are under selection. Our results provide a framework for assessing whether natural populations occupy performance optima.
Collapse
Affiliation(s)
- Roi Holzman
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- The Inter-University Institute for Marine Sciences, PO Box 469, Eilat 88103, Israel
| | - Tal Keren
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- The Inter-University Institute for Marine Sciences, PO Box 469, Eilat 88103, Israel
| | - Moshe Kiflawi
- Department of Life Sciences, Ben Gurion University, Beer Sheva 8410501, Israel
- The Inter-University Institute for Marine Sciences, PO Box 469, Eilat 88103, Israel
| | - Christopher H. Martin
- Department of Integrative Biology, and the Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - Victor China
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- The Inter-University Institute for Marine Sciences, PO Box 469, Eilat 88103, Israel
| | - Ofri Mann
- Department of Life Sciences, Ben Gurion University, Beer Sheva 8410501, Israel
- The Inter-University Institute for Marine Sciences, PO Box 469, Eilat 88103, Israel
| | - Karin H. Olsson
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- The Inter-University Institute for Marine Sciences, PO Box 469, Eilat 88103, Israel
| |
Collapse
|
7
|
Khalife A, Peeters C. Food storage and morphological divergence between worker and soldier castes in a subterranean myrmicine ant, Carebara perpusilla. J NAT HIST 2021. [DOI: 10.1080/00222933.2021.1890851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Adam Khalife
- Institute of Ecology and Environmental Sciences of Paris (iEES Paris), Sorbonne Université, UPEC, CNRS, INRA, IRD, France
| | - Christian Peeters
- Institute of Ecology and Environmental Sciences of Paris (iEES Paris), Sorbonne Université, UPEC, CNRS, INRA, IRD, France
| |
Collapse
|
8
|
Galbán A, Cuezzo F, Torréns J. The Pronotum of Worker of Camponotus borellii Emery (Hymenoptera: Formicidae): How Can It Affect Performance of the Head, Work Division, and Development of the Worker Caste? NEOTROPICAL ENTOMOLOGY 2021; 50:78-89. [PMID: 33501632 DOI: 10.1007/s13744-020-00828-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
In polymorphic ants, whose workers display continuous size distribution, each subcaste occupies a phenotypic space, usually with diffuse morphological boundaries. These morphological differences are closely associated to size by allometry although the environment also plays a key role that affects the fitness of the species. In Camponotus borellii Emery, the species selected as a study model, workers exhibit a continuous increase in size; geometric morphometric (GM) was used over four morphological traits: head capsule, clypeus, pronotum, and mesosoma, in order to assess (1) changes in shape, among the worker caste; (2) the influence of allometry on such changes; and (3) pronotum shape in respect to the head so as to infer which factors may influence the polymorphic development of the worker caste. The results indicated that the pronotum is organized into two highly integrated functional modules (neck and shield), corresponding to one developmental module. GM shows a similar pattern to that obtained for linear morphometry, though the worker ratio was different along continuous size distribution due to shape changes in two traits, with are also useful for delimiting modular units: (1) rounded shape of the posterior region of the head in minor workers; (2) shape of the pronotum, especially its anterior region, henceforth, neck, which widens as a consequence of the higher development of its central region, henceforth, shield, in major workers. The relevance of these results is discussed regarding functional morphology (pronotum in relation to the head), work division, and development of the worker caste.
Collapse
Affiliation(s)
- Alvaro Galbán
- Instituto Superior de Entomología "Dr. Abraham Willink" (INSUE), Fac. de Cs. Nat. e IML-UNT- CONICET, San Miguel de Tucumán, Tucumán, Argentina.
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR), Provincia de La Rioja, UNLAR, SEGEMAR, UNCa, CONICET, Anillaco, La Rioja, Argentina.
| | - Fabiana Cuezzo
- Instituto Superior de Entomología "Dr. Abraham Willink" (INSUE), Fac. de Cs. Nat. e IML-UNT- CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Javier Torréns
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR), Provincia de La Rioja, UNLAR, SEGEMAR, UNCa, CONICET, Anillaco, La Rioja, Argentina
| |
Collapse
|
9
|
Merienne H, Latil G, Moretto P, Fourcassié V. Dynamics of locomotion in the seed harvesting ant Messor barbarus: effect of individual body mass and transported load mass. PeerJ 2021; 9:e10664. [PMID: 33575127 PMCID: PMC7849507 DOI: 10.7717/peerj.10664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
Ants are well-known for their amazing load carriage performances. Yet, the biomechanics of locomotion during load transport in these insects has so far been poorly investigated. Here, we present a study of the biomechanics of unloaded and loaded locomotion in the polymorphic seed-harvesting ant Messor barbarus (Linnaeus, 1767). This species is characterized by a strong intra-colonial size polymorphism with allometric relationships between the different body parts of the workers. In particular, big ants have much larger heads relative to their size than small ants. Their center of mass is thus shifted forward and even more so when they are carrying a load in their mandibles. We investigated the dynamics of the ant center of mass during unloaded and loaded locomotion. We found that during both unloaded and loaded locomotion, the kinetic energy and gravitational potential energy of the ant center of mass are in phase, which is in agreement with what has been described by other authors as a grounded-running gait. During unloaded locomotion, small and big ants do not display the same posture. However, they expend the same amount of mechanical energy to raise and accelerate their center of mass per unit of distance and per unit of body mass. While carrying a load, compared to the unloaded situation, ants seem to modify their locomotion gradually with increasing load mass. Therefore, loaded and unloaded locomotion do not involve discrete types of gait. Moreover, small ants carrying small loads expend less mechanical energy per unit of distance and per unit of body mass and their locomotion thus seem more mechanically efficient.
Collapse
Affiliation(s)
- Hugo Merienne
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Gérard Latil
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre Moretto
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Vincent Fourcassié
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
10
|
Abstract
Abstract
The evolution of eusociality has led to considerable changes in the general hymenopteran body plan. In particular, the evolution of reproductive division of labour caused the worker caste to be largely freed from the demands involved in reproduction. As a consequence, workers were able to evolve highly specialized morphologies for foraging and colony maintenance, whereas the reproductive caste became specialized for reproduction. Despite these important changes, little is known about the general patterns of morphological evolution within the ant reproductive caste. Our goals here were to characterize morphological variation in the ant reproductive caste and to test whether different sexes display variation in their evolutionary rates. We obtained measurements of 897 specimens from a total of 678 ant species. The shapes of the size distributions were similar between sexes, with queens being larger than males in all traits except for eye length. Contrary to the expectation based on Rensch’s rule, although queens were larger, the degree of dimorphism increased with body size. Finally, there was strong evidence for an accelerated tempo of morphological evolution in queens in relation to males. These results represent the first comprehensive treatment of morphological variation in the ant reproductive caste and provide important new insights into their evolution.
Collapse
Affiliation(s)
- Raquel Divieso
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Thiago S R Silva
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Marcio R Pie
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
11
|
Waldrop LD, Rader JA. Melding Modeling and Morphology: A Call for Collaboration to Address Difficult Questions about the Evolution of Form and Function. Integr Comp Biol 2020; 60:1188-1192. [PMID: 33220060 DOI: 10.1093/icb/icaa132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The nascent field of evolutionary biomechanics seeks to understand how form begets function, and researchers have taken two tacks toward this goal: inferring form based on function (comparative biomechanics) or inferring function based on form (functional morphology). Each tack has strengths and weaknesses, which the other could improve. The symposium, "Melding modeling and morphology-integrating approaches to understand the evolution of form and function" sought to highlight research stitching together the two tacks. In this introduction to the symposium's issue, we highlight these works, discuss the challenges of interdisciplinary collaborations, and suggest possible avenues available to create new collaborations to create a unifying framework for evolutionary biomechanics.
Collapse
Affiliation(s)
- Lindsay D Waldrop
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Jonathan A Rader
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|