1
|
Staub NL, Hayes SG, Mendonca MT. Levels of Sex Steroids in Plethodontid Salamanders: A Comparative Study Within the Genus Aneides. Ecol Evol 2024; 14:e70550. [PMID: 39588354 PMCID: PMC11586135 DOI: 10.1002/ece3.70550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024] Open
Abstract
Derived monomorphism is a condition in which males and females are phenotypically similar, but the similarity is derived. Derived monomorphism typically evolves from sexual dimorphism or from a different monomorphic state. We examined the hormonal basis of derived monomorphism in the salamander genus Aneides (Plethodontidae). We reject our hypothesis that circulating levels of androgens explain the derived traits, such as enlarged jaw musculature, in females (some would call them "male-like traits"). There was no clear pattern of differences in androgen levels or degree of dimorphism in androgen levels, between the sexually dimorphic Aneides hardii and the other, derived monomorphic, species studied. Concentrations of testosterone and dihydrotestosterone were higher in males than in females in all species examined. The degree of sexual dimorphism in androgen level was also consistent among the species studied. Levels of androgens in female plethodontids have not been previously reported.
Collapse
Affiliation(s)
- Nancy L. Staub
- Biology DepartmentGonzaga UniversitySpokaneWashingtonUSA
| | | | - Mary T. Mendonca
- Department of Biological SciencesAuburn UniversityAuburnAlabamaUSA
| |
Collapse
|
2
|
Mangiamele LA, Dawn A, LeCure KM, Mantica GE, Racicot R, Fuxjager MJ, Preininger D. How new communication behaviors evolve: Androgens as modifiers of neuromotor structure and function in foot-flagging frogs. Horm Behav 2024; 161:105502. [PMID: 38382227 DOI: 10.1016/j.yhbeh.2024.105502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/08/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
How diverse animal communication signals have arisen is a question that has fascinated many. Xenopus frogs have been a model system used for three decades to reveal insights into the neuroendocrine mechanisms and evolution of vocal diversity. Due to the ease of studying central nervous system control of the laryngeal muscles in vitro, Xenopus has helped us understand how variation in vocal communication signals between sexes and between species is produced at the molecular, cellular, and systems levels. Yet, it is becoming easier to make similar advances in non-model organisms. In this paper, we summarize our research on a group of frog species that have evolved a novel hind limb signal known as 'foot flagging.' We have previously shown that foot flagging is androgen dependent and that the evolution of foot flagging in multiple unrelated species is accompanied by the evolution of higher androgen hormone sensitivity in the leg muscles. Here, we present new preliminary data that compare patterns of androgen receptor expression and neuronal cell density in the lumbar spinal cord - the neuromotor system that controls the hind limb - between foot-flagging and non-foot-flagging frog species. We then relate our work to prior findings in Xenopus, highlighting which patterns of hormone sensitivity and neuroanatomical structure are shared between the neuromotor systems underlying Xenopus vocalizations and foot-flagging frogs' limb movement and which appear to be species-specific. Overall, we aim to illustrate the power of drawing inspiration from experiments in model organisms, in which the mechanistic details have been worked out, and then applying these ideas to a non-model species to reveal new details, further complexities, and fresh hypotheses.
Collapse
Affiliation(s)
- Lisa A Mangiamele
- Department of Biological Sciences, Smith College, Northampton, MA 01063, United States of America.
| | - AllexAndrya Dawn
- Department of Biological Sciences, Smith College, Northampton, MA 01063, United States of America
| | - Kerry M LeCure
- Department of Biological Sciences, Smith College, Northampton, MA 01063, United States of America
| | - Gina E Mantica
- Department of Biological Sciences, Smith College, Northampton, MA 01063, United States of America
| | - Riccardo Racicot
- Department of Biological Sciences, Smith College, Northampton, MA 01063, United States of America
| | - Matthew J Fuxjager
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, United States of America
| | - Doris Preininger
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria; Vienna Zoo, Vienna, Austria
| |
Collapse
|
3
|
Correa LA, Aspillaga-Cid A, León C, Bauer CM, Ramírez-Estrada J, Hayes LD, Soto-Gamboa M, Ebensperger LA. Social environment and anogenital distance length phenotype interact to explain testosterone levels in a communally rearing rodent: Part 2: The female side. Horm Behav 2024; 160:105486. [PMID: 38295731 DOI: 10.1016/j.yhbeh.2024.105486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 03/26/2024]
Abstract
Testosterone is known as a "male" hormone; however, females also synthetize testosterone, which influences female sexual and aggressive behavior. In female vertebrates, as in males, testosterone levels can vary seasonally. However, female testosterone levels may also be related with female anogenital distance (AGD) length phenotype (a proxy of prenatal androgen exposure), and the social group environment. We used data from a long-term rodent study (2009-2019) in a natural population of degus (Octodon degus) to examine the potential associations between female serum testosterone levels, season, female AGD phenotype, and social group composition. We quantified female serum testosterone levels during the mating and offspring rearing seasons, and we determined the number of females and males in social groups, as well the composition of groups, in terms of the AGD of the female and male group mates. Our results indicate that female testosterone levels vary with season, being highest during the offspring rearing season. Additionally, female testosterone levels were associated with the number of male group-members and the AGD of male group-members but were not associated with female social environment and focal female AGD phenotype. Together, our results suggest that female testosterone levels are sensitive to intersexual interactions. Our results also reveal that female and male testosterone levels do not differ between the sexes, a finding previously reported only in rock hyraxes. We discuss how the complex social system of degus could be driving this physiological similarity between the sexes.
Collapse
Affiliation(s)
- Loreto A Correa
- Escuela de Medicina Veterinaria, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Camino la Pirámide 5750, Huechuraba, Santiago, Chile.
| | - Antonia Aspillaga-Cid
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | - Cecilia León
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | - Carolyn M Bauer
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA
| | - Juan Ramírez-Estrada
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | - Loren D Hayes
- Department of Biology, Geology and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
| | - Mauricio Soto-Gamboa
- Laboratorio de Ecología Conductual y Conservación, Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Luis A Ebensperger
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| |
Collapse
|
4
|
McLaughlin JF, Brock KM, Gates I, Pethkar A, Piattoni M, Rossi A, Lipshutz SE. Multivariate Models of Animal Sex: Breaking Binaries Leads to a Better Understanding of Ecology and Evolution. Integr Comp Biol 2023; 63:891-906. [PMID: 37156506 PMCID: PMC10563656 DOI: 10.1093/icb/icad027] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
"Sex" is often used to describe a suite of phenotypic and genotypic traits of an organism related to reproduction. However, these traits-gamete type, chromosomal inheritance, physiology, morphology, behavior, etc.-are not necessarily coupled, and the rhetorical collapse of variation into a single term elides much of the complexity inherent in sexual phenotypes. We argue that consideration of "sex" as a constructed category operating at multiple biological levels opens up new avenues for inquiry in our study of biological variation. We apply this framework to three case studies that illustrate the diversity of sex variation, from decoupling sexual phenotypes to the evolutionary and ecological consequences of intrasexual polymorphisms. We argue that instead of assuming binary sex in these systems, some may be better categorized as multivariate and nonbinary. Finally, we conduct a meta-analysis of terms used to describe diversity in sexual phenotypes in the scientific literature to highlight how a multivariate model of sex can clarify, rather than cloud, studies of sexual diversity within and across species. We argue that such an expanded framework of "sex" better equips us to understand evolutionary processes, and that as biologists, it is incumbent upon us to push back against misunderstandings of the biology of sexual phenotypes that enact harm on marginalized communities.
Collapse
Affiliation(s)
- J F McLaughlin
- Department of Environmental Science, Policy, and Management, College of Natural Resources, University of California, Berkeley, CA 94720, USA
| | - Kinsey M Brock
- Department of Environmental Science, Policy, and Management, College of Natural Resources, University of California, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Isabella Gates
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Anisha Pethkar
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Marcus Piattoni
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Alexis Rossi
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Sara E Lipshutz
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
5
|
Anderson AP, Falk JJ. Cross-sexual Transfer Revisited. Integr Comp Biol 2023; 63:936-945. [PMID: 37147027 DOI: 10.1093/icb/icad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023] Open
Abstract
In her influential book "Developmental Plasticity and Evolution," Mary Jane West-Eberhard introduced the concept of cross-sexual transfer, where traits expressed in one sex in an ancestral species become expressed in the other sex. Despite its potential ubiquity, we find that cross-sexual transfer has been under-studied and under-cited in the literature, with only a few experimental papers that have invoked the concept. Here, we aim to reintroduce cross-sexual transfer as a powerful framework for explaining sex variation and highlight its relevance in current studies on the evolution of sexual heteromorphism (different means or modes in trait values between the sexes). We discuss several exemplary studies of cross-sexual transfer that have been published in the past two decades, further building on West-Eberhard's extensive review. We emphasize two scenarios as potential avenues of study, within-sex polymorphic and sex-role reversed species, and discuss the evolutionary and adaptive implications. Lastly, we propose future questions to expand our understanding of cross-sexual transfer, from nonhormonal mechanisms to the identification of broad taxonomic patterns. As evolutionary biologists increasingly recognize the nonbinary and often continuous nature of sexual heteromorphism, the cross-sexual framework has important utility for generating novel insights and perspectives on the evolution of sexual phenotypes across diverse taxa.
Collapse
Affiliation(s)
| | - Jay Jinsing Falk
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
6
|
Anderson AP, Renn SCP. The Ancestral Modulation Hypothesis: Predicting Mechanistic Control of Sexually Heteromorphic Traits Using Evolutionary History. Am Nat 2023; 202:241-259. [PMID: 37606950 DOI: 10.1086/725438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
AbstractAcross the animal kingdom there are myriad forms within a sex across, and even within, species, rendering concepts of universal sex traits moot. The mechanisms that regulate the development of these trait differences are varied, although in vertebrates, common pathways involve gonadal steroid hormones. Gonadal steroids are often associated with heteromorphic trait development, where the steroid found at higher circulating levels is the one involved in trait development for that sex. Occasionally, there are situations in which a gonadal steroid associated with heteromorphic trait development in one sex is involved in heteromorphic or monomorphic trait development in another sex. We propose a verbal hypothesis, the ancestral modulation hypothesis (AMH), that uses the evolutionary history of the trait-particularly which sex ancestrally possessed higher trait values-to predict the regulatory pathway that governs trait expression. The AMH predicts that the genomic architecture appears first to resolve sexual conflict in an initially monomorphic trait. This architecture takes advantage of existing sex-biased signals, the gonadal steroid pathway, to generate trait heteromorphism. In cases where the other sex experiences evolutionary pressure for the new phenotype, that sex will co-opt the existing architecture by altering its signal to match that of the original high-trait-value sex. We describe the integrated levels needed to produce this pattern and what the expected outcomes will be given the evolutionary history of the trait. We present this framework as a testable hypothesis for the scientific community to investigate and to create further engagement and analysis of both ultimate and proximate approaches to sexual heteromorphism.
Collapse
|
7
|
McLaughlin JF, Aguilar C, Bernstein JM, Navia-Gine WG, Cueto-Aparicio LE, Alarcon AC, Alarcon BD, Collier R, Takyar A, Vong SJ, López-Chong OG, Driver R, Loaiza JR, De León LF, Saltonstall K, Lipshutz SE, Arcila D, Brock KM, Miller MJ. Comparative phylogeography reveals widespread cryptic diversity driven by ecology in Panamanian birds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023. [PMID: 36993716 DOI: 10.1101/2023.01.26.525769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
UNLABELLED Widespread species often harbor unrecognized genetic diversity, and investigating the factors associated with such cryptic variation can help us better understand the forces driving diversification. Here, we identify potential cryptic species based on a comprehensive dataset of COI mitochondrial DNA barcodes from 2,333 individual Panamanian birds across 429 species, representing 391 (59%) of the 659 resident landbird species of the country, as well as opportunistically sampled waterbirds. We complement this dataset with additional publicly available mitochondrial loci, such as ND2 and cytochrome b, obtained from whole mitochondrial genomes from 20 taxa. Using barcode identification numbers (BINs), we find putative cryptic species in 19% of landbird species, highlighting hidden diversity in the relatively well-described avifauna of Panama. Whereas some of these mitochondrial divergence events corresponded with recognized geographic features that likely isolated populations, such as the Cordillera Central highlands, the majority (74%) of lowland splits were between eastern and western populations. The timing of these splits are not temporally coincident across taxa, suggesting that historical events, such as the formation of the Isthmus of Panama and Pleistocene climatic cycles, were not the primary drivers of cryptic diversification. Rather, we observed that forest species, understory species, insectivores, and strongly territorial species-all traits associated with lower dispersal ability-were all more likely to have multiple BINs in Panama, suggesting strong ecological associations with cryptic divergence. Additionally, hand-wing index, a proxy for dispersal capability, was significantly lower in species with multiple BINs, indicating that dispersal ability plays an important role in generating diversity in Neotropical birds. Together, these results underscore the need for evolutionary studies of tropical bird communities to consider ecological factors along with geographic explanations, and that even in areas with well-known avifauna, avian diversity may be substantially underestimated. LAY SUMMARY - What factors are common among bird species with cryptic diversity in Panama? What role do geography, ecology, phylogeographic history, and other factors play in generating bird diversity?- 19% of widely-sampled bird species form two or more distinct DNA barcode clades, suggesting widespread unrecognized diversity.- Traits associated with reduced dispersal ability, such as use of forest understory, high territoriality, low hand-wing index, and insectivory, were more common in taxa with cryptic diversity. Filogeografía comparada revela amplia diversidad críptica causada por la ecología en las aves de Panamá. RESUMEN Especies extendidas frecuentemente tiene diversidad genética no reconocida, y investigando los factores asociados con esta variación críptica puede ayudarnos a entender las fuerzas que impulsan la diversificación. Aquí, identificamos especies crípticas potenciales basadas en un conjunto de datos de códigos de barras de ADN mitocondrial de 2,333 individuos de aves de Panama en 429 especies, representando 391 (59%) de las 659 especies de aves terrestres residentes del país, además de algunas aves acuáticas muestreada de manera oportunista. Adicionalmente, complementamos estos datos con secuencias mitocondriales disponibles públicamente de otros loci, tal como ND2 o citocroma b, obtenidos de los genomas mitocondriales completos de 20 taxones. Utilizando los números de identificación de código de barras (en ingles: BINs), un sistema taxonómico numérico que proporcina una estimación imparcial de la diversidad potencial a nivel de especie, encontramos especies crípticas putativas en 19% de las especies de aves terrestres, lo que destaca la diversidad oculta en la avifauna bien descrita de Panamá. Aunque algunos de estos eventos de divergencia conciden con características geográficas que probablemente aislaron las poblaciones, la mayoría (74%) de la divergencia en las tierras bajas se encuentra entre las poblaciones orientales y occidentales. El tiempo de esta divergencia no coincidió entre los taxones, sugiriendo que eventos históricos tales como la formación del Istmo de Panamá y los ciclos climáticos del pleistoceno, no fueron los principales impulsores de la especiación. En cambio, observamos asociaciones fuertes entre las características ecológicas y la divergencia mitocondriale: las especies del bosque, sotobosque, con una dieta insectívora, y con territorialidad fuerte mostraton múltiple BINs probables. Adicionalmente, el índice mano-ala, que está asociado a la capacidad de dispersión, fue significativamente menor en las especies con BINs multiples, sugiriendo que la capacidad de dispersión tiene un rol importamente en la generación de la diversidad de las aves neotropicales. Estos resultos demonstran la necesidad de que estudios evolutivos de las comunidades de aves tropicales consideren los factores ecológicos en conjunto con las explicaciones geográficos. Palabras clave: biodiversidad tropical, biogeografía, códigos de barras, dispersión, especies crípticas.
Collapse
|
8
|
Lipshutz SE, Torneo SJ, Rosvall KA. How Female-Female Competition Affects Male-Male Competition: Insights into Postcopulatory Sexual Selection from Socially Polyandrous Species. Am Nat 2023; 201:460-471. [PMID: 36848510 DOI: 10.1086/722799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractSexual selection is a major driver of trait variation, and the intensity of male competition for mating opportunities has been linked with sperm size across diverse taxa. Mating competition among females may also shape the evolution of sperm traits, but the effect of the interplay between female-female competition and male-male competition on sperm morphology is not well understood. We evaluated variation in sperm morphology in two species with socially polyandrous mating systems, in which females compete to mate with multiple males. Northern jacanas (Jacana spinosa) and wattled jacanas (J. jacana) vary in their degree of social polyandry and sexual dimorphism, suggesting species differences in the intensity of sexual selection. We compared mean and variance in sperm head, midpiece, and tail length between species and breeding stages because these measures have been associated with the intensity of sperm competition. We found that the species with greater polyandry, northern jacana, has sperm with longer midpieces and tails as well as marginally lower intraejaculate variation in tail length. Intraejaculate variation was also significantly lower in copulating males than in incubating males, suggesting flexibility in sperm production as males cycle between breeding stages. Our results indicate that stronger female-female competition for mating opportunities may also shape more intense male-male competition by selecting for longer and less variable sperm traits. These findings extend frameworks developed in socially monogamous species to reveal that sperm competition may be an important evolutionary force layered atop female-female competition for mates.
Collapse
|
9
|
Smiley KO, Lipshutz SE, Kimmitt AA, DeVries MS, Cain KE, George EM, Covino KM. Beyond a biased binary: A perspective on the misconceptions, challenges, and implications of studying females in avian behavioral endocrinology. Front Physiol 2022; 13:970603. [PMID: 36213250 PMCID: PMC9532843 DOI: 10.3389/fphys.2022.970603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/18/2022] [Indexed: 12/04/2022] Open
Abstract
For decades, avian endocrinology has been informed by male perspectives and male-focused research, leaving significant gaps in our understanding of female birds. Male birds have been favored as research subjects because their reproductive behaviors are considered more conspicuous and their reproductive physiology is presumably less complex than female birds. However, female birds should not be ignored, as female reproductive behavior and physiology are essential for the propagation of all avian species. Endocrine research in female birds has made much progress in the last 20 years, but a substantial disparity in knowledge between male and female endocrinology persists. In this perspective piece, we provide examples of why ornithology has neglected female endocrinology, and we propose considerations for field and laboratory techniques to facilitate future studies. We highlight recent advances that showcase the importance of female avian endocrinology, and we challenge historic applications of an oversimplified, male-biased lens. We further provide examples of species for which avian behavior differs from the stereotypically described behaviors of male and female birds, warning investigators of the pitfalls in approaching endocrinology with a binary bias. We hope this piece will inspire investigators to engage in more comprehensive studies with female birds, to close the knowledge gap between the sexes, and to look beyond the binary when drawing conclusions about what is ‘male’ versus ‘female’ biology.
Collapse
Affiliation(s)
- Kristina O. Smiley
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Center for Neuroendocrine Studies and Department of Psychological and Brain Sciences, University of Massachusetts-Amherst, Amherst, MA, United States
- *Correspondence: Kristina O. Smiley,
| | - Sara E. Lipshutz
- Biology Department, Loyola University Chicago, Chicago, IL, United States
| | - Abigail A. Kimmitt
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
| | - M. Susan DeVries
- Department of Biological Sciences, University of Wisconsin-Whitewater, Whitewater, WI, United States
| | - Kristal E. Cain
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Elizabeth M. George
- Biology Department, Texas A&M University, College Station, TX, United States
| | - Kristen. M. Covino
- Biology Department, Loyola Marymount University, Los Angeles, CA, United States
| |
Collapse
|
10
|
Sonnweber R, Stevens JMG, Hohmann G, Deschner T, Behringer V. Plasma Testosterone and Androstenedione Levels Follow the Same Sex-Specific Patterns in the Two Pan Species. BIOLOGY 2022; 11:biology11091275. [PMID: 36138754 PMCID: PMC9495489 DOI: 10.3390/biology11091275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/27/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Generally male mammals are more aggressive than their female peers. In these males, aggressive behavior is linked to levels of androgens; higher levels of testosterone are predictive of higher aggression rates or more severe aggression. There are some species where the pattern of sex-specific aggression is reversed, and it was hypothesized that high levels of androgens may be responsible for social dominance and aggressiveness in these females. Studies so far found that females of species with sex-reversed aggression patterns (e.g., spotted hyenas and ring-tailed lemurs) had lower plasma testosterone levels than their male peers, but a precursor of testosterone, androstenedione, was comparable or even higher in females than in males. This supported the idea that selection for female aggressiveness may be facilitated through augmented androgen secretion. Here we show that in two sister species, bonobos and chimpanzees, that differ in terms of sex-specific aggression patterns, females have lower plasma testosterone levels and higher plasma androstenedione levels than their male peers. Thus, our data do not support a theory of a role of female androgen levels on the expression of sex-specific patterns of aggression. Abstract In most animals, males are considered more aggressive, in terms of frequency and intensity of aggressive behaviors, than their female peers. However, in several species this widespread male-biased aggression pattern is either extenuated, absent, or even sex-reversed. Studies investigating potential neuro-physiological mechanisms driving the selection for female aggression in these species have revealed an important, but not exclusive role of androgens in the expression of the observed sex-specific behavioral patterns. Two very closely related mammalian species that markedly differ in the expression and degree of sex-specific aggression are the two Pan species, where the chimpanzee societies are male-dominated while in bonobos sex-biased aggression patterns are alleviated. Using liquid chromatography–mass spectrometry (LC-MS) methods, we measured levels of plasma testosterone and androstenedione levels in male and female zoo-housed bonobos (N = 21; 12 females, 9 males) and chimpanzees (N = 41; 27 females, 14 males). Our results show comparable absolute and relative intersexual patterns of blood androgen levels in both species of Pan. Plasma testosterone levels were higher in males (bonobos: females: average 0.53 ± 0.30 ng/mL; males 6.70 ± 2.93 ng/mL; chimpanzees: females: average 0.40 ± 0.23 ng/mL; males 5.84 ± 3.63 ng/mL) and plasma androstenedione levels were higher in females of either species (bonobos: females: average 1.83 ± 0.87 ng/mL; males 1.13 ± 0.44 ng/mL; chimpanzees: females: average 1.84 ± 0.92 ng/mL; males 1.22 ± 0.55 ng/mL). The latter result speaks against a role of androstenedione in the mediation of heightened female aggression, as had been suggested based on studies in other mammal species where females are dominant and show high levels of female aggressiveness.
Collapse
Affiliation(s)
- Ruth Sonnweber
- Department of Behavioral and Cognitive Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Correspondence:
| | - Jeroen M. G. Stevens
- Behavioral Ecology and Ecophysiology, Department of Biology, University of Antwerp, Campus Drie Eiken, Building D, D1.21, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Gottfried Hohmann
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
- Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315 Radolfzell/Konstanz, Germany
| | - Tobias Deschner
- Comparative BioCognition, Institute of Cognitive Science, University of Osnabrück, Artilleriestrasse 34, 49090 Osnabrück, Germany
| | - Verena Behringer
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| |
Collapse
|
11
|
Grebe NM, Sheikh A, Drea CM. Integrating the female masculinization and challenge hypotheses: Female dominance, male deference, and seasonal hormone fluctuations in adult blue-eyed black lemurs (Eulemur flavifrons). Horm Behav 2022; 139:105108. [PMID: 35033896 DOI: 10.1016/j.yhbeh.2022.105108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 11/19/2022]
Abstract
In the decades since female social dominance was first described in strepsirrhine primates, researchers have sought to uncover the proximate and ultimate explanations for its development. In the females of various female-dominant species, androgens have been implicated as regulators of behavior and/or predictors of seasonal fluctuations in aggression (the 'Female Masculinization Hypothesis'). Males, more generally, respond to changing social demands via seasonal fluctuations in androgen-mediated behavior (the 'Challenge Hypothesis'), that may also entail changes in activation of the hypothalamic-pituitary-adrenal axis. Here, we explore if androgens, glucocorticoids, and intersexual behavior fluctuate seasonally in the female-dominant, blue-eyed black lemur (Eulemur flavifrons), with potential consequences for understanding female aggression and male deference. Across two studies conducted during the breeding and nonbreeding seasons, we assessed rates of mixed-sex, dyadic social behavior (aggression and affiliation) and concentrations of fecal glucocorticoid metabolites (Study 1) and serum sex hormones (androstenedione, testosterone, and estradiol; Study 2). Our results align with several predictions inspired by the Female Masculinization and Challenge Hypotheses for intersexual relations: During the breeding season, specifically, both aggression and androstenedione peaked in females, while female-initiated affiliation decreased, potentially to facilitate female resource access and reproductive control. By comparison, all target hormones (androgens, estrogen, and glucocorticoids) peaked in males, with glucocorticoid concentrations potentially increasing in response to the surge in female aggression, and unusually high estrogen concentrations year-round potentially facilitating male deference via male-initiated affiliation. These results suggest complex, seasonally and hormonally mediated behavior in Eulemur flavifrons.
Collapse
Affiliation(s)
- Nicholas M Grebe
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, United States of America.
| | - Alizeh Sheikh
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, United States of America
| | - Christine M Drea
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, United States of America; Department of Biology, Duke University, Durham, NC 27708, United States of America
| |
Collapse
|
12
|
Fuss T. Mate Choice, Sex Roles and Sexual Cognition in Vertebrates: Mate Choice Turns Cognition or Cognition Turns Mate Choice? Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.749495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The idea of “smart is sexy,” meaning superior cognition provides competitive benefits in mate choice and, therefore, evolutionary advantages in terms of reproductive fitness, is both exciting and captivating. Cognitively flexible individuals perceive and adapt more dynamically to (unpredictable) environmental changes. The sex roles that females and males adopt within their populations can vary greatly in response to the prevalent mating system. Based on how cognition determines these grossly divergent sex roles, different selection pressures could possibly shape the (progressive) evolution of cognitive abilities, suggesting the potential to induce sexual dimorphisms in superior cognitive abilities. Associations between an individual’s mating success, sexual traits and its cognitive abilities have been found consistently across vertebrate species and taxa, providing evidence that sexual selection may well shape the supporting cognitive prerequisites. Yet, while superior cognitive abilities provide benefits such as higher feeding success, improved antipredator behavior, or more favorable mate choice, they also claim costs such as higher energy levels and metabolic rates, which in turn may reduce fecundity, growth, or immune response. There is compelling evidence in a variety of vertebrate taxa that females appear to prefer skilled problem-solver males, i.e., they prefer those that appear to have better cognitive abilities. Consequently, cognition is also likely to have substantial effects on sexual selection processes. How the choosing sex assesses the cognitive abilities of potential mates has not been explored conclusively yet. Do cognitive skills guide an individual’s mate choice and does learning change an individual’s mate choice decisions? How and to which extent do individuals use their own cognitive skills to assess those of their conspecifics when choosing a mate? How does an individual’s role within a mating system influence the choice of the choosing sex in this context? Drawing on several examples from the vertebrate world, this review aims to elucidate various aspects associated with cognitive sex differences, the different roles of males and females in social and sexual interactions, and the potential influence of cognition on mate choice decisions. Finally, future perspectives aim to identify ways to answer the central question of how the triad of sex, cognition, and mate choice interacts.
Collapse
|
13
|
Fritzsche K, Henshaw JM, Johnson BD, Jones AG. The 150th anniversary of The Descent of Man: Darwin and the impact of sex-role reversal on sexual selection research. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
The year 2021 marks the 150th anniversary of the publication of Charles Darwin’s extraordinary book The Descent of Man and Selection in Relation to Sex. Here, we review the history and impact of a single profound insight from The Descent of Man: that, in some few species, females rather than males compete for access to mates. In other words, these species are ‘sex-role reversed’ with respect to mating competition and sexual selection compared to the majority of species in which sexual selection acts most strongly on males. Over the subsequent 150 years, sex-role-reversed species have motivated multiple key conceptual breakthroughs in sexual selection. The surprising mating dynamics of such species challenged scientists’ preconceptions, forcing them to examine implicit assumptions and stereotypes. This wider worldview has led to a richer and more nuanced understanding of animal mating systems and, in particular, to a proper appreciation for the fundamental role that females play in shaping these systems. Sex-role-reversed species have considerable untapped potential and will continue to contribute to sexual selection research in the decades to come.
Collapse
Affiliation(s)
- Karoline Fritzsche
- Institute of Biology I, University of Freiburg, Hauptstraße 1, D-79104 Freiburg, Germany
| | - Jonathan M Henshaw
- Institute of Biology I, University of Freiburg, Hauptstraße 1, D-79104 Freiburg, Germany
| | | | - Adam G Jones
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| |
Collapse
|
14
|
Schlinger BA, Chiver I. Behavioral Sex Differences and Hormonal Control in a Bird with an Elaborate Courtship Display. Integr Comp Biol 2021; 61:1319-1328. [PMID: 33885763 DOI: 10.1093/icb/icab033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Gonadal hormones can activate performance of reproductive behavior in adult animals, but also organize sex-specific neural circuits developmentally. Few studies have examined the hormonal basis of sex differences in the performance of elaborate, physically complex and energetic male courtship displays. Here we describe our studies over more than 20 years examining sex difference and hormonal control of courtship in Golden-collared manakins (Manacus vitellinus) of Panamaian rainforests. Our recent studies of birds studied in an artificial "lek" in a rainforest aviary provide many new insights. Wild and captive males and females differ markedly in their performance of male-typical behaviors. Testosterone (T) treatment augments performance of virtually all of these behaviors in juvenile males with low levels of circulating T. By contrast, T-treatment of females (with low circulating T) either failed to activate some behaviors or activated male behaviors weakly or strongly. These results are discussed within a framework of our appreciation for hormonal vs genetic basis for sex differences in behavior with speculation about the neural mechanisms producing these patterns of hormonal activation.
Collapse
Affiliation(s)
- Barney A Schlinger
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095.,Smithsonian Tropical Research Institute, Panama City, Panama
| | | |
Collapse
|
15
|
Hayssen V, Orr TJ. Introduction to “Reproduction: The Female Perspective from an Integrative and Comparative Framework”. Integr Comp Biol 2020. [DOI: 10.1093/icb/icaa101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Synopsis
This compendium is from a symposium about reproductive biology from the female perspective, but what do we mean by the female perspective? Most obviously, since all of our speakers, and most of our contributors, are female, one meaning is that the female perspective is the view of female scientists. Our diverse contributors are from a spectrum of academic ranks (post-docs to chaired professors) and study a range of animal taxa from insects to mammals. More importantly, we want to examine reproductive biology from the perspective of female organisms themselves. What happens when we examine social behavior, physiology, or ecology strictly from the viewpoint of females? In many cases, the female-centric perspective will alter our prior interpretations. For example, with deoxyribonucleic acid fingerprinting, differences between genetic and behavioral mating-systems became obvious. The scientific community came to realize that assessing parentage is the definitive way to categorize mating systems since using male-mating strategies resulted in flawed conclusions; in fact, the female selection of which sperm is involved in conception is more important in determining parentage than mating events per se. Perhaps parentage systems rather than mating systems would be more appropriate. This difference in interpretation relative to methodology exemplifies how behavioral ecology might change if we examine systems from the female perspective; similar changes may occur for other fields. Another example comes from studies of whole-organism performance. Here, jumping, running, and swimming have been measured in males, usually with the deliberate removal of females and the major facet of female physiology, that is, reproduction. However, female biology may actually set the limits of performance given the need to carry extra weight and the extensive changes in body shape required for reproduction. Female performance is a valuable area for research. In fact, novel insights into metabolic ceilings arose from examining energetics, including metabolic rates, during lactation. In the symposium and the associated papers, our contributors explored the various ways in which a female-focused framework shifts our research conclusions and programs. As a way forward, we also include a table of sex-neutral terminology to replace terms that are currently androcentric or value-laden.
Collapse
Affiliation(s)
- Virginia Hayssen
- Biology, Smith College, 44 College Lane, Northampton, MA 01063, USA
| | - Teri J Orr
- New Mexico State University, Las Cruces, NM (TJO) and Smith College, Northampton, MA, USA
| |
Collapse
|