1
|
Buffa V, Salaün W, Cinnella P. Influence of posture during gliding flight in the flying lizard Draco volans. BIOINSPIRATION & BIOMIMETICS 2024; 19:026008. [PMID: 38211353 DOI: 10.1088/1748-3190/ad1dbb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
The agamid lizards of the genusDracoare undoubtedly the most renown reptilian gliders, using their rib-supported patagial wings as lifting surfaces while airborne. Recent investigations into these reptiles highlighted the role of body posture during gliding, however, the aerodynamics of postural changes inDracoremain unclear. Here, we examine the aerodynamics and gliding performances ofDraco volansusing a numerical approach focusing on three postural changes: wing expansion, body camber, and limb positioning. To this aim, we conducted 70 three-dimensional steady-state computational fluid dynamics simulations of gliding flight and 240 two-dimensional glide trajectory calculations. Our results demonstrate that while airborne,D. volansgenerates a separated turbulent boundary layer over its wings characterized by a large recirculation cell that is kept attached to the wing surface by interaction with wing-tip vortices, increasing lift generation. This lift generating mechanism may be controlled by changing wing expansion and shape to modulate the generation of aerodynamic force. Furthermore, our trajectory simulations highlight the influence of body camber and orientation on glide range. This sheds light on howD. volanscontrols its gliding performance, and conforms to the observation that these animals plan their glide paths prior to take off. Lastly,D. volansis mostly neutral in pitch and highly maneuverable, similar to other vertebrate gliders. The numerical study presented here thus provides a better understanding of the lift generating mechanism and the influence of postural changes in flight in this emblematic animal and will facilitate the study of gliding flight in analogous gliding reptiles for which direct observations are unavailable.
Collapse
Affiliation(s)
- Valentin Buffa
- Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa
- Centre de Recherche en Paléontologie-Paris, UMR 7207 CNRS-MNHN-SU, Muséum national d'Histoire naturelle, CP38, 8 rue Buffon, 75005 Paris, France
| | - William Salaün
- Institut Jean Le Rond D'Alembert-Paris, UMR 7190, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Paola Cinnella
- Institut Jean Le Rond D'Alembert-Paris, UMR 7190, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
2
|
Khandelwal PC, Zakaria MA, Socha JJ. A Year at the Forefront of Gliding Locomotion. Biol Open 2023; 12:bio059973. [PMID: 37581305 PMCID: PMC10445725 DOI: 10.1242/bio.059973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
This review highlights the largely understudied behavior of gliding locomotion, which is exhibited by a diverse range of animals spanning vertebrates and invertebrates, in air and in water. The insights in the literature gained from January 2022 to December 2022 continue to challenge the previously held notion of gliding as a relatively simple form of locomotion. Using advances in field/lab data collection and computation, the highlighted studies cover gliding in animals including seabirds, flying lizards, flying snakes, geckos, dragonflies, damselflies, and dolphins. Altogether, these studies present gliding as a sophisticated behavior resulting from the interdependent aspects of morphology, sensing, environment, and likely selective pressures. This review uses these insights as inspiration to encourage researchers to revisit gliding locomotion, both in the animal's natural habitat and in the laboratory, and to investigate questions spanning gliding biomechanics, ecology, sensing, and the evolution of animal flight.
Collapse
Affiliation(s)
- Pranav C. Khandelwal
- Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
- Institute of Flight Mechanics and Controls, University of Stuttgart, Stuttgart 70569, Germany
| | - Mohamed A. Zakaria
- Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - John J. Socha
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
3
|
Ma T, Zhang T, Ma O. On the dynamics and control of a squirrel locking its head/eyes toward a fixed spot for safe landing while its body is tumbling in air. Front Robot AI 2022; 9:1030601. [PMID: 36504492 PMCID: PMC9729943 DOI: 10.3389/frobt.2022.1030601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/28/2022] [Indexed: 11/25/2022] Open
Abstract
An arboreal mammal such as a squirrel can amazingly lock its head (and thus eyes) toward a fixed spot for safe landing while its body is tumbling in air after unexpectedly being thrown into air. Such an impressive ability of body motion control of squirrels has been shown in a recent YouTube video, which has amazed public with over 100 million views. In the video, a squirrel attracted to food crawled onto an ejection device and was unknowingly ejected into air by the device. During the resulting projectile flight, the squirrel managed to quickly turn its head (eyes) toward and then keeps staring at the landing spot until it safely landed on feet. Understanding the underline dynamics and how the squirrel does this behavior can inspire robotics researchers to develop bio-inspired control strategies for challenging robotic operations such as hopping/jumping robots operating in an unstructured environment. To study this problem, we implemented a 2D multibody dynamics model, which simulated the dynamic motion behavior of the main body segments of a squirrel in a vertical motion plane. The inevitable physical contact between the body segments is also modeled and simulated. Then, we introduced two motion control methods aiming at locking the body representing the head of the squirrel toward a globally fixed spot while the other body segments of the squirrel were undergoing a general 2D rotation and translation. One of the control methods is a conventional proportional-derivative (PD) controller, and the other is a reinforcement learning (RL)-based controller. Our simulation-based experiment shows that both controllers can achieve the intended control goal, quickly turning and then locking the head toward a globally fixed spot under any feasible initial motion conditions. In comparison, the RL-based method is more robust against random noise in sensor data and also more robust under unexpected initial conditions.
Collapse
Affiliation(s)
- Tianqi Ma
- Department of Automation, Tsinghua University, Beijing, China,*Correspondence: Tianqi Ma,
| | - Tao Zhang
- Department of Automation, Tsinghua University, Beijing, China
| | - Ou Ma
- Department of Aerospace and Engineering Mechanics, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
4
|
Khandelwal PC, Hedrick TL. Combined effects of body posture and three-dimensional wing shape enable efficient gliding in flying lizards. Sci Rep 2022; 12:1793. [PMID: 35110615 PMCID: PMC8811005 DOI: 10.1038/s41598-022-05739-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/17/2022] [Indexed: 11/09/2022] Open
Abstract
Gliding animals change their body shape and posture while producing and modulating aerodynamic forces during flight. However, the combined effect of these different factors on aerodynamic force production, and ultimately the animal's gliding ability, remains uncertain. Here, we quantified the time-varying morphology and aerodynamics of complete, voluntary glides performed by a population of wild gliding lizards (Draco dussumieri) in a seven-camera motion capture arena constructed in their natural environment. Our findings, in conjunction with previous airfoil models, highlight how three-dimensional (3D) wing shape including camber, planform, and aspect ratio enables gliding flight and effective aerodynamic performance by the lizard up to and over an angle of attack (AoA) of 55° without catastrophic loss of lift. Furthermore, the lizards maintained a near maximal lift-to-drag ratio throughout their mid-glide by changing body pitch to control AoA, while simultaneously modulating airfoil camber to alter the magnitude of aerodynamic forces. This strategy allows an optimal aerodynamic configuration for horizontal transport while ensuring adaptability to real-world flight conditions and behavioral requirements. Overall, we empirically show that the aerodynamics of biological airfoils coupled with the animal's ability to control posture and their 3D wing shape enable efficient gliding and adaptive flight control in the natural habitat.
Collapse
Affiliation(s)
| | - Tyson L Hedrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
5
|
Jumping with adhesion: landing surface incline alters impact force and body kinematics in crested geckos. Sci Rep 2021; 11:23043. [PMID: 34845262 PMCID: PMC8630229 DOI: 10.1038/s41598-021-02033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022] Open
Abstract
Arboreal habitats are characterized by a complex three-dimensional array of branches that vary in numerous characteristics, including incline, compliance, roughness, and diameter. Gaps must often be crossed, and this is frequently accomplished by leaping. Geckos bearing an adhesive system often jump in arboreal habitats, although few studies have examined their jumping biomechanics. We investigated the biomechanics of landing on smooth surfaces in crested geckos, Correlophus ciliatus, asking whether the incline of the landing platform alters impact forces and mid-air body movements. Using high-speed videography, we examined jumps from a horizontal take-off platform to horizontal, 45° and 90° landing platforms. Take-off velocity was greatest when geckos were jumping to a horizontal platform. Geckos did not modulate their body orientation in the air. Body curvature during landing, and landing duration, were greatest on the vertical platform. Together, these significantly reduced the impact force on the vertical platform. When landing on a smooth vertical surface, the geckos must engage the adhesive system to prevent slipping and falling. In contrast, landing on a horizontal surface requires no adhesion, but incurs high impact forces. Despite a lack of mid-air modulation, geckos appear robust to changing landing conditions.
Collapse
|
6
|
Schwaner MJ, Hsieh ST, Swalla BJ, McGowan CP. An introduction to an evolutionary tail: EvoDevo, structure and function of post-anal appendages. Integr Comp Biol 2021; 61:352-357. [PMID: 34124748 DOI: 10.1093/icb/icab134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although tails are common and versatile appendages that contribute to evolutionary success of animals in a broad range of ways, a scientific synthesis on the topic had yet to be initiated. For our Society for Integrative and Comparative Biology (SICB) symposium we brought together researchers from different areas of expertise (e.g., robotosists, biomechanists, functional morphologists, and evolutionary and developmental biologists), to highlight their research but also to emphasize the interdisciplinary nature of this topic. The four main themes that emerged based on the research presented in this symposium are: 1) How do we define a tail? 2) Development and regeneration inform evolutionary origins of tails, 3) Identifying key characteristics highlights functional morphology of tails, 4) Tail multi-functionality leads to the development of bioinspired technology. We discuss the research provided within this symposium, in light of these four themes. We showcase the broad diversity of current tail research and lay an important foundational framework for future interdisciplinary research on tails with this timely symposium.
Collapse
Affiliation(s)
- M J Schwaner
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA
| | - S T Hsieh
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - B J Swalla
- Department of Biology, University of Washington, Seattle, WA, USA
| | - C P McGowan
- Department of Integrative Anatomical Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Vollin MF, Higham TE. Tail Autotomy Alters Prey Capture Performance and Kinematics, but not Success, in Banded Geckos. Integr Comp Biol 2021; 61:538-549. [PMID: 33988701 DOI: 10.1093/icb/icab076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tails are versatile structures with diverse forms and functions across vertebrates. They are involved in almost all behaviors critical to survival including locomotion, feeding, and predator avoidance. Although the tail's role in locomotion and stability has been widely studied, its role in prey capture is relatively unknown. Lizards are an ideal system to examine the tail's impact on prey capture as most are capable of autotomizing, or dropping, their tail in response to predation and intraspecific competition. Tail autotomy can lower reproduction, decrease locomotor performance, impart instability during jumping, and decrease social status. Desert banded geckos (Coleonyx variegatus) frequently capture evasive prey in nature and appear to use their tail during strikes. However, it is unclear if these tail movements are important for the strike itself, or if they simply draw attention to that part of the body. We used high-speed 3D videography to quantify prey capture performance and kinematics of C. variegatus striking at crickets before and after total caudal autotomy. Trials were conducted within 2 h of autotomy and then repeatedly over a 2-week period. Overall, prey capture success was unaffected by caudal autotomy. However, maximum strike velocity decreased significantly after autotomy, highlighting the importance of the tail during prey capture. Strike kinematics were altered after autotomy in several ways, including geckos adopting a more sprawled posture. Maximum pectoral girdle and mid-back height were significantly lower during post-autotomy strikes, whereas maximum pelvic girdle height was unaffected. However, individual variation was considerable. This downward pitching of the body after tail loss suggests that the tail is necessary for counterbalancing the anterior portion of the body and resisting the rotational inertia incurred after pushing off with the hindlimbs. Utilizing autotomy to test tail function in prey capture can provide valuable insight into how the tail is used in terrestrial predation across a wide variety of species and ecological niches.
Collapse
Affiliation(s)
- Marina F Vollin
- Department of Evolution, Ecology, and Organismal Biology, University of California, 900 University Avenue, Riverside, CA 92521, USA
| | - Timothy E Higham
- Department of Evolution, Ecology, and Organismal Biology, University of California, 900 University Avenue, Riverside, CA 92521, USA
| |
Collapse
|