1
|
Popecki MS, Rogers RL, Archer-Hartmann SA, Wares JP, Stanger-Hall KF. The role of pigments in light color variation of the firefly Photinus pyralis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614534. [PMID: 39386434 PMCID: PMC11463521 DOI: 10.1101/2024.09.23.614534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Fireflies use bioluminescent signals to communicate with their mates. Luciferase has been thought to be the sole contributor to light color; however, populations of the Photinus pyralis firefly display variation in the color of their emitted signals yet have identical luciferase sequences. Here, we examined whether pigments could be present in the light organs of the twilight-active species P. pyralis and contribute to this variation. We detected patterns of expression that suggest ommochrome and pterin screening pigments are expressed in P. pyralis light organs and could filter light emitted by luciferase and play a role in signal tuning. There were no significant differences between the pigment gene expression of P. pyralis individuals with yellower and greener signals. Our study provides alternative mechanisms that could influence pigments in P. pyralis light organs that could also play a role in modifying signal color.
Collapse
|
2
|
Blumer MJ, Surapaneni VA, Ciecierska-Holmes J, Redl S, Pechriggl EJ, Mollen FH, Dean MN. Intermediate filaments spatially organize intracellular nanostructures to produce the bright structural blue of ribbontail stingrays across ontogeny. Front Cell Dev Biol 2024; 12:1393237. [PMID: 39050893 PMCID: PMC11266302 DOI: 10.3389/fcell.2024.1393237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/03/2024] [Indexed: 07/27/2024] Open
Abstract
In animals, pigments but also nanostructures determine skin coloration, and many shades are produced by combining both mechanisms. Recently, we discovered a new mechanism for blue coloration in the ribbontail stingray Taeniura lymma, a species with electric blue spots on its yellow-brown skin. Here, we characterize finescale differences in cell composition and architecture distinguishing blue from non-blue regions, the first description of elasmobranch chromatophores and the nanostructures responsible for the stingray's novel structural blue, contrasting with other known mechanisms for making nature's rarest color. In blue regions, the upper dermis comprised a layer of chromatophore units -iridophores and melanophores entwined in compact clusters framed by collagen bundles- this structural stability perhaps the root of the skin color's robustness. Stingray iridophores were notably different from other vertebrate light-reflecting cells in having numerous fingerlike processes, which surrounded nearby melanophores like fists clenching a black stone. Iridophores contained spherical iridosomes enclosing guanine nanocrystals, suspended in a 3D quasi-order, linked by a cytoskeleton of intermediate filaments. We argue that intermediate filaments form a structural scaffold with a distinct optical role, providing the iridosome spacing critical to produce the blue color. In contrast, black-pigmented melanosomes within melanophores showed space-efficient packing, consistent with their hypothesized role as broadband-absorbers for enhancing blue color saturation. The chromatophore layer's ultrastructure was similar in juvenile and adult animals, indicating that skin color and perhaps its ecological role are likely consistent through ontogeny. In non-blue areas, iridophores were replaced by pale cells, resembling iridophores in some morphological and nanoscale features, but lacking guanine crystals, suggesting that the cell types arise from a common progenitor cell. The particular cellular associations and structural interactions we demonstrate in stingray skin suggest that pigment cells induce differentiation in the progenitor cells of iridophores, and that some features driving color production may be shared with bony fishes, although the lineages diverged hundreds of millions of years ago and the iridophores themselves differ drastically.
Collapse
Affiliation(s)
- Michael J. Blumer
- Institute of Clinical and Functional Anatomy, Medical University Innsbruck, Innsbruck, Austria
| | - Venkata A. Surapaneni
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jana Ciecierska-Holmes
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Stefan Redl
- Institute of Neuroanatomy, Medical University Innsbruck, Innsbruck, Austria
| | - Elisabeth J. Pechriggl
- Institute of Clinical and Functional Anatomy, Medical University Innsbruck, Innsbruck, Austria
| | | | - Mason N. Dean
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| |
Collapse
|
3
|
Hanly JJ, Francescutti CM, Loh LS, Corning OBWH, Long DJ, Nakatani MA, Porter AH, Martin A. Genetics of yellow-orange color variation in a pair of sympatric sulphur butterflies. Cell Rep 2023; 42:112820. [PMID: 37481719 DOI: 10.1016/j.celrep.2023.112820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/02/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Abstract
Continuous color polymorphisms can serve as a tractable model for the genetic and developmental architecture of traits. Here we investigated continuous color variation in Colias eurytheme and Colias philodice, two species of sulphur butterflies that hybridize in sympatry. Using quantitative trait locus (QTL) analysis and high-throughput color quantification, we found two interacting large-effect loci affecting orange-to-yellow chromaticity. Knockouts of red Malpighian tubules (red), likely involved in endosomal maturation, result in depigmented wing scales. Additionally, the transcription factor bric-a-brac can act as a modulator of orange pigmentation. We also describe the QTL architecture of other continuously varying traits, together supporting a large-X effect model where the genetic control of species-defining traits is enriched on sex chromosomes. This study sheds light on the range of possible genetic architectures that can underpin a continuously varying trait and illustrates the power of using automated measurement to score phenotypes that are not always conspicuous to the human eye.
Collapse
Affiliation(s)
- Joseph J Hanly
- Department of Biological Sciences, The George Washington University, Washington, DC, USA; Smithsonian Tropical Research Institute, Gamboa, Panama.
| | | | - Ling S Loh
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Olaf B W H Corning
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Derek J Long
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Marshall A Nakatani
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Adam H Porter
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA.
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, DC, USA.
| |
Collapse
|
4
|
Wagner A, Upcher A, Maria R, Magnesen T, Zelinger E, Raposo G, Palmer BA. Macromolecular sheets direct the morphology and orientation of plate-like biogenic guanine crystals. Nat Commun 2023; 14:589. [PMID: 36737617 PMCID: PMC9898273 DOI: 10.1038/s41467-023-35894-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
Animals precisely control the morphology and assembly of guanine crystals to produce diverse optical phenomena in coloration and vision. However, little is known about how organisms regulate crystallization to produce optically useful morphologies which express highly reflective crystal faces. Guanine crystals form inside iridosome vesicles within chromatophore cells called iridophores. By following iridosome formation in developing scallop eyes, we show that pre-assembled, fibrillar sheets provide an interface for nucleation and direct the orientation of the guanine crystals. The macromolecular sheets cap the (100) faces of immature guanine crystals, inhibiting growth along the π-stacking growth direction. Crystal growth then occurs preferentially along the sheets to generate highly reflective plates. Despite their different physical properties, the morphogenesis of iridosomes bears a striking resemblance to melanosome morphogenesis in vertebrates, where amyloid sheets template melanin deposition. The common control mechanisms for melanin and guanine formation inspire new approaches for manipulating the morphologies and properties of molecular materials.
Collapse
Affiliation(s)
- Avital Wagner
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheba, 8410501, Israel
| | - Alexander Upcher
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheba, 8410501, Israel
| | - Raquel Maria
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheba, 8410501, Israel
| | - Thorolf Magnesen
- Department of Biological Sciences, University of Bergen, Postbox 7803, Bergen, N-5020, Norway
| | - Einat Zelinger
- The CSI Center for Scientific Imaging, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot, 7610001, Israel
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, 75005, Paris, France.,Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 75005, Paris, France
| | - Benjamin A Palmer
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheba, 8410501, Israel.
| |
Collapse
|
5
|
Eyal Z, Deis R, Varsano N, Dezorella N, Rechav K, Houben L, Gur D. Plate-like Guanine Biocrystals Form via Templated Nucleation of Crystal Leaflets on Preassembled Scaffolds. J Am Chem Soc 2022; 144:22440-22445. [PMID: 36469805 DOI: 10.1021/jacs.2c11136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Controlling the morphology of crystalline materials is challenging, as crystals have a strong tendency toward thermodynamically stable structures. Yet, organisms form crystals with distinct morphologies, such as the plate-like guanine crystals produced by many terrestrial and aquatic species for light manipulation. Regulation of crystal morphogenesis was hypothesized to entail physical growth restriction by the surrounding membrane, combined with fine-tuned interactions between organic molecules and the growing crystal. Using cryo-electron tomography of developing zebrafish larvae, we found that guanine crystals form via templated nucleation of thin leaflets on preassembled scaffolds made of 20-nm-thick amyloid fibers. These leaflets then merge and coalesce into a single plate-like crystal. Our findings shed light on the biological regulation of crystal morphogenesis, which determines their optical properties.
Collapse
Affiliation(s)
- Zohar Eyal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rachael Deis
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Neta Varsano
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nili Dezorella
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Katya Rechav
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lothar Houben
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dvir Gur
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|