1
|
de Oliveira Rosa SA, Titon Junior B, de Figueiredo AC, Lima AS, Gomes FR, Titon SCM. Baseline and stress-induced changes in plasma bacterial killing ability against gram-negative bacteria are partially mediated by the complement system in Rhinella diptycha toads. Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111701. [PMID: 39029618 DOI: 10.1016/j.cbpa.2024.111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/26/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
The plasma bacterial killing ability (BKA) is modulated by the stress response in vertebrates, including amphibians. The complement system is an effector mechanism comprised of a set of proteins present in the plasma that once activated can promote bacterial lysis. Herein, we investigated whether changes in plasma BKA as a result of the acute stress response and an immune challenge are mediated by the complement system in Rhinella diptycha toads. Additionally, we investigated whether the observed changes in plasma BKA are associated with changes in plasma corticosterone levels (CORT). We subjected adult male toads to a restraint or an immune challenge (with three concentrations of Aeromonas hydrophila heat inactivated), and then evaluated the plasma BKA against A. hydrophila, in vitro. We determined the complement system activity on plasma BKA, by treating the plasma (baseline, 1 h and 24 h post-restraint, and after the immune challenge) with ethylenediaminetetraacetic acid, heat, or protease. Our results showed increased CORT 1 h and 24 h after restraint and decreased plasma BKA 24 h post-restraint. The inhibitors of the complement system decreased the plasma BKA compared with untreated plasma at all times (baseline, 1 h, and 24 h after restraint), demonstrating that the plasma BKA activity is partially mediated by the complement system. The immune challenge increased CORT, with the highest values being observed in the highest bacterial concentration, compared with control. The plasma BKA was not affected by the immune challenge but was demonstrated to be partially mediated by the complement system. Our results demonstrated that restraint and the immune challenge activated the hypothalamus-pituitary-interrenal axis, by increasing plasma CORT levels in R. diptycha. Also, our results demonstrated the complement system is participative in the plasma BKA for baseline and post-stress situations in these toads.
Collapse
Affiliation(s)
| | - Braz Titon Junior
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | | | - Alan Siqueira Lima
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | - Fernando Ribeiro Gomes
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
2
|
Franco-Belussi L, de Oliveira Júnior JG, Goldberg J, De Oliveira C, Fernandes CE, Provete DB. Multiple morphophysiological responses of a tropical frog to urbanization conform to the pace-of-life syndrome. CONSERVATION PHYSIOLOGY 2024; 12:coad106. [PMID: 38293639 PMCID: PMC10823355 DOI: 10.1093/conphys/coad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/23/2023] [Accepted: 12/11/2023] [Indexed: 02/01/2024]
Abstract
The Pace-of-Life syndrome proposes that behavioural, physiological and immune characteristics vary along a slow-fast gradient. Urbanization poses several physiological challenges to organisms. However, little is known about how the health status of frogs is affected by urbanization in the Tropics, which have a faster and more recent urbanization than the northern hemisphere. Here, we analysed a suite of physiological variables that reflect whole organism health, reproduction, metabolic and circulatory physiology and leukocyte responses in Leptodactylus podicipinus. Specifically, we tested how leukocyte profile, erythrocyte morphometrics and germ cell density, as well as somatic indices and erythrocyte nuclear abnormalities differ throughout the adult life span between urban and rural populations. We used Phenotypic Trajectory Analysis to test the effect of age and site on each of the multivariate data sets; and a Generalised Linear Model to test the effect of site and age on nuclear abnormalities. Somatic indices, erythrocyte nuclear abnormalities, erythrocyte morphometrics and leukocyte profile differed between populations, but less so for germ cell density. We found a large effect of site on nuclear abnormalities, with urban frogs having twice as many abnormalities as rural frogs. Our results suggest that urban frogs have a faster pace of life, but the response of phenotypic compartments is not fully concerted.
Collapse
Affiliation(s)
- Lilian Franco-Belussi
- Departamento de Ciências Biológicas, Universidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas de São José do Rio Preto, São José do Rio Preto, São Paulo, 15054-000, Brazil
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79002970, Brazil
| | - José Gonçalves de Oliveira Júnior
- Graduate Program in Animal Biology, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Javier Goldberg
- Instituto de Diversidad y Ecología Animal - CONICET; Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Classius De Oliveira
- Departamento de Ciências Biológicas, Universidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas de São José do Rio Preto, São José do Rio Preto, São Paulo, 15054-000, Brazil
| | - Carlos E Fernandes
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79002970, Brazil
| | - Diogo B Provete
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79002970, Brazil
- Gothenburg Global Biodiversity Centre, Göteborg, Box 100, S 405 30, Sweden
| |
Collapse
|
3
|
Titon SCM, Junior BT, Assis VR, Cobo de Figueiredo A, Floreste FR, Lima AS, Gomes FR. Testosterone immunomodulation in free-living and captive Rhinella icterica male toads. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220118. [PMID: 37305916 PMCID: PMC10258661 DOI: 10.1098/rstb.2022.0118] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/01/2023] [Indexed: 06/13/2023] Open
Abstract
Testosterone (T) regulates immune function, with both immunostimulatory and immunosuppressive effects on several vertebrates. We investigated the covariation between plasma T and corticosterone (CORT) levels and immunity (plasma bacterial killing ability (BKA), and neutrophil to lymphocyte ratio (NLR)) in free-living Rhinella icterica male toads inside and outside the reproductive season. We found an overall positive correlation between steroids and immune traits, with toads during the reproductive season displaying increased T, CORT and BKA. We also investigated the T transdermal application effects on T, CORT, phagocytosis of blood cells, BKA and NLR in captive toads. Toads were treated with T (1, 10 or 100 µg) or vehicle (sesame oil) for eight consecutive days. Animals were bled on the first and eighth days of treatment. Increased plasma T was observed on the first and last day of T-treatment, while increased BKA was observed following all T doses on the last day, with a positive correlation between T and BKA. Plasma CORT, NLR and phagocytosis increased on the last day for all T-treated and vehicle groups. Overall, we demonstrated a positive covariation between T and immune traits in the field and T-induced augmented BKA in captive toads, indicating a T immunoenhancing effect in R. icterica males. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
| | - Braz Titon Junior
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, São Paulo, Brazil
| | - Vania Regina Assis
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, São Paulo, Brazil
| | - Aymam Cobo de Figueiredo
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, São Paulo, Brazil
| | - Felipe Rangel Floreste
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, São Paulo, Brazil
| | - Alan Siqueira Lima
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, São Paulo, Brazil
| | - Fernando Ribeiro Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Assis VR, Robert J, Titon SCM. Introduction to the special issue Amphibian immunity: stress, disease and ecoimmunology. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220117. [PMID: 37305915 PMCID: PMC10258669 DOI: 10.1098/rstb.2022.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Amphibian populations have been declining worldwide, with global climate changes and infectious diseases being among the primary causes of this scenario. Infectious diseases are among the primary drivers of amphibian declines, including ranavirosis and chytridiomycosis, which have gained more attention lately. While some amphibian populations are led to extinction, others are disease-resistant. Although the host's immune system plays a major role in disease resistance, little is known about the immune mechanisms underlying amphibian disease resistance and host-pathogen interactions. As ectotherms, amphibians are directly subjected to changes in temperature and rainfall, which modulate stress-related physiology, including immunity and pathogen physiology associated with diseases. In this sense, the contexts of stress, disease and ecoimmunology are essential for a better understanding of amphibian immunity. This issue brings details about the ontogeny of the amphibian immune system, including crucial aspects of innate and adaptive immunity and how ontogeny can influence amphibian disease resistance. In addition, the papers in the issue demonstrate an integrated view of the amphibian immune system associated with the influence of stress on immune-endocrine interactions. The collective body of research presented herein can provide valuable insights into the mechanisms underlying disease outcomes in natural populations, particularly in the context of changing environmental conditions. These findings may ultimately enhance our ability to forecast effective conservation strategies for amphibian populations. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
- Vania Regina Assis
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, 05508-900 São Paulo, Brazil
- College of Public Health, University of South Florida, Tampa, FL 33612-9415, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | | |
Collapse
|
5
|
Madelaire CB, Gomes FR. Relationships between hormone levels, metabolism and immune response in toads from a semi-arid region. Gen Comp Endocrinol 2023; 338:114263. [PMID: 36931441 DOI: 10.1016/j.ygcen.2023.114263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Steroid hormones (e.g. androgens [AN] and corticosterone [CORT]) modulate complex physiological functions such as reproduction, energy mobilization, metabolism, and immunity. Fluctuations in environmental resource availability along with other factors, such as parasitism, can interact with the effects of these steroids, modifying aspects of immunocompetence and its metabolic costs. To understand these possible interactions, we studied AN and CORT, immune response [swelling response to phytohemagglutinin (PHA) injection and bacterial killing ability (BKA)], parasite load, resting metabolic rate (RMR) and rates of oxygen consumption after PHA injection, in two different phases of the annual cycle of a toad (Rhinella jimi) from a highly seasonal environment (Brazilian semi-arid, Caatinga). We observed increased rates of O2 consumption after both PHA and the control (saline) injection, indicating a metabolic response to adverse stimuli but not the immune challenge. Toads showing higher RMR and VO2 after the adverse stimuli (PHA/saline injection) had lower field AN and CORT plasma levels, suggesting these hormones might mediate a metabolic energy conservation strategy both at baseline levels and after adverse stimuli. Parasite load seem to impose an energetic constrain to the metabolic response to PHA and saline injection. Also, individuals showing higher PHA swelling response had higher field CORT plasma levels (particularly when males are breeding) which opposes the idea of a possible trade-off between reproductive activity and other physiological traits and indicate the immunoenhancing effects CORT elevated at physiological levels. BKA did not show a seasonal variation or correlation with body condition nor hormone levels, indicating that the immune surveillance mediated by the complement remains constant despite other ecological and physiological changes.
Collapse
Affiliation(s)
- Carla B Madelaire
- Biodiversity and Conservation Genetics, San Diego Zoo Wildlife Alliance, Escondido, CA, 92027, United States.
| | - Fernando R Gomes
- University of São Paulo, Institute of Biosciences, Trav. 14 da Rua do Matão, 321, São Paulo, SP, 05508-090, Brazil.
| |
Collapse
|
6
|
Assis VR, Titon SCM, Voyles J. Ecoimmunology: What Unconventional Organisms Tell Us after Two Decades. Integr Comp Biol 2022; 62:icac148. [PMID: 36250609 DOI: 10.1093/icb/icac148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 02/18/2024] Open
Affiliation(s)
- Vania R Assis
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo SP 05508-090, Brasil
| | - Stefanny C M Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo SP 05508-090, Brasil
| | - Jamie Voyles
- Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA
| |
Collapse
|