1
|
Salamon MA, Jain S, Brachaniec T, Duda P, Płachno BJ, Gorzelak P. Ausichicrinites zelenskyyi gen. et sp. nov., a first nearly complete feather star (Crinoidea) from the Upper Jurassic of Africa. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220345. [PMID: 35875469 PMCID: PMC9297031 DOI: 10.1098/rsos.220345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Fossil comatulids, referred to as feather stars, are mostly known from highly disarticulated specimens. A single isolated element (centrodorsal) has been the basis for taxonomic description of a vast majority of fossil comatulids. Here, we report a nearly complete, and thus extremely rare, comatulid from the Upper Jurassic (Tithonian) of the Blue Nile Basin in central western Ethiopia that provides a unique insight into the morphology of comatulid arms and cirri. It is assigned to Ausichicrinites zelenskyyi gen. et sp. nov. and is the first Jurassic comatulid from the African continent. The new taxon shows some similarities with representatives of the Mesozoic Solanocrinitidae but also has close resemblance with the modern family Zygometridae, exclusively known from the Holocene of western Pacific and eastern Indian Oceans. This morphologic similarity is considered to be due to convergence. The first example of pinnule regeneration in a fossil feather star is reported, which reinforces the hypothesis about the importance of predation in the evolution of these crinoids.
Collapse
Affiliation(s)
- Mariusz A. Salamon
- Institute of Earth Sciences, University of Silesia in Katowice, Będzińska Street 60, 41-200 Sosnowiec, Poland
| | - Sreepat Jain
- Department of Geology, School of Applied Natural Science, Adama Science and Technology University, 1888 Adama, Oromia, Ethiopia
| | - Tomasz Brachaniec
- Institute of Earth Sciences, University of Silesia in Katowice, Będzińska Street 60, 41-200 Sosnowiec, Poland
| | - Piotr Duda
- Faculty of Science and Technology, University of Silesia in Katowice, Będzińska Street 39, 41-200 Sosnowiec, Poland
| | - Bartosz J. Płachno
- Institute of Botany, Faculty of Biology, Department of Plant Cytology and Embriology, Jagiellonian University in Kraków, Gronostajowa Street 9, 30-387 Kraków, Poland
| | - Przemysław Gorzelak
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland
| |
Collapse
|
2
|
Abstract
In his prominent book Regeneration (1901), T.H. Morgan's collected and synthesized theoretical and experimental findings from a diverse array of regenerating animals and plants. Through his endeavor, he introduced a new way to study regeneration and its evolution, setting a conceptual framework that still guides today's research and that embraces the contemporary evolutionary and developmental approaches.In the first part of the chapter, we summarize Morgan's major tenets and use it as a narrative thread to advocate interpreting regenerative biology through the theoretical tools provided by evolution and developmental biology, but also to highlight potential caveats resulting from the rapid proliferation of comparative studies and from the expansion of experimental laboratory models. In the second part, we review some experimental evo-devo approaches, highlighting their power and some of their interpretative dangers. Finally, in order to further understand the evolution of regenerative abilities, we portray an adaptive perspective on the evolution of regeneration and suggest a framework for investigating the adaptive nature of regeneration.
Collapse
Affiliation(s)
| | - Alexandre Alié
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Villefranche-sur-Mer, France
| | - Stefano Tiozzo
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Villefranche-sur-Mer, France.
| |
Collapse
|
3
|
Medina-Feliciano JG, García-Arrarás JE. Regeneration in Echinoderms: Molecular Advancements. Front Cell Dev Biol 2021; 9:768641. [PMID: 34977019 PMCID: PMC8718600 DOI: 10.3389/fcell.2021.768641] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/01/2021] [Indexed: 12/18/2022] Open
Abstract
Which genes and gene signaling pathways mediate regenerative processes? In recent years, multiple studies, using a variety of animal models, have aimed to answer this question. Some answers have been obtained from transcriptomic and genomic studies where possible gene and gene pathway candidates thought to be involved in tissue and organ regeneration have been identified. Several of these studies have been done in echinoderms, an animal group that forms part of the deuterostomes along with vertebrates. Echinoderms, with their outstanding regenerative abilities, can provide important insights into the molecular basis of regeneration. Here we review the available data to determine the genes and signaling pathways that have been proposed to be involved in regenerative processes. Our analyses provide a curated list of genes and gene signaling pathways and match them with the different cellular processes of the regenerative response. In this way, the molecular basis of echinoderm regenerative potential is revealed, and is available for comparisons with other animal taxa.
Collapse
|
4
|
Gorzelak P, Salamon MA, Brom K, Oji T, Oguri K, Kołbuk D, Dec M, Brachaniec T, Saucède T. Experimental neoichnology of post-autotomy arm movements of sea lilies and possible evidence of thrashing behaviour in Triassic holocrinids. Sci Rep 2020; 10:15147. [PMID: 32934271 PMCID: PMC7492279 DOI: 10.1038/s41598-020-72116-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/17/2020] [Indexed: 11/17/2022] Open
Abstract
Echinoderms exhibit remarkable powers of autotomy. For instance, crinoids can shed arm and stalk portions when attacked by predators. In some species, it has been reported that the autotomized arms display vigorous movements, which are thought to divert the attention of predators. This phenomenon, however, has not been well explored. Here we present results of experiments using the shallowest water species of living stalked crinoid (Metacrinus rotundus) collected at 140 m depth. A wide range of movements of detached arms, from sluggish writhing to violent flicks, was observed. Interestingly, autotomized arms produce distinct traces on the sediment surface. They are composed of straight or arched grooves usually arranged in radiating groups and shallow furrows. Similar traces were found associated with detached arms of the oldest (Early Triassic) stem-group isocrinid (Holocrinus). This finding may suggest that the origins of autotomy-related thrashing behaviour in crinoids could be traced back to at least the Early Triassic, underscoring the magnitude of anti-predatory traits that occurred during the Mesozoic Marine Revolution. A new ethological category, autotomichnia, is proposed for the traces produced by thrashing movements of shed appendages.
Collapse
Affiliation(s)
| | - Mariusz A Salamon
- Faculty of Natural Sciences, University of Silesia in Katowice, Sosnowiec, Poland
| | - Krzysztof Brom
- Faculty of Natural Sciences, University of Silesia in Katowice, Sosnowiec, Poland
| | - Tatsuo Oji
- University Museum, Nagoya University, Furo-cho, Nagoya, 464-8601, Japan
| | - Kazumasa Oguri
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Dorota Kołbuk
- Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland
| | - Marek Dec
- Polish Geological Institute - National Research Institute, Warsaw, Poland
| | - Tomasz Brachaniec
- Faculty of Natural Sciences, University of Silesia in Katowice, Sosnowiec, Poland
| | - Thomas Saucède
- Biogéosciences UMR CNRS 6282, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
5
|
Luparello C, Mauro M, Lazzara V, Vazzana M. Collective Locomotion of Human Cells, Wound Healing and Their Control by Extracts and Isolated Compounds from Marine Invertebrates. Molecules 2020; 25:E2471. [PMID: 32466475 PMCID: PMC7321354 DOI: 10.3390/molecules25112471] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
The collective migration of cells is a complex integrated process that represents a common theme joining morphogenesis, tissue regeneration, and tumor biology. It is known that a remarkable amount of secondary metabolites produced by aquatic invertebrates displays active pharmacological properties against a variety of diseases. The aim of this review is to pick up selected studies that report the extraction and identification of crude extracts or isolated compounds that exert a modulatory effect on collective cell locomotion and/or skin tissue reconstitution and recapitulate the molecular, biochemical, and/or physiological aspects, where available, which are associated to the substances under examination, grouping the producing species according to their taxonomic hierarchy. Taken all of the collected data into account, marine invertebrates emerge as a still poorly-exploited valuable resource of natural products that may significantly improve the process of skin regeneration and restrain tumor cell migration, as documented by in vitro and in vivo studies. Therefore, the identification of the most promising invertebrate-derived extracts/molecules for the utilization as new targets for biomedical translation merits further and more detailed investigations.
Collapse
Affiliation(s)
- Claudio Luparello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.M.); (V.L.); (M.V.)
| | | | | | | |
Collapse
|
6
|
Dolmatov IY, Kalacheva NV, Mekhova ES, Frolova LT. Autotomy and regeneration of the visceral mass in feather stars. ZOOMORPHOLOGY 2020. [DOI: 10.1007/s00435-020-00483-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Kalacheva NV, Eliseikina MG, Frolova LT, Dolmatov IY. Regeneration of the digestive system in the crinoid Himerometra robustipinna occurs by transdifferentiation of neurosecretory-like cells. PLoS One 2017; 12:e0182001. [PMID: 28753616 PMCID: PMC5533335 DOI: 10.1371/journal.pone.0182001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/11/2017] [Indexed: 11/18/2022] Open
Abstract
The structure and regeneration of the digestive system in the crinoid Himerometra robustipinna (Carpenter, 1881) were studied. The gut comprises a spiral tube forming radial lateral processes, which gives it a five-lobed shape. The digestive tube consists of three segments: esophagus, intestine, and rectum. The epithelia of these segments have different cell compositions. Regeneration of the gut after autotomy of the visceral mass progresses very rapidly. Within 6 h after autotomy, an aggregation consisting of amoebocytes, coelomic epithelial cells and juxtaligamental cells (neurosecretory neurons) forms on the inner surface of the skeletal calyx. At 12 h post-autotomy, transdifferentiation of the juxtaligamental cells starts. At 24 h post-autotomy these cells undergo a mesenchymal-epithelial-like transition, resulting in the formation of the luminal epithelium of the gut. Specialization of the intestinal epithelial cells begins on day 2 post-autotomy. At this stage animals acquire the mouth and anal opening. On day 4 post-autotomy the height of both the enterocytes and the visceral mass gradually increases. Proliferation does not play any noticeable role in gut regeneration. The immersion of animals in a 10-7 M solution of colchicine neither stopped formation of the lost structures nor caused accumulation of mitoses in tissues. Weakly EdU-labeled nuclei were observed in the gut only on day 2 post-autotomy and were not detected at later regeneration stages. Single mitotically dividing cells were recorded during the same period. It is concluded that juxtaligamental cells play a major role in gut regeneration in H. robustipinna. The main mechanisms of morphogenesis are cell migration and transdifferentiation.
Collapse
Affiliation(s)
- Nadezhda V. Kalacheva
- A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- Far Eastern Federal University, Vladivostok, Russia
| | - Marina G. Eliseikina
- A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- Far Eastern Federal University, Vladivostok, Russia
| | - Lidia T. Frolova
- A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Yu. Dolmatov
- A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
8
|
Reich A, Dunn C, Akasaka K, Wessel G. Phylogenomic analyses of Echinodermata support the sister groups of Asterozoa and Echinozoa. PLoS One 2015; 10:e0119627. [PMID: 25794146 PMCID: PMC4368666 DOI: 10.1371/journal.pone.0119627] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/12/2015] [Indexed: 12/01/2022] Open
Abstract
Echinoderms (sea urchins, sea stars, brittle stars, sea lilies and sea cucumbers) are a group of diverse organisms, second in number within deuterostome species to only the chordates. Echinoderms serve as excellent model systems for developmental biology due to their diverse developmental mechanisms, tractable laboratory use, and close phylogenetic distance to chordates. In addition, echinoderms are very well represented in the fossil record, including some larval features, making echinoderms a valuable system for studying evolutionary development. The internal relationships of Echinodermata have not been consistently supported across phylogenetic analyses, however, and this has hindered the study of other aspects of their biology. In order to test echinoderm phylogenetic relationships, we sequenced 23 de novo transcriptomes from all five clades of echinoderms. Using multiple phylogenetic methods at a variety of sampling depths we have constructed a well-supported phylogenetic tree of Echinodermata, including support for the sister groups of Asterozoa (sea stars and brittle stars) and Echinozoa (sea urchins and sea cucumbers). These results will help inform developmental and evolutionary studies specifically in echinoderms and deuterostomes in general.
Collapse
Affiliation(s)
- Adrian Reich
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Casey Dunn
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
| | - Koji Akasaka
- Misaki Marine Biological Station, University of Tokyo, Miura, Japan
| | - Gary Wessel
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|