1
|
Xu L, Zhang J, Zhan A, Wang Y, Ma X, Jie W, Cao Z, Omar MAA, He K, Li F. Identification and Analysis of MicroRNAs Associated with Wing Polyphenism in the Brown Planthopper, Nilaparvata lugens. Int J Mol Sci 2020; 21:E9754. [PMID: 33371331 PMCID: PMC7767257 DOI: 10.3390/ijms21249754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 12/27/2022] Open
Abstract
Many insects are capable of developing two types of wings (i.e., wing polyphenism) to adapt to various environments. Though the roles of microRNAs (miRNAs) in regulating animal growth and development have been well studied, their potential roles in modulating wing polyphenism remain largely elusive. To identify wing polyphenism-related miRNAs, we isolated small RNAs from 1st to 5th instar nymphs of long-wing (LW) and short-wing (SW) strains of the brown planthopper (BPH), Nilaparvata lugens. Small RNA libraries were then constructed and sequenced, yielding 158 conserved and 96 novel miRNAs. Among these, 122 miRNAs were differentially expressed between the two BPH strains. Specifically, 47, 2, 27 and 41 miRNAs were more highly expressed in the 1st, 3rd, 4th and 5th instars, respectively, of the LW strain compared with the SW strain. In contrast, 47, 3, 29 and 25 miRNAs were more highly expressed in the 1st, 3rd, 4th and 5th instars, respectively, of the SW strain compared with the LW strain. Next, we predicted the targets of these miRNAs and carried out Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis. We found that a number of pathways might be involved in wing form determination, such as the insulin, MAPK, mTOR, FoxO and thyroid hormone signaling pathways and the thyroid hormone synthesis pathway. Thirty and 45 differentially expressed miRNAs targeted genes in the insulin signaling and insect hormone biosynthesis pathways, respectively, which are related to wing dimorphism. Among these miRNAs, Nlu-miR-14-3p, Nlu-miR-9a-5p and Nlu-miR-315-5p, were confirmed to interact with insulin receptors (NlInRs) in dual luciferase reporter assays. These discoveries are helpful for understanding the miRNA-mediated regulatory mechanism of wing polyphenism in BPHs and shed new light on how insects respond to environmental cues through developmental plasticity.
Collapse
Affiliation(s)
- Le Xu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (L.X.); (A.Z.); (X.M.); (Z.C.); (M.A.A.O.); (F.L.)
| | - Jiao Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (W.J.)
| | - Anran Zhan
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (L.X.); (A.Z.); (X.M.); (Z.C.); (M.A.A.O.); (F.L.)
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Xingzhou Ma
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (L.X.); (A.Z.); (X.M.); (Z.C.); (M.A.A.O.); (F.L.)
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (W.J.)
| | - Wencai Jie
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (W.J.)
| | - Zhenghong Cao
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (L.X.); (A.Z.); (X.M.); (Z.C.); (M.A.A.O.); (F.L.)
| | - Mohamed A. A. Omar
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (L.X.); (A.Z.); (X.M.); (Z.C.); (M.A.A.O.); (F.L.)
- Department of Plant Protection, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Kang He
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (L.X.); (A.Z.); (X.M.); (Z.C.); (M.A.A.O.); (F.L.)
| | - Fei Li
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (L.X.); (A.Z.); (X.M.); (Z.C.); (M.A.A.O.); (F.L.)
| |
Collapse
|
2
|
Nguyen K, Stahlschmidt Z. When to fight? Disentangling temperature and circadian effects on aggression and agonistic contests. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2018.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
3
|
Nouzova M, Rivera-Pérez C, Noriega FG. Omics approaches to study juvenile hormone synthesis. CURRENT OPINION IN INSECT SCIENCE 2018; 29:49-55. [PMID: 30551825 PMCID: PMC6470398 DOI: 10.1016/j.cois.2018.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/23/2018] [Indexed: 05/04/2023]
Abstract
The juvenile hormones (JHs) are a family of insect acyclic sesquiterpenoids produced by the corpora allata (CA), a pair of endocrine glands connected to the brain. They are involved in the regulation of development, reproduction, behavior, caste determination, diapause, stress response, and numerous polyphenisms. In the post-genomics era, comprehensive analyses using functional 'omics' technologies such as transcriptomics, proteomics and metabolomics have increased our understanding of the activity of the minute CA. This review attempts to summarize some of the 'omics' studies that have contributed to further understand JH synthesis in insects, with an emphasis on our own research on the mosquito Aedes aegypti.
Collapse
Affiliation(s)
- Marcela Nouzova
- Department of Biological Sciences and Biomolecular Science Institute, Florida International University, Miami, FL, USA
| | | | - Fernando G Noriega
- Department of Biological Sciences and Biomolecular Science Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
4
|
Zera AJ, Vellichirammal NN, Brisson JA. Diurnal and developmental differences in gene expression between adult dispersing and flightless morphs of the wing polymorphic cricket, Gryllus firmus: Implications for life-history evolution. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:233-243. [PMID: 29656101 DOI: 10.1016/j.jinsphys.2018.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/26/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
The functional basis of life history adaptation is a key topic of research in life history evolution. Studies of wing-polymorphism in the cricket Gryllus firmus have played a prominent role in this field. However, prior in-depth investigations of morph specialization have primarily focused on a single hormone, juvenile hormone, and a single aspect of intermediary metabolism, the fatty-acid biosynthetic component of lipid metabolism. Moreover, the role of diurnal variation in life history adaptation in G. firmus has been understudied, as is the case for organisms in general. Here, we identify genes whose expression differs consistently between the morphs independent of time-of-day during early adulthood, as well as genes that exhibit a strong pattern of morph-specific diurnal expression. We find strong, consistent, morph-specific differences in the expression of genes involved in endocrine regulation, carbohydrate and lipid metabolism, and immunity - in particular, in the expression of an insulin-like-peptide precursor gene and genes involved in triglyceride production. We also find that the flight-capable morph exhibited a substantially greater number of genes exhibiting diurnal change in gene expression compared with the flightless morph, correlated with the greater circadian change in the hemolymph juvenile titer in the dispersing morph. In fact, diurnal differences in expression within the dispersing morph at different times of the day were significantly greater in magnitude than differences between dispersing and flightless morphs at the same time-of-day. These results provide important baseline information regarding the potential role of variable gene expression on life history specialization in morphs of G. firmus, and the first information on genetically-variable, diurnal change in gene expression, associated with a key life history polymorphism. These results also suggest the existence of prominent morph-specific circadian differences in gene expression in G. firmus, possibly caused by the morph-specific circadian rhythm in the juvenile hormone titer.
Collapse
Affiliation(s)
- Anthony J Zera
- School of Biological Sciences, University of Nebraska-Lincoln, NE 68588, United States.
| | | | - Jennifer A Brisson
- Department of Biology, University of Rochester, Rochester, NY 14627, United States
| |
Collapse
|
5
|
Schneider JE, Deviche P. Molecular and Neuroendocrine Approaches to Understanding Trade-offs: Food, Sex, Aggression, Stress, and Longevity-An Introduction to the Symposium. Integr Comp Biol 2017; 57:1151-1160. [PMID: 28992053 PMCID: PMC5886330 DOI: 10.1093/icb/icx113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Life history strategies are composed of multiple fitness components, each of which incurs costs and benefits. Consequently, organisms cannot maximize all fitness components simultaneously. This situation results in a dynamic array of trade-offs in which some fitness traits prevail at the expense of others, often depending on context. The identification of specific constraints and trade-offs has helped elucidate physiological mechanisms that underlie variation in behavioral and physiological life history strategies. There is general recognition that trade-offs are made at the individual and population level, but much remains to be learned concerning the molecular neuroendocrine mechanisms that underlie trade-offs. For example, we still do not know whether the mechanisms that underlie trade-offs at the individual level relate to trade-offs at the population level. To advance our understanding of trade-offs, we organized a group of speakers who study neuroendocrine mechanisms at the interface of traits that are not maximized simultaneously. Speakers were invited to represent research from a wide range of taxa including invertebrates (e.g., worms and insects), fish, nonavian reptiles, birds, and mammals. Three general themes emerged. First, the study of trade-offs requires that we investigate traditional endocrine mechanisms that include hormones, neuropeptides, and their receptors, and in addition, other chemical messengers not traditionally included in endocrinology. The latter group includes growth factors, metabolic intermediates, and molecules of the immune system. Second, the nomenclature and theory of neuroscience that has dominated the study of behavior is being re-evaluated in the face of evidence for the peripheral actions of so-called neuropeptides and neurotransmitters and the behavioral repercussions of these actions. Finally, environmental and ecological contexts continue to be critical in unmasking molecular mechanisms that are hidden when study animals are housed in enclosed spaces, with unlimited food, without competitors or conspecifics, and in constant ambient conditions.
Collapse
Affiliation(s)
- Jill E Schneider
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| | - Pierre Deviche
- School of Life Sciences, Arizona State University, Tempe, AZ 85287–4501, USA
| |
Collapse
|
6
|
Cox RM, McGlothlin JW, Bonier F. Evolutionary Endocrinology: Hormones as Mediators of Evolutionary Phenomena: An Introduction to the Symposium. Integr Comp Biol 2016; 56:121-5. [DOI: 10.1093/icb/icw047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
7
|
Cox RM, McGlothlin JW, Bonier F. Hormones as Mediators of Phenotypic and Genetic Integration: an Evolutionary Genetics Approach. Integr Comp Biol 2016; 56:126-37. [PMID: 27252188 DOI: 10.1093/icb/icw033] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Evolutionary endocrinology represents a synthesis between comparative endocrinology and evolutionary genetics. This synthesis can be viewed through the breeder's equation, a cornerstone of quantitative genetics that, in its univariate form, states that a population's evolutionary response is the product of the heritability of a trait and selection on that trait (R = h(2)S). Under this framework, evolutionary endocrinologists have begun to quantify the heritability of, and the strength of selection on, a variety of hormonal phenotypes. With specific reference to our work on testosterone and corticosterone in birds and lizards, we review these studies while emphasizing the challenges of applying this framework to hormonal phenotypes that are inherently plastic and mediate adaptive responses to environmental variation. Next, we consider the untapped potential of evolutionary endocrinology as a framework for exploring multivariate versions of the breeder's equation, with emphasis on the role of hormones in structuring phenotypic and genetic correlations. As an extension of the familiar concepts of phenotypic integration and hormonal pleiotropy, we illustrate how the hormonal milieu of an individual acts as a local environment for the expression of genes and phenotypes, thereby influencing the quantitative genetic architecture of multivariate phenotypes. We emphasize that hormones are more than mechanistic links in the translation of genotype to phenotype: by virtue of their pleiotropic effects on gene expression, hormones structure the underlying genetic variances and covariances that determine a population's evolutionary response to selection.
Collapse
Affiliation(s)
- Robert M Cox
- *Department of Biology, University of Virginia, Charlottesville, VA, 22904 USA;
| | | | - Frances Bonier
- Biology Department, Queen's University, Kingston, Ontario, Canada K7L 3N6
| |
Collapse
|