1
|
Navarro VT, Díaz-Pintado JVSA, Piero DWD, Olmedo FH. Usefulness of V˙O2 Kinetics and Biomechanical Parameters as Predictors of Athlete's Performance in 800 m Running Race. Sports (Basel) 2023; 11:sports11010015. [PMID: 36668719 PMCID: PMC9862118 DOI: 10.3390/sports11010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Incremental tests to exhaustion have been usually employed as the “gold standard” to establish the fitness level of athletes. However, during real competition in many sport disciplines, exertion is not characterized by an increasing effort until failure. The purpose of this preliminary study was to add new evidence regarding the usability of parameters obtained from an on-field testing in 800 m running athletes. V˙O2 kinetics (mean, amplitude, phase time, and phase start time) and biomechanical parameters (velocity, stride frequency, and stride length) were analyzed in eight athletes during a maximal 800 m running race test. Our results showed that only the peak of blood lactate concentration after the 800 m test was correlated with the race time (p = 0.047). The race time was positively associated with both the phase duration and phase start time (all p-values < 0.05). Conversely, race time was negatively correlated with velocity, stride frequency, and amplitude (p-values < 0.05). Our results reveal that jointly studying the V˙O2 kinetics and biomechanical parameters during a maximal 800 m running race test is a useful tool to predict the athlete’s upcoming performance and improve the planning and control of the training process of 800 m running athletes.
Collapse
Affiliation(s)
- Vicente Torres Navarro
- Doctorate School, Catholic University of Valencia “San Vicente Martyr”, 46008 Valencia, Spain
| | | | - Diego Warr di Piero
- Faculty of Physical Education and Sport Sciences, Catholic University of Valencia “San Vicente Martyr”, 46900 Torrent, Spain
| | - Florentino Huertas Olmedo
- Faculty of Physical Education and Sport Sciences, Catholic University of Valencia “San Vicente Martyr”, 46900 Torrent, Spain
| |
Collapse
|
2
|
Klappstein NJ, Potts JR, Michelot T, Börger L, Pilfold NW, Lewis MA, Derocher AE. Energy‐based step selection analysis: modelling the energetic drivers of animal movement and habitat use. J Anim Ecol 2022; 91:946-957. [DOI: 10.1111/1365-2656.13687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 02/17/2022] [Indexed: 11/30/2022]
Affiliation(s)
| | - Jonathan R. Potts
- School of Mathematics and Statistics University of Sheffield, Hicks Building, Hounsfield Road Sheffield UK
| | - Théo Michelot
- Centre for Research into Ecological and Environmental Modelling University of St Andrews St Andrews UK
| | - Luca Börger
- Department of Biosciences Swansea University Swansea UK
- Centre for Biomathematics, College of Science Swansea University Swansea UK
| | - Nicholas W. Pilfold
- Conservation Science and Wildlife Health, San Diego Zoo Wildlife Alliance San Diego USA
| | - Mark A. Lewis
- Department of Biological Sciences University of Alberta Edmonton Canada
- Department of Mathematical and Statistical Sciences University of Alberta Edmonton Canada
| | | |
Collapse
|
3
|
Energy Expenditure of Level Overground Walking in Young Adults: Comparison With Prediction Equations. J Phys Act Health 2021; 18:965-972. [PMID: 34111844 DOI: 10.1123/jpah.2020-0283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND The purpose of this study was to investigate the accuracy of the published prediction equations for determining level overground walking energy cost in young adults. METHODS In total, 148 healthy young adults volunteered to participate in this study. Resting metabolic rate and energy expenditure variables at speeds of 4, 5, and 6 km/h were measured by indirect calorimetry, walking energy expenditure was estimated by 3 published equations. RESULTS The gross and net metabolic rate per mile of level overground walking increased with increased speed (all P < .01). Females were less economical than males. The present findings revealed that the American College of Sports Medicine and Pandolf et al equations significantly underestimated the energy cost of overground walking at all speeds (all P < .01) in young adults. The percentage mean bias for American College of Sports Medicine, Pandolf et al, and Weyand et al was 12.4%, 16.8%, 1.4% (4 km/h); 21.6%, 15.8%, 7.1% (5 km/h); and 27.6%, 12%, 6.6% (6 km/h). Bland-Altman plots and prediction error analysis showed that the Weyand et al was the most accurate in 3 existing equations. CONCLUSIONS The Weyand et al equation appears to be the most suitable for the prediction of overground walking energy expenditure in young adults.
Collapse
|
4
|
Hicks O, Kato A, Angelier F, Wisniewska DM, Hambly C, Speakman JR, Marciau C, Ropert-Coudert Y. Acceleration predicts energy expenditure in a fat, flightless, diving bird. Sci Rep 2020; 10:21493. [PMID: 33299039 PMCID: PMC7726140 DOI: 10.1038/s41598-020-78025-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
Energy drives behaviour and life history decisions, yet it can be hard to measure at fine scales in free-moving animals. Accelerometry has proven a powerful tool to estimate energy expenditure, but requires calibration in the wild. This can be difficult in some environments, or for particular behaviours, and validations have produced equivocal results in some species, particularly air-breathing divers. It is, therefore, important to calibrate accelerometry across different behaviours to understand the most parsimonious way to estimate energy expenditure in free-living conditions. Here, we combine data from miniaturised acceleration loggers on 58 free-living Adélie penguins with doubly labelled water (DLW) measurements of their energy expenditure over several days. Across different behaviours, both in water and on land, dynamic body acceleration was a good predictor of independently measured DLW-derived energy expenditure (R2 = 0.72). The most parsimonious model suggested different calibration coefficients are required to predict behaviours on land versus foraging behaviour in water (R2 = 0.75). Our results show that accelerometry can be used to reliably estimate energy expenditure in penguins, and we provide calibration equations for estimating metabolic rate across several behaviours in the wild.
Collapse
Affiliation(s)
- Olivia Hicks
- Centre D'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, Villiers-en-Bois, France.
| | - Akiko Kato
- Centre D'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, Villiers-en-Bois, France
| | - Frederic Angelier
- Centre D'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, Villiers-en-Bois, France
| | - Danuta M Wisniewska
- Centre D'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, Villiers-en-Bois, France
| | - Catherine Hambly
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Coline Marciau
- Centre D'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, Villiers-en-Bois, France
| | - Yan Ropert-Coudert
- Centre D'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, Villiers-en-Bois, France
| |
Collapse
|
5
|
O'Brien C, Tharion WJ, Karis AJ, Sullivan HM. Predicting military working dog core temperature during exertional heat strain: Validation of a Canine Thermal Model. J Therm Biol 2020; 90:102603. [PMID: 32479397 DOI: 10.1016/j.jtherbio.2020.102603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/05/2020] [Accepted: 04/20/2020] [Indexed: 11/17/2022]
Abstract
Military working dogs (MWDs) operate under a wide range of conditions, including hot environments. Predicting how long a MWD can safely work without overheating is important for both health and performance. A Canine Thermal Model (CTM) was developed to predict core temperature (Tc) of MWDs. The CTM calculates heat storage from the balance of heat production from metabolism and heat exchange with the environment. Inputs to the CTM are: meteorological conditions (ambient temperature, relative humidity, solar radiation and wind speed), physical characteristics of the dog (mass, length), and metabolic activity (MET level, estimated from accelerometer data). The CTM was validated against Tc measured in 23 MWDs during training sessions (11.6 ± 5.0 min (mean ± standard deviation), range 4-26 min) in October (24 °C, 52% RH), March (14 °C, 74% RH), or August (28 °C, 64% RH), and 24 kennel MWDs during a standard exercise walk (11.4 ± 3.3 min, range 5.6-18 min) in July (26 °C, 77% RH). The CTM was considered acceptable if predicted Tc was within ±0.5 °C of measured Tc at the end of exercise. Compared to Tc at the end of training sessions (39.8 ± 0.6 °C, range 38.4-41.1 °C) and exercise walks (40.0 ± 0.7 °C, range 38.9-41.4 °C), the CTM-predicted Tc was within ±0.5 °C for 71 of 84 cases (85%) and 19 of 24 cases (79%), respectively. The mean difference between CTM-predicted and measured final Tc during training was -0.04 ± 0.43 °C, with 80 of 84 cases (95%) within the range of ±2 SD (Bland Altman comparison). During exercise walks the mean difference was -0.15 °C ± 0.57, with 23 of 24 cases (96%) within ±2 SD. These results support the use of the CTM to predict Tc of MWDs for the types of physical activities described above.
Collapse
Affiliation(s)
- Catherine O'Brien
- Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, 01760-5007, USA.
| | - William J Tharion
- Biophysics and Biomedical Modeling Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, 01760-5007, USA
| | - Anthony J Karis
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, 01760-5007, USA
| | - Heather M Sullivan
- Research Support Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, 01760-5007, USA
| |
Collapse
|
6
|
Li S, Xue JJ, Hong P, Song C, He ZH. Comparison of energy expenditure and substrate metabolism during overground and motorized treadmill running in Chinese middle-aged women. Sci Rep 2020; 10:1815. [PMID: 32020007 PMCID: PMC7000674 DOI: 10.1038/s41598-020-58791-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/21/2020] [Indexed: 01/08/2023] Open
Abstract
The purpose of this study was to compare differences of energy expenditure and substrate metabolism between motorized-treadmill and overground running in three different velocities in Chinese middle-aged women. In total, 74 healthy middle-aged women (age, 48 ± 4 years; height, 159.4 ± 4.9 cm; weight, 58.6 ± 6.7 kg; and body-mass index (BMI), 23.1 ± 2.7 kg/m2) volunteered to participate in this study. Bioelectrical-impedance analysis was used to measure body composition. Energy expenditure, carbohydrates (CHO), and fat oxidation were calculated with indirect calorimetry during motorized-treadmill and overground running. Running speed from slow to fast was 7.0, 8.0, and 9.0 km/h. The duration of each velocity was 6 min, separated by 5–15 min rest. There was no significant difference in energy expenditure between overground and treadmill running at the speed of 7 km/h (8.10 ± 1.25 vs. 7.75 ± 1.13 kcal/min, p > 0.05). Energy expenditure of overground running at 8 and 9 km/h was higher than that of treadmill running (9.36 ± 1.40 vs. 8.54 ± 1.21 kcal/min; 10.33 ± 1.55 vs. 9.54 ± 1.36 kcal/min; both p < 0.01). Fat contribution to energy consumption was significantly higher during treadmill running than during overground running (both p < 0.01) at speeds of 8 and 9 km/h. Overground running at high intensity incurred greater energy consumption than treadmill running did. However, results showed greater fat utilization during treadmill running than during overground running at high intensity. It is critical that these differences are taken into account when we prescribe training modes and intensities for middle-aged women.
Collapse
Affiliation(s)
- Shuo Li
- School of Sport Science, Shanghai University of Sport, Shanghai, China
| | - Jing-Jing Xue
- China Institute of Sport Science, Beijing, China. .,Beijing Dance Academy, Beijing, China.
| | - Ping Hong
- Winter Sports Administrative Center, General Administration of Sport of China, Beijing, China
| | - Chao Song
- College of Sports Science, Tianjin Normal University, Tianjin, China
| | - Zi-Hong He
- China Institute of Sport Science, Beijing, China
| |
Collapse
|
7
|
Martin ME, Moriarty KM, Pauli JN. Forest structure and snow depth alter the movement patterns and subsequent expenditures of a forest carnivore, the Pacific marten. OIKOS 2019. [DOI: 10.1111/oik.06513] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Marie E. Martin
- Dept of Forest and Wildlife Ecology, Univ. of Wisconsin‐Madison, 1630 Linden Drive Madison WI USA
| | - Katie M. Moriarty
- Pacific Northwest Research Station, United States Forest Service Olympia WA USA
- National Council for Air and Stream Improvement, Inc. Corvallis OR USA
| | - Jonathan N. Pauli
- Dept of Forest and Wildlife Ecology, Univ. of Wisconsin‐Madison, 1630 Linden Drive Madison WI USA
| |
Collapse
|
8
|
Wilson RP, Börger L, Holton MD, Scantlebury DM, Gómez-Laich A, Quintana F, Rosell F, Graf PM, Williams H, Gunner R, Hopkins L, Marks N, Geraldi NR, Duarte CM, Scott R, Strano MS, Robotka H, Eizaguirre C, Fahlman A, Shepard ELC. Estimates for energy expenditure in free-living animals using acceleration proxies: A reappraisal. J Anim Ecol 2019; 89:161-172. [PMID: 31173339 DOI: 10.1111/1365-2656.13040] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/10/2019] [Indexed: 11/30/2022]
Abstract
It is fundamentally important for many animal ecologists to quantify the costs of animal activities, although it is not straightforward to do so. The recording of triaxial acceleration by animal-attached devices has been proposed as a way forward for this, with the specific suggestion that dynamic body acceleration (DBA) be used as a proxy for movement-based power. Dynamic body acceleration has now been validated frequently, both in the laboratory and in the field, although the literature still shows that some aspects of DBA theory and practice are misunderstood. Here, we examine the theory behind DBA and employ modelling approaches to assess factors that affect the link between DBA and energy expenditure, from the deployment of the tag, through to the calibration of DBA with energy use in laboratory and field settings. Using data from a range of species and movement modes, we illustrate that vectorial and additive DBA metrics are proportional to each other. Either can be used as a proxy for energy and summed to estimate total energy expended over a given period, or divided by time to give a proxy for movement-related metabolic power. Nonetheless, we highlight how the ability of DBA to predict metabolic rate declines as the contribution of non-movement-related factors, such as heat production, increases. Overall, DBA seems to be a substantive proxy for movement-based power but consideration of other movement-related metrics, such as the static body acceleration and the rate of change of body pitch and roll, may enable researchers to refine movement-based metabolic costs, particularly in animals where movement is not characterized by marked changes in body acceleration.
Collapse
Affiliation(s)
- Rory P Wilson
- Department of Biosciences, Swansea University, Swansea, UK
| | - Luca Börger
- Department of Biosciences, Swansea University, Swansea, UK
| | - Mark D Holton
- Department of Computing Science, Swansea University, Swansea, UK
| | - D Michael Scantlebury
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Agustina Gómez-Laich
- Instituto de Biología de Organismos Marinos IBIOMAR-CONICET, Puerto Madryn, Argentina
| | - Flavio Quintana
- Instituto de Biología de Organismos Marinos IBIOMAR-CONICET, Puerto Madryn, Argentina
| | - Frank Rosell
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences, and Maritime Sciences, University of South-Eastern Norway, Bø i Telemark, Norway
| | - Patricia M Graf
- Department of Forestry and Renewable Forest Resources, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.,Institute of Wildlife Biology and Game Management, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | | | - Richard Gunner
- Department of Biosciences, Swansea University, Swansea, UK
| | - Lloyd Hopkins
- Department of Biosciences, Swansea University, Swansea, UK
| | - Nikki Marks
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Nathan R Geraldi
- Red Sea Research Centre and Computational Biology Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Carlos M Duarte
- Red Sea Research Centre and Computational Biology Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Rebecca Scott
- Geomar Helmholz Centre for Ocean Research Kiel, Kiel, Germany
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Christophe Eizaguirre
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Andreas Fahlman
- Departamento de Investigación, Fundación Oceanogràfic de la Comunidad Valenciana, Valencia, Spain
| | - Emily L C Shepard
- Department of Biosciences, Swansea University, Swansea, UK.,Max Planck Institute for Ornithology, Radolfzell, Germany
| |
Collapse
|
9
|
Pagano AM, Williams TM. Estimating the energy expenditure of free-ranging polar bears using tri-axial accelerometers: A validation with doubly labeled water. Ecol Evol 2019; 9:4210-4219. [PMID: 31015999 PMCID: PMC6468055 DOI: 10.1002/ece3.5053] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/13/2019] [Accepted: 02/19/2019] [Indexed: 01/27/2023] Open
Abstract
Measures of energy expenditure can be used to inform animal conservation and management, but methods for measuring the energy expenditure of free-ranging animals have a variety of limitations. Advancements in biologging technologies have enabled the use of dynamic body acceleration derived from accelerometers as a proxy for energy expenditure. Although dynamic body acceleration has been shown to strongly correlate with oxygen consumption in captive animals, it has been validated in only a few studies on free-ranging animals. Here, we use relationships between oxygen consumption and overall dynamic body acceleration in resting and walking polar bears Ursus maritimus and published values for the costs of swimming in polar bears to estimate the total energy expenditure of 6 free-ranging polar bears that were primarily using the sea ice of the Beaufort Sea. Energetic models based on accelerometry were compared to models of energy expenditure on the same individuals derived from doubly labeled water methods. Accelerometer-based estimates of energy expenditure on average predicted total energy expenditure to be 30% less than estimates derived from doubly labeled water. Nevertheless, accelerometer-based measures of energy expenditure strongly correlated (r 2 = 0.70) with measures derived from doubly labeled water. Our findings highlight the strengths and limitations in dynamic body acceleration as a measure of total energy expenditure while also further supporting its use as a proxy for instantaneous, detailed energy expenditure in free-ranging animals.
Collapse
Affiliation(s)
- Anthony M. Pagano
- Alaska Science CenterU.S. Geological SurveyAnchorageAlaska
- Present address:
Institute for Conservation ResearchSan Diego Zoo GlobalSan DiegoCalifornia
| | - Terrie M. Williams
- Department of Ecology & Evolutionary BiologyUniversity of California, Santa CruzSanta CruzCalifornia
| |
Collapse
|
10
|
A Systematic Review and Meta-Analysis of Crossover Studies Comparing Physiological, Perceptual and Performance Measures Between Treadmill and Overground Running. Sports Med 2019; 49:763-782. [DOI: 10.1007/s40279-019-01087-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Terrestrial locomotion energy costs vary considerably between species: no evidence that this is explained by rate of leg force production or ecology. Sci Rep 2019; 9:656. [PMID: 30679474 PMCID: PMC6345976 DOI: 10.1038/s41598-018-36565-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/14/2018] [Indexed: 12/28/2022] Open
Abstract
Inter-specifically, relative energy costs of terrestrial transport vary several-fold. Many pair-wise differences of locomotor costs between similarly-sized species are considerable, and are yet to be explained by morphology or gait kinematics. Foot contact time, a proxy for rate of force production, is a strong predictor of locomotor energy costs across species of different size and might predict variability between similarly sized species. We tested for a relationship between foot contact time and metabolic rate during locomotion from published data. We investigated the phylogenetic correlation between energy expenditure rate and foot contact time, conditioned on fixed effects of mass and speed. Foot contact time does not explain variance in rate of energy expenditure during locomotion, once speed and body size are accounted for. Thus, perhaps surprisingly, inter-specific differences in the mass-independent net cost of terrestrial transport (NCOT) are not explained by rates of force production. We also tested for relationships between locomotor energy costs and eco-physiological variables. NCOT did not relate to any of the tested eco-physiological variables; we thus conclude either that interspecific differences in transport cost have no influence on macroecological and macrophysiological patterns, or that NCOT is a poor indicator of animal energy expenditure beyond the treadmill.
Collapse
|
12
|
Pagano AM, Carnahan AM, Robbins CT, Owen MA, Batson T, Wagner N, Cutting A, Nicassio-Hiskey N, Hash A, Williams TM. Energetic costs of locomotion in bears: is plantigrade locomotion energetically economical? ACTA ACUST UNITED AC 2018; 221:221/12/jeb175372. [PMID: 29921569 DOI: 10.1242/jeb.175372] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 04/21/2018] [Indexed: 02/05/2023]
Abstract
Ursids are the largest mammals to retain a plantigrade posture. This primitive posture has been proposed to result in reduced locomotor speed and economy relative to digitigrade and unguligrade species, particularly at high speeds. Previous energetics research on polar bears (Ursus maritimus) found locomotor costs were more than double predictions for similarly sized quadrupedal mammals, which could be a result of their plantigrade posture or due to adaptations to their Arctic marine existence. To evaluate whether polar bears are representative of terrestrial ursids or distinctly uneconomical walkers, this study measured the mass-specific metabolism, overall dynamic body acceleration, and gait kinematics of polar bears and grizzly bears (Ursus arctos) trained to rest and walk on a treadmill. At routine walking speeds, we found polar bears and grizzly bears exhibited similar costs of locomotion and gait kinematics, but differing measures of overall dynamic body acceleration. Minimum cost of transport while walking in the two species (2.21 J kg-1 m-1) was comparable to predictions for similarly sized quadrupedal mammals, but these costs doubled (4.42 J kg-1 m-1) at speeds ≥5.4 km h-1 Similar to humans, another large plantigrade mammal, bears appear to exhibit a greater economy while moving at slow speeds.
Collapse
Affiliation(s)
- Anthony M Pagano
- US Geological Survey, Alaska Science Center, 4210 University Dr., Anchorage, AK 99508, USA .,Department of Ecology & Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA
| | - Anthony M Carnahan
- School of the Environment and School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Charles T Robbins
- School of the Environment and School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Megan A Owen
- Institute for Conservation Research, San Diego Zoo Global, San Diego, CA 92027, USA
| | | | - Nate Wagner
- San Diego Zoo Global, San Diego, CA 92027, USA
| | | | | | - Amy Hash
- Oregon Zoo, Portland, OR 97221, USA
| | - Terrie M Williams
- Department of Ecology & Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA
| |
Collapse
|
13
|
Killen SS, Calsbeek R, Williams TD. The Ecology of Exercise: Mechanisms Underlying Individual Variation in Behavior, Activity, and Performance: An Introduction to Symposium. Integr Comp Biol 2017; 57:185-194. [PMID: 28859409 PMCID: PMC5886314 DOI: 10.1093/icb/icx083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SYNOPSIS Wild animals often engage in intense physical activity while performing tasks vital for their survival and reproduction associated with foraging, avoiding predators, fighting, providing parental care, and migrating. In this theme issue we consider how viewing these tasks as "exercise"-analogous to that performed by human athletes-may help provide insight into the mechanisms underlying individual variation in these types of behaviors and the importance of physical activity in an ecological context. In this article and throughout this issue, we focus on four key questions relevant to the study of behavioral ecology that may be addressed by studying wild animal behavior from the perspective of exercise physiology: (1) How hard do individual animals work in response to ecological (or evolutionary) demands?; (2) Do lab-based studies of activity provide good models for understanding activity in free-living animals and individual variation in traits?; (3) Can animals work too hard during "routine" activities?; and (4) Can paradigms of "exercise" and "training" be applied to free-living animals? Attempts to address these issues are currently being facilitated by rapid technological developments associated with physiological measurements and the remote tracking of wild animals, to provide mechanistic insights into the behavior of free-ranging animals at spatial and temporal scales that were previously impossible. We further suggest that viewing the behaviors of non-human animals in terms of the physical exercise performed will allow us to fully take advantage of these technological advances, draw from knowledge and conceptual frameworks already in use by human exercise physiologists, and identify key traits that constrain performance and generate variation in performance among individuals. It is our hope that, by highlighting mechanisms of behavior and performance, the articles in this issue will spur on further synergies between physiologists and ecologists, to take advantage of emerging cross-disciplinary perspectives and technologies.
Collapse
Affiliation(s)
- Shaun S. Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - Ryan Calsbeek
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Tony D. Williams
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|