1
|
Setton EVW, Ballesteros JA, Blaszczyk PO, Klementz BC, Sharma PP. A taxon-restricted duplicate of Iroquois3 is required for patterning the spider waist. PLoS Biol 2024; 22:e3002771. [PMID: 39208370 PMCID: PMC11361693 DOI: 10.1371/journal.pbio.3002771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
The chelicerate body plan is distinguished from other arthropod groups by its division of segments into 2 tagmata: the anterior prosoma ("cephalothorax") and the posterior opisthosoma ("abdomen"). Little is understood about the genetic mechanisms that establish the prosomal-opisthosomal (PO) boundary. To discover these mechanisms, we created high-quality genomic resources for the large-bodied spider Aphonopelma hentzi. We sequenced specific territories along the antero-posterior axis of developing embryos and applied differential gene expression analyses to identify putative regulators of regional identity. After bioinformatic screening for candidate genes that were consistently highly expressed in only 1 tagma (either the prosoma or the opisthosoma), we validated the function of highly ranked candidates in the tractable spider model Parasteatoda tepidariorum. Here, we show that an arthropod homolog of the Iroquois complex of homeobox genes is required for proper formation of the boundary between arachnid tagmata. The function of this homolog had not been previously characterized, because it was lost in the common ancestor of Pancrustacea, precluding its investigation in well-studied insect model organisms. Knockdown of the spider copy of this gene, which we designate as waist-less, in P. tepidariorum resulted in embryos with defects in the PO boundary, incurring discontinuous spider germ bands. We show that waist-less is required for proper specification of the segments that span the prosoma-opisthosoma boundary, which in adult spiders corresponds to the narrowed pedicel. Our results demonstrate the requirement of an ancient, taxon-restricted paralog for the establishment of the tagmatic boundary that defines Chelicerata.
Collapse
Affiliation(s)
- Emily V. W. Setton
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jesús A. Ballesteros
- Department of Biology, Kean University, Union, New Jersey, United States of America
| | - Pola O. Blaszczyk
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Benjamin C. Klementz
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Prashant P. Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
2
|
Inui N, Miura T. Comparisons of developmental processes of air-breathing organs among terrestrial isopods (Crustacea, Oniscidea): implications for their evolutionary origins. EvoDevo 2024; 15:9. [PMID: 39026371 PMCID: PMC11264735 DOI: 10.1186/s13227-024-00229-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The acquisition of air-breathing organs is one of the key innovations for terrestrialization in animals. Terrestrial isopods, a crustacean lineage, can be interesting models to study the evolution of respiratory organs, as they exhibit varieties of air-breathing structures according to their habitats. However, the evolutionary processes and origins of these structures are unclear, due to the lack of information about their developmental processes. To understand the developmental mechanisms, we compared the developmental processes forming different respiratory structures in three isopod species, i.e., 'uncovered lungs' in Nagurus okinawaensis (Trachelipodidae), 'dorsal respiratory fields' in Alloniscus balssi (Alloniscidae), and pleopods without respiratory structures in Armadilloniscus cf. ellipticus (Detonidae). RESULTS In N. okinawaensis with uncovered lungs, epithelium and cuticle around the proximal hemolymph sinus developed into respiratory structures at post-manca juvenile stages. On the other hand, in Al. balssi with dorsal respiratory fields, the region for the future respiratory structure was already present at manca 1 stage, immediately after hatching, where the lateral protrusion of ventral epithelium occurred, forming the respiratory structure. Furthermore, on pleopods in Ar. cf. ellipticus, only thickened dorsal cuticle and the proximal hemolymph sinus developed during postembryonic development without special morphogenesis. CONCLUSIONS This study shows that the respiratory structures in terrestrial isopods develop primarily by postembryonic epithelial modifications, but the epithelial positions developing into respiratory structures differ between uncovered lungs and dorsal respiratory fields. This suggests that these two types of respiratory structures do not result from simple differences in the degree of development. Future analysis of molecular developmental mechanisms will help determine whether these are the result of heterotopic changes or have different evolutionary origins. Overall, this study provides fundamental information for evolutionary developmental studies of isopod respiratory organs.
Collapse
Affiliation(s)
- Naoto Inui
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa, 238-0225, Japan
| | - Toru Miura
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa, 238-0225, Japan.
| |
Collapse
|
3
|
Medina-Jiménez BI, Budd GE, Janssen R. Single-cell RNA sequencing of mid-to-late stage spider embryos: new insights into spider development. BMC Genomics 2024; 25:150. [PMID: 38326752 PMCID: PMC10848406 DOI: 10.1186/s12864-023-09898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/12/2023] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND The common house spider Parasteatoda tepidariorum represents an emerging new model organism of arthropod evolutionary and developmental (EvoDevo) studies. Recent technical advances have resulted in the first single-cell sequencing (SCS) data on this species allowing deeper insights to be gained into its early development, but mid-to-late stage embryos were not included in these pioneering studies. RESULTS Therefore, we performed SCS on mid-to-late stage embryos of Parasteatoda and characterized resulting cell clusters by means of in-silico analysis (comparison of key markers of each cluster with previously published information on these genes). In-silico prediction of the nature of each cluster was then tested/verified by means of additional in-situ hybridization experiments with additional markers of each cluster. CONCLUSIONS Our data show that SCS data reliably group cells with similar genetic fingerprints into more or less distinct clusters, and thus allows identification of developing cell types on a broader level, such as the distinction of ectodermal, mesodermal and endodermal cell lineages, as well as the identification of distinct developing tissues such as subtypes of nervous tissue cells, the developing heart, or the ventral sulcus (VS). In comparison with recent other SCS studies on the same species, our data represent later developmental stages, and thus provide insights into different stages of developing cell types and tissues such as differentiating neurons and the VS that are only present at these later stages.
Collapse
Affiliation(s)
- Brenda I Medina-Jiménez
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| |
Collapse
|
4
|
Janssen R, Pechmann M. Expression of posterior Hox genes and opisthosomal appendage development in a mygalomorph spider. Dev Genes Evol 2023; 233:107-121. [PMID: 37495828 PMCID: PMC10746769 DOI: 10.1007/s00427-023-00707-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023]
Abstract
Spiders represent an evolutionary successful group of chelicerate arthropods. The body of spiders is subdivided into two regions (tagmata). The anterior tagma, the prosoma, bears the head appendages and four pairs of walking legs. The segments of the posterior tagma, the opisthosoma, either lost their appendages during the course of evolution or their appendages were substantially modified to fulfill new tasks such as reproduction, gas exchange, and silk production. Previous work has shown that the homeotic Hox genes are involved in shaping the posterior appendages of spiders. In this paper, we investigate the expression of the posterior Hox genes in a tarantula that possesses some key differences of posterior appendages compared to true spiders, such as the lack of the anterior pair of spinnerets and a second set of book lungs instead of trachea. Based on the observed differences in posterior Hox gene expression in true spiders and tarantulas, we argue that subtle changes in the Hox gene expression of the Hox genes abdA and AbdB are possibly responsible for at least some of the morphological differences seen in true spiders versus tarantulas.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| | - Matthias Pechmann
- Institute for Zoology, Biocenter, University of Cologne, Zuelpicher Str. 47b, 50674, Cologne, Germany
| |
Collapse
|
5
|
Sharma PP. The Impact of Whole Genome Duplication on the Evolution of the Arachnids. Integr Comp Biol 2023; 63:825-842. [PMID: 37263789 DOI: 10.1093/icb/icad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023] Open
Abstract
The proliferation of genomic resources for Chelicerata in the past 10 years has revealed that the evolution of chelicerate genomes is more dynamic than previously thought, with multiple waves of ancient whole genome duplications affecting separate lineages. Such duplication events are fascinating from the perspective of evolutionary history because the burst of new gene copies associated with genome duplications facilitates the acquisition of new gene functions (neofunctionalization), which may in turn lead to morphological novelties and spur net diversification. While neofunctionalization has been invoked in several contexts with respect to the success and diversity of spiders, the overall impact of whole genome duplications on chelicerate evolution and development remains imperfectly understood. The purpose of this review is to examine critically the role of whole genome duplication on the diversification of the extant arachnid orders, as well as assess functional datasets for evidence of subfunctionalization or neofunctionalization in chelicerates. This examination focuses on functional data from two focal model taxa: the spider Parasteatoda tepidariorum, which exhibits evidence for an ancient duplication, and the harvestman Phalangium opilio, which exhibits an unduplicated genome. I show that there is no evidence that taxa with genome duplications are more successful than taxa with unduplicated genomes. I contend that evidence for sub- or neofunctionalization of duplicated developmental patterning genes in spiders is indirect or fragmentary at present, despite the appeal of this postulate for explaining the success of groups like spiders. Available expression data suggest that the condition of duplicated Hox modules may have played a role in promoting body plan disparity in the posterior tagma of some orders, such as spiders and scorpions, but functional data substantiating this postulate are critically missing. Spatiotemporal dynamics of duplicated transcription factors in spiders may represent cases of developmental system drift, rather than neofunctionalization. Developmental system drift may represent an important, but overlooked, null hypothesis for studies of paralogs in chelicerate developmental biology. To distinguish between subfunctionalization, neofunctionalization, and developmental system drift, concomitant establishment of comparative functional datasets from taxa exhibiting the genome duplication, as well as those that lack the paralogy, is sorely needed.
Collapse
Affiliation(s)
- Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
6
|
Strausfeld NJ, Hou X, Sayre ME, Hirth F. The lower Cambrian lobopodian Cardiodictyon resolves the origin of euarthropod brains. Science 2022; 378:905-909. [PMID: 36423269 DOI: 10.1126/science.abn6264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
For more than a century, the origin and evolution of the arthropod head and brain have eluded a unifying rationale reconciling divergent morphologies and phylogenetic relationships. Here, clarification is provided by the fossilized nervous system of the lower Cambrian lobopodian Cardiodictyon catenulum, which reveals an unsegmented head and brain comprising three cephalic domains, distinct from the metameric ventral nervous system serving its appendicular trunk. Each domain aligns with one of three components of the foregut and with a pair of head appendages. Morphological correspondences with stem group arthropods and alignments of homologous gene expression patterns with those of extant panarthropods demonstrate that cephalic domains of C. catenulum predate the evolution of the euarthropod head yet correspond to neuromeres defining brains of living chelicerates and mandibulates.
Collapse
Affiliation(s)
| | - Xianguang Hou
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, China
| | - Marcel E Sayre
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Frank Hirth
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
7
|
Inui N, Kimbara R, Yamaguchi H, Miura T. Pleopodal lung development in a terrestrial isopod, Porcellio scaber (Oniscidea). ARTHROPOD STRUCTURE & DEVELOPMENT 2022; 71:101210. [PMID: 36206666 DOI: 10.1016/j.asd.2022.101210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/24/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
During evolution, various lineages of arthropods colonized land and independently acquired air-breathing organs. Some taxa of oniscidean isopods (Crustacea, Isopoda, Oniscidea) are the most successful crustacean lineages on land and possess organs called "lungs" or "pseudotrachea" for air-breathing in their abdominal appendages, i.e., in pleopods. Although these lungs are important for adapting to the terrestrial environment, their developmental process has not yet been elucidated. In the present study, we investigated the process of lung development in Porcellio scaber, the common rough woodlouse with pleopodal lungs in the first two pairs of pleopods. The lungs in the second pleopods developed at the manca 1 stage (immediately after hatching) and became functional at the manca 2 stage. In the first pleopods, which appear at the manca 3 stage, the lungs were gradually developed during the manca 3 stage and became functional in post-manca juveniles. In the second pleopods, epithelial invaginations led to lung development. These results suggest that some novel developmental mechanisms with epithelial invaginations and cuticle formation were acquired during terrestrialization, resulting in the development of functional lungs in the terrestrial isopod lineages.
Collapse
Affiliation(s)
- Naoto Inui
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa, 238-0225, Japan
| | - Ryosuke Kimbara
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa, 238-0225, Japan
| | - Haruka Yamaguchi
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa, 238-0225, Japan
| | - Toru Miura
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa, 238-0225, Japan.
| |
Collapse
|
8
|
Gainett G, Crawford AR, Klementz BC, So C, Baker CM, Setton EVW, Sharma PP. Eggs to long-legs: embryonic staging of the harvestman Phalangium opilio (Opiliones), an emerging model arachnid. Front Zool 2022; 19:11. [PMID: 35246168 PMCID: PMC8896363 DOI: 10.1186/s12983-022-00454-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The comparative embryology of Chelicerata has greatly advanced in recent years with the integration of classical studies and genetics, prominently spearheaded by developmental genetic works in spiders. Nonetheless, the understanding of the evolution of development and polarization of embryological characters in Chelicerata is presently limited, as few non-spider species have been well studied. A promising focal species for chelicerate evo-devo is the daddy-long-legs (harvestman) Phalangium opilio, a member of the order Opiliones. Phalangium opilio, breeds prolifically and is easily accessible in many parts of the world, as well as tractable in a laboratory setting. Resources for this species include developmental transcriptomes, a draft genome, and protocols for RNA interference, but a modern staging system is critically missing for this emerging model system. RESULTS We present a staging system of P. opilio embryogenesis that spans the most important morphogenetic events with respect to segment formation, appendage elongation and head development. Using time-lapse imaging, confocal microscopy, colorimetric in situ hybridization, and immunohistochemistry, we tracked the development of synchronous clutches from egg laying to adulthood. We describe key events in segmentation, myogenesis, neurogenesis, and germ cell formation. CONCLUSION Considering the phylogenetic position of Opiliones and the unduplicated condition of its genome (in contrast to groups like spiders and scorpions), this species is poised to serve as a linchpin for comparative studies in arthropod development and genome evolution. The staging system presented herein provides a valuable reference for P. opilio that we anticipate being useful to the arthropod evo-devo community, with the goal of revitalizing research in the comparative development of non-spider arachnids.
Collapse
Affiliation(s)
- Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA.
| | - Audrey R Crawford
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Benjamin C Klementz
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Calvin So
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Caitlin M Baker
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, 438 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| |
Collapse
|
9
|
Janssen R, Turetzek N, Pechmann M. Lack of evidence for conserved parasegmental grooves in arthropods. Dev Genes Evol 2022; 232:27-37. [PMID: 35038005 PMCID: PMC8918137 DOI: 10.1007/s00427-022-00684-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/03/2022] [Indexed: 12/01/2022]
Abstract
In the arthropod model species Drosophila melanogaster, a dipteran fly, segmentation of the anterior–posterior body axis is under control of a hierarchic gene cascade. Segmental boundaries that form morphological grooves are established posteriorly within the segmental expression domain of the segment-polarity gene (SPG) engrailed (en). More important for the development of the fly, however, are the parasegmental boundaries that are established at the interface of en expressing cells and anteriorly adjacent wingless (wg) expressing cells. In Drosophila, both segmental and transient parasegmental grooves form. The latter are positioned anterior to the expression of en. Although the function of the SPGs in establishing and maintaining segmental and parasegmental boundaries is highly conserved among arthropods, parasegmental grooves have only been reported for Drosophila, and a spider (Cupiennius salei). Here, we present new data on en expression, and re-evaluate published data, from four distantly related spiders, including Cupiennius, and a distantly related chelicerate, the harvestman Phalangium opilio. Gene expression analysis of en genes in these animals does not corroborate the presence of parasegmental grooves. Consequently, our data question the general presence of parasegmental grooves in arthropods.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Uppsala University, Villavägen 16, 75236, Palaeobiology, Sweden.
| | - Natascha Turetzek
- Evolutionary Ecology, Faculty of Biology, Ludwig-Maximilians Universität München, Grosshaderner Strasse 2, 82152, Biozentrum, Germany
| | - Matthias Pechmann
- Institute for Zoology, Department of Developmental Biology, University of Cologne, Zuelpicher Str. 47b, 50674, Biocenter, Germany
| |
Collapse
|
10
|
Liu Y, Edgecombe GD, Schmidt M, Bond AD, Melzer RR, Zhai D, Mai H, Zhang M, Hou X. Exites in Cambrian arthropods and homology of arthropod limb branches. Nat Commun 2021; 12:4619. [PMID: 34330912 PMCID: PMC8324779 DOI: 10.1038/s41467-021-24918-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/14/2021] [Indexed: 11/28/2022] Open
Abstract
The last common ancestor of all living arthropods had biramous postantennal appendages, with an endopodite and exopodite branching off the limb base. Morphological evidence for homology of these rami between crustaceans and chelicerates has, however, been challenged by data from clonal composition and from knockout of leg patterning genes. Cambrian arthropod fossils have been cited as providing support for competing hypotheses about biramy but have shed little light on additional lateral outgrowths, known as exites. Here we draw on microtomographic imaging of the Cambrian great-appendage arthropod Leanchoilia to reveal a previously undetected exite at the base of most appendages, composed of overlapping lamellae. A morphologically similar, and we infer homologous, exite is documented in the same position in members of the trilobite-allied Artiopoda. This early Cambrian exite morphology supplements an emerging picture from gene expression that exites may have a deeper origin in arthropod phylogeny than has been appreciated.
Collapse
Affiliation(s)
- Yu Liu
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, China
- MEC International Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, China
| | - Gregory D Edgecombe
- MEC International Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, China.
- Department of Earth Sciences, The Natural History Museum, London, UK.
| | - Michel Schmidt
- MEC International Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, China
- Bavarian State Collection of Zoology, Bavarian Natural History Collections, München, Germany
- Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, München, Germany
| | - Andrew D Bond
- Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - Roland R Melzer
- MEC International Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, China
- Bavarian State Collection of Zoology, Bavarian Natural History Collections, München, Germany
- Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, München, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, München, Germany
| | - Dayou Zhai
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, China
- MEC International Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, China
| | - Huijuan Mai
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, China
- MEC International Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, China
| | - Maoyin Zhang
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, China
- MEC International Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, China
| | - Xianguang Hou
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, China.
- MEC International Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, China.
| |
Collapse
|
11
|
Huber T, Haug C. Morphological changes during the post-embryonic ontogeny of mesothelan spiders and aspects of character evolution in early spiders. Dev Genes Evol 2021; 231:47-56. [PMID: 33866412 PMCID: PMC8213562 DOI: 10.1007/s00427-021-00675-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/31/2021] [Indexed: 11/30/2022]
Abstract
Most morphological studies focus on adult specimens, or if developmental studies are pursued, especially in Euarthropoda, they focus on embryonic development. Araneae (spiders) is one of these groups, in consequence with understudied post-embryonic development. Here we present aspects of the post-embryonic stages of different species of Mesothelae, sister group to the remaining spiders (when fossil species are not taken into account). We used different imaging methods and measured different external morphological structures to detect possible ontogenetic changes. One structure exhibiting post-embryonic changes is the chelicera. Here the significant change occurs between the last immature stage and the adult, yet only in males. For the spinnerets, we could not detect ontogenetic changes, but instead a high variability in length and width, probably due to their lack of pivot joints between the elements. The strongest morphological change during ontogeny occurred on the sternum, which begins with a rather roundish shape in the first stage and changes to being fairly elongate in shape in the last immature stages and the adult. This specific sternum shape only occurs in adults of mesothelan spiders, while opisthothelan spiders have a broader sternum also in the adult. We discuss our results in an evolutionary context, also taking into account recent finds of fossil spiders.
Collapse
Affiliation(s)
- Thomas Huber
- LMU Munich, Biocenter, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Carolin Haug
- LMU Munich, Biocenter, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany. .,GeoBio-Center of the LMU Munich, Richard-Wagner-Str. 10, 80333, München, Germany.
| |
Collapse
|
12
|
Hou JB, Hughes NC, Hopkins MJ. The trilobite upper limb branch is a well-developed gill. SCIENCE ADVANCES 2021; 7:eabe7377. [PMID: 33789898 PMCID: PMC8011964 DOI: 10.1126/sciadv.abe7377] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Whether the upper limb branch of Paleozoic "biramous" arthropods, including trilobites, served a respiratory function has been much debated. Here, new imaging of the trilobite Triarthrus eatoni shows that dumbbell-shaped filaments in the upper limb branch are morphologically comparable with gill structures in crustaceans that aerate the hemolymph. In Olenoides serratus, the upper limb's partial articulation to the body via an extended arthrodial membrane is morphologically comparable to the junction of the respiratory book gill of Limulus and differentiates it from the typically robust exopod junction in Chelicerata or Crustacea. Apparently limited mechanical rotation of the upper branch may have protected the respiratory structures. Partial attachment of the upper branch to the body wall may represent an intermediate state in the evolution of limb branch fusion between dorsal attachment to the body wall, as in Radiodonta, and ventral fusion to the limb base, as in extant Euarthropoda.
Collapse
Affiliation(s)
- Jin-Bo Hou
- Department of Earth and Planetary Sciences, University of California, Riverside, CA 92521, USA.
| | - Nigel C Hughes
- Department of Earth and Planetary Sciences, University of California, Riverside, CA 92521, USA
- Geological Studies Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Melanie J Hopkins
- Division of Paleontology (Invertebrates), American Museum of Natural History, New York, NY 10024, USA
| |
Collapse
|
13
|
Howard RJ, Puttick MN, Edgecombe GD, Lozano-Fernandez J. Arachnid monophyly: Morphological, palaeontological and molecular support for a single terrestrialization within Chelicerata. ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 59:100997. [PMID: 33039753 DOI: 10.1016/j.asd.2020.100997] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
The majority of extant arachnids are terrestrial, but other chelicerates are generally aquatic, including horseshoe crabs, sea spiders, and the extinct eurypterids. It is necessary to determine whether arachnids are exclusively descended from a single common ancestor (monophyly), because only that relationship is compatible with one land colonisation in chelicerate evolutionary history. Some studies have cast doubt on arachnid monophyly and recast the origins of their terrestrialization. These include some phylogenomic analyses placing horseshoe crabs within Arachnida, and from aquatic Palaeozoic stem-group scorpions. Here, we evaluate the possibility of arachnid monophyly by considering morphology, fossils and molecules holistically. We argue arachnid monophyly obviates the need to posit reacquisition/retention of aquatic characters such as gnathobasic feeding and book gills without trabeculae from terrestrial ancestors in horseshoe crabs, and that the scorpion total-group contains few aquatic taxa. We built a matrix composed of 200 slowly-evolving genes and re-analysed two published molecular datasets. We retrieved arachnid monophyly where other studies did not - highlighting the difficulty of resolving chelicerate relationships from current molecular data. As such, we consider arachnid monophyly the best-supported hypothesis. Finally, we inferred that arachnids terrestrialized during the Cambrian-Ordovician using the slow-evolving molecular matrix, in agreement with recent analyses.
Collapse
Affiliation(s)
- Richard J Howard
- Department of Biosciences, University of Exeter, Penryn Campus, UK; Department of Earth Sciences, The Natural History Museum, UK.
| | - Mark N Puttick
- School of Biochemistry & Biological Sciences, University of Bath, Bath, UK
| | | | - Jesus Lozano-Fernandez
- Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain; School of Biological Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
14
|
Mariano-Martins P, Lo-Man-Hung N, Torres TT. Evolution of Spiders and Silk Spinning: Mini Review of the Morphology, Evolution, and Development of Spiders’ Spinnerets. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
15
|
Pechmann M. Embryonic development and secondary axis induction in the Brazilian white knee tarantula Acanthoscurria geniculata, C. L. Koch, 1841 (Araneae; Mygalomorphae; Theraphosidae). Dev Genes Evol 2020; 230:75-94. [PMID: 32076811 PMCID: PMC7128004 DOI: 10.1007/s00427-020-00653-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/29/2020] [Indexed: 02/07/2023]
Abstract
Tarantulas represent some of the heaviest and most famous spiders. However, there is little information about the embryonic development of these spiders or their relatives (infraorder Mygalomorphae) and time-lapse recording of the embryonic development is entirely missing. I here describe the complete development of the Brazilian white knee tarantula, Acanthoscurria geniculata, in fixed and live embryos. The establishment of the blastoderm, the formation, migration and signalling of the cumulus and the shape changes that occur in the segment addition zone are analysed in detail. In addition, I show that there might be differences in the contraction process of early embryos of different theraphosid spider species. A new embryonic reference transcriptome was generated for this study and was used to clone and analyse the expression of several important developmental genes. Finally, I show that embryos of A. geniculata are amenable to tissue transplantation and bead insertion experiments. Using these functional approaches, I induced axis duplication in embryos via cumulus transplantation and ectopic activation of BMP signalling. Overall, the mygalomorph spider A. geniculata is a useful laboratory system to analyse evolutionary developmental questions, and the availability of such a system will help understanding conserved and divergent aspects of spider/chelicerate development.
Collapse
Affiliation(s)
- Matthias Pechmann
- Institute for Zoology, Department for Developmental Biology, Biocenter, University of Cologne, Zuelpicher Str. 47b, 50674, Cologne, Germany.
| |
Collapse
|
16
|
Nolan ED, Santibáñez-López CE, Sharma PP. Developmental gene expression as a phylogenetic data class: support for the monophyly of Arachnopulmonata. Dev Genes Evol 2020; 230:137-153. [PMID: 31927629 DOI: 10.1007/s00427-019-00644-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/10/2019] [Indexed: 01/01/2023]
Abstract
Despite application of genome-scale datasets, the phylogenetic placement of scorpions within arachnids remains contentious between two different phylogenetic data classes. Paleontologists continue to recover scorpions in a basally branching position, partly owing to their morphological similarity to extinct marine orders like Eurypterida (sea scorpions). Phylogenomic datasets consistently recover scorpions in a derived position, as the sister group of Tetrapulmonata (a clade of arachnids that includes spiders). To adjudicate between these hypotheses using a rare genomic change (RGC), we leveraged the recent discovery of ancient paralogy in spiders and scorpions to assess phylogenetic placement. We identified homologs of four transcription factors required for appendage patterning (dachshund, homothorax, extradenticle, and optomotor blind) in arthropods that are known to be duplicated in spiders. Using genomic resources for a spider, a scorpion, and a harvestman, we conducted gene tree analyses and assayed expression patterns of scorpion gene duplicates. Here we show that scorpions, like spiders, retain two copies of all four transcription factors, whereas arachnid orders like mites and harvestmen bear a single copy. A survey of embryonic expression patterns of the scorpion paralogs closely matches those of their spider counterparts, with one paralog consistently retaining the putatively ancestral pattern found in the harvestman, as well as the mite, and/or other outgroups. These data comprise a rare genomic change in chelicerate phylogeny supporting the inference of a distal placement of scorpions. Beyond demonstrating the diagnostic power of developmental genetic data as a phylogenetic data class, a derived placement of scorpions within the arachnids, together with an array of stem-group Paleozoic scorpions that occupied marine habitats, effectively rules out a scenario of a single colonization of terrestrial habitat within Chelicerata, even in tree topologies contrived to recover the monophyly of Arachnida.
Collapse
Affiliation(s)
- Erik D Nolan
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Developmental Biology, Washington University of St. Louis, St. Louis, MO, 63110, USA
| | - Carlos E Santibáñez-López
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Biology, Eastern Connecticut State University, 83 Windham Street, Willimantic, CT, 06266, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
17
|
Chipman AD, Edgecombe GD. Developing an integrated understanding of the evolution of arthropod segmentation using fossils and evo-devo. Proc Biol Sci 2019; 286:20191881. [PMID: 31575373 DOI: 10.1098/rspb.2019.1881] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Segmentation is fundamental to the arthropod body plan. Understanding the evolutionary steps by which arthropods became segmented is being transformed by the integration of data from evolutionary developmental biology (evo-devo), Cambrian fossils that allow the stepwise acquisition of segmental characters to be traced in the arthropod stem-group, and the incorporation of fossils into an increasingly well-supported phylogenetic framework for extant arthropods based on genomic-scale datasets. Both evo-devo and palaeontology make novel predictions about the evolution of segmentation that serve as testable hypotheses for the other, complementary data source. Fossils underpin such hypotheses as arthropodization originating in a frontal appendage and then being co-opted into other segments, and segmentation of the endodermal midgut in the arthropod stem-group. Insights from development, such as tagmatization being associated with different modes of segment generation in different body regions, and a distinct patterning of the anterior head segments, are complemented by palaeontological evidence for the pattern of tagmatization during ontogeny of exceptionally preserved fossils. Fossil and developmental data together provide evidence for a short head in stem-group arthropods and the mechanism of its formation and retention. Future breakthroughs are expected from identification of molecular signatures of developmental innovations within a phylogenetic framework, and from a focus on later developmental stages to identify the differentiation of repeated units of different systems within segmental precursors.
Collapse
Affiliation(s)
- Ariel D Chipman
- Department of Ecology, Evolution and Behavior, The Silberman Institute of Life Sciences, Edmond J. Safra Campus - Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
18
|
Ballesteros JA, Sharma PP. A Critical Appraisal of the Placement of Xiphosura (Chelicerata) with Account of Known Sources of Phylogenetic Error. Syst Biol 2019; 68:896-917. [DOI: 10.1093/sysbio/syz011] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/20/2018] [Accepted: 02/10/2019] [Indexed: 11/13/2022] Open
Abstract
AbstractHorseshoe crabs (Xiphosura) are traditionally regarded as sister group to the clade of terrestrial chelicerates (Arachnida). This hypothesis has been challenged by recent phylogenomic analyses, but the non-monophyly of Arachnida has consistently been disregarded as artifactual. We re-evaluated the placement of Xiphosura among chelicerates using the most complete phylogenetic data set to date, expanding outgroup sampling, and including data from whole genome sequencing projects. In spite of uncertainty in the placement of some arachnid clades, all analyses show Xiphosura consistently nested within Arachnida as the sister group to Ricinulei (hooded tick spiders). It is apparent that the radiation of arachnids is an old one and occurred over a brief period of time, resulting in several consecutive short internodes, and thus is a potential case for the confounding effects of incomplete lineage sorting (ILS). We simulated coalescent gene trees to explore the effects of increasing levels of ILS on the placement of horseshoe crabs. In addition, common sources of systematic error were evaluated, as well as the effects of fast-evolving partitions and the dynamics of problematic long branch orders. Our results indicated that the placement of horseshoe crabs cannot be explained by missing data, compositional biases, saturation, or ILS. Interrogation of the phylogenetic signal showed that the majority of loci favor the derived placement of Xiphosura over a monophyletic Arachnida. Our analyses support the inference that horseshoe crabs represent a group of aquatic arachnids, comparable to aquatic mites, breaking a long-standing paradigm in chelicerate evolution and altering previous interpretations of the ancestral transition to the terrestrial habitat. Future studies testing chelicerate relationships should approach the task with a sampling strategy where the monophyly of Arachnida is not held as the premise.
Collapse
Affiliation(s)
- Jesús A Ballesteros
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
19
|
March LE, Smaby RM, Setton EVW, Sharma PP. The evolution of selector gene function: Expression dynamics and regulatory interactions of tiptop/teashirt across Arthropoda. Evol Dev 2018; 20:219-232. [PMID: 30221814 DOI: 10.1111/ede.12270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The transcription factors spineless (ss) and tiptop/teashirt (tio/tsh) have been shown to be selectors of distal appendage identity in an insect, but it is unknown how they regulate one another. Here, we examined the regulatory relationships between these two determinants in the milkweed bug Oncopeltus faciatus, using maternal RNA interference (RNAi). We show that Ofas-ss RNAi embryos bear distally transformed antennal buds with heterogeneous Ofas-tio/tsh expression domains comparable to wild type legs. In the reciprocal experiment, Ofas-tio/tsh RNAi embryos bear distally transformed walking limb buds with ectopic expression of Ofas-ss in the distal leg primordia. These data suggest that Ofas-ss is required for the maintenance of Ofas-tio/tsh expression in the distal antenna, whereas Ofas-tio/tsh represses Ofas-ss in the leg primordia. To assess whether expression boundaries of tio/tsh are associated with the trunk region more generally, we surveyed the expression of one myriapod and two chelicerate tio/tsh homologs. Our expression survey suggests that tio/tsh could play a role in specifying distal appendage identity across Arthropoda, but Hox regulation of tio/tsh homologs has been evolutionarily labile.
Collapse
Affiliation(s)
- Logan E March
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Rachel M Smaby
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
20
|
|
21
|
Di Z, Edgecombe GD, Sharma PP. Homeosis in a scorpion supports a telopodal origin of pectines and components of the book lungs. BMC Evol Biol 2018; 18:73. [PMID: 29783957 PMCID: PMC5963125 DOI: 10.1186/s12862-018-1188-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/03/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The morphological and functional evolution of appendages has played a key role in the diversification of arthropods. While the ancestral arthropod appendage is held to be polyramous, terrestriality is associated with the reduction or loss of appendage rami, which may obscure the homology of different appendage derivatives. Proxies for appendage homology have included surveys of cross-reactive antibodies for wing markers like Nubbin/PDM, which have suggested that the abdominal appendages of arachnids (e.g., book lungs, tracheal tubules) are derived from ancestral gills (epipods). RESULTS Here, we discovered a rare case of inferred homeosis in a scorpion in which the bilobed genital opercula and the pectines are transformed to walking legs, and an abnormal sternite shows a book lung close to an everted structure comparable to the morphology of some Palaeozoic scorpion fossils. CONCLUSIONS The observed morphology is consistent with abnormal expression of homeotic genes during embryonic development. The phenotype of this abnormal specimen suggests that the genital opercula, the pectines, and parts of the book lung may be derived from the telopodite of abdominal appendages rather than from epipods. This interpretation contradicts the "ancestral gill" hypothesis but reconciles features of the Palaeozoic scorpion fossil record with the embryology of modern scorpions.
Collapse
Affiliation(s)
- Zhiyong Di
- Key Laboratory of Invertebrate Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, 352 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA.
| |
Collapse
|
22
|
Cretaceous arachnid Chimerarachne yingi gen. et sp. nov. illuminates spider origins. Nat Ecol Evol 2018; 2:614-622. [PMID: 29403075 DOI: 10.1038/s41559-017-0449-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/11/2017] [Indexed: 11/08/2022]
Abstract
Spiders (Araneae) are a hugely successful lineage with a long history. Details of their origins remain obscure, with little knowledge of their stem group and few insights into the sequence of character acquisition during spider evolution. Here, we describe Chimerarachne yingi gen. et sp. nov., a remarkable arachnid from the mid-Cretaceous (approximately 100 million years ago) Burmese amber of Myanmar, which documents a key transition stage in spider evolution. Like uraraneids, the two fossils available retain a segmented opisthosoma bearing a whip-like telson, but also preserve two traditional synapomorphies for Araneae: a male pedipalp modified for sperm transfer and well-defined spinnerets resembling those of modern mesothele spiders. This unique character combination resolves C. yingi within a clade including both Araneae and Uraraneida; however, its exact position relative to these orders is sensitive to different parameters of our phylogenetic analysis. Our new fossil most likely represents the earliest branch of the Araneae, and implies that there was a lineage of tailed spiders that presumably originated in the Palaeozoic and survived at least into the Cretaceous of Southeast Asia.
Collapse
|
23
|
Aria C, Caron JB. Mandibulate convergence in an armoured Cambrian stem chelicerate. BMC Evol Biol 2017; 17:261. [PMID: 29262772 PMCID: PMC5738823 DOI: 10.1186/s12862-017-1088-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/21/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chelicerata represents a vast clade of mostly predatory arthropods united by a distinctive body plan throughout the Phanerozoic. Their origins, however, with respect to both their ancestral morphological features and their related ecologies, are still poorly understood. In particular, it remains unclear whether their major diagnostic characters were acquired early on, and their anatomical organization rapidly constrained, or if they emerged from a stem lineage encompassing an array of structural variations, based on a more labile "panchelicerate" body plan. RESULTS In this study, we reinvestigated the problematic middle Cambrian arthropod Habelia optata Walcott from the Burgess Shale, and found that it was a close relative of Sanctacaris uncata Briggs and Collins (in Habeliida, ord. nov.), both retrieved in our Bayesian phylogeny as stem chelicerates. Habelia possesses an exoskeleton covered in numerous spines and a bipartite telson as long as the rest of the body. Segments are arranged into three tagmata. The prosoma includes a reduced appendage possibly precursor to the chelicera, raptorial endopods connected to five pairs of outstandingly large and overlapping gnathobasic basipods, antennule-like exopods seemingly dissociated from the main limb axis, and, posteriorly, a pair of appendages morphologically similar to thoracic ones. While the head configuration of habeliidans anchors a seven-segmented prosoma as the chelicerate ground pattern, the peculiar size and arrangement of gnathobases and the presence of sensory/tactile appendages also point to an early convergence with the masticatory head of mandibulates. CONCLUSIONS Although habeliidans illustrate the early appearance of some diagnostic chelicerate features in the evolution of euarthropods, the unique convergence of their cephalons with mandibulate anatomies suggests that these traits retained an unusual variability in these taxa. The common involvement of strong gnathal appendages across non-megacheirans Cambrian taxa also illustrates that the specialization of the head as the dedicated food-processing tagma was critical to the emergence of both lineages of extant euarthropods-Chelicerata and Mandibulata-and implies that this diversification was facilitated by the expansion of durophagous niches.
Collapse
Affiliation(s)
- Cédric Aria
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S3B2, Canada.
- Present address: State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Jean-Bernard Caron
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S3B2, Canada
- Department of Natural History (Palaeobiology Section), Royal Ontario Museum, Toronto, ON, M5S2C6, Canada
- Department of Earth Sciences, University of Toronto, Toronto, ON, M5S3B1, Canada
| |
Collapse
|
24
|
Chipman AD, Erwin DH. The Evolution of Arthropod Body Plans: Integrating Phylogeny, Fossils, and Development-An Introduction to the Symposium. Integr Comp Biol 2017; 57:450-454. [PMID: 28957527 DOI: 10.1093/icb/icx094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The last few years have seen a significant increase in the amount of data we have about the evolution of the arthropod body plan. This has come mainly from three separate sources: a new consensus and improved resolution of arthropod phylogeny, based largely on new phylogenomic analyses; a wealth of new early arthropod fossils from a number of Cambrian localities with excellent preservation, as well as a renewed analysis of some older fossils; and developmental data from a range of model and non-model pan-arthropod species that shed light on the developmental origins and homologies of key arthropod traits. However, there has been relatively little synthesis among these different data sources, and the three communities studying them have little overlap. The symposium "The Evolution of Arthropod Body Plans-Integrating Phylogeny, Fossils and Development" brought together leading researchers in these three disciplines and made a significant contribution to the emerging synthesis of arthropod evolution, which will help advance the field and will be useful for years to come.
Collapse
Affiliation(s)
- Ariel D Chipman
- The Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram 91904, Jerusalem, Israel
| | - Douglas H Erwin
- Department of Paleobiology, MRC-121 National Museum of Natural History, PO Box 37012, Washington, DC 20013-7012, USA
| |
Collapse
|