1
|
Spear JK. Reduced limb integration characterizes primate clades with diverse locomotor adaptations. J Hum Evol 2024; 194:103567. [PMID: 39068699 DOI: 10.1016/j.jhevol.2024.103567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/30/2024]
Abstract
Hominoids exhibit a strikingly diverse set of locomotor adaptations-including knuckle-walking, brachiation, quadrumanuous suspension, and striding bipedalism-while also possessing morphologies associated with forelimb suspension. It has been suggested that changes in limb element integration facilitated the evolution of diverse locomotor modes by reducing covariation between serial homologs and allowing the evolution of a greater diversity of limb lengths. Here, I compare limb element integration in hominoids with that of other primate taxa, including two that have converged with them in forelimb morphology, Ateles and Pygathrix. Ateles is part of a clade that, such as hominoids, exhibits diverse locomotor adaptations, whereas Pygathrix is an anomaly in a much more homogeneous (in terms of locomotor adaptations) clade. I find that all atelines (and possibly all atelids), not just Ateles, share reduced limb element integration with hominoids. Pygathrix does not, however, instead resembling other members of its own family. Indriids also seem to have higher limb integration than apes, despite using their forelimbs and hindlimbs in divergent ways, although there is more uncertainty in this group due to poor sample size. These results suggest that reduced limb integration is characteristic of certain taxonomic groups with high locomotor diversity rather than taxa with specific, specialized locomotor adaptations. This is consistent with the hypothesis that reduced integration serves to open new areas of morphospace to those clades while suggesting that derived locomotion with divergent demands on limbs is not necessarily associated with reduced limb integration.
Collapse
Affiliation(s)
- Jeffrey K Spear
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 E 57th Street, Chicago, 60637, USA; Center for the Study of Human Origins and Department of Anthropology, New York University, 25 Waverly Place, New York, 10003, USA; New York Consortium in Evolutionary Primatology, New York, USA.
| |
Collapse
|
2
|
Horbaly H. Covariance in human limb joint articular morphology. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 182:401-411. [PMID: 37702982 DOI: 10.1002/ajpa.24826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 06/12/2023] [Accepted: 06/23/2023] [Indexed: 09/14/2023]
Abstract
OBJECTIVES Limb synovial joints exhibit complex shapes that must accommodate often-antagonistic demands of function, mobility, and stability. These demands presumably dictate coordination among joint articular shapes, but the structure of morphological covariance within and among joints is unknown. This study analyzes the human shoulder, elbow, hip, and knee to determine how articular covariance is structured in relation to joint structure, accessory cartilage, and function. MATERIALS AND METHODS Surface models were created from the CT scans of 200 modern skeletons from the University of Tennessee Donated Skeletal Collection. Three-dimensional landmarks were collected on the shoulder, elbow, hip, and knee joints. Two-block partial least squares were conducted to determine associations between surfaces of conarticular shapes, functionally analogous articulations, and articulations belonging to the same bone. RESULTS Except for the components of the shoulder, all conarticular pairs exhibit covariance, though the strength of these relationships appears unrelated to the amount of accessory cartilage in the joint. Only the analogous articulations of the humerus and femur exhibit significant covariance, but it is unlikely that this pattern is due to function alone. Stronger covariance within the lower limb than the upper limb is consistent broader primate patterns of within-limb integration. DISCUSSION With the exception of the elbow, complementary joint function does not appear to promote strong covariance between articulations. Analogous humeral and femoral surfaces are also serially homologous, which may result in the articular associations observed between these bones. Broadly, these patterns highlight the indirect relationship between joint congruence and covariance.
Collapse
Affiliation(s)
- Haley Horbaly
- Department of Health and Human Performance, Congdon School of Health Sciences, High Point University, High Point, North Carolina, USA
- Department of Physician Assistant Studies, Congdon School of Health Sciences, High Point University, High Point, North Carolina, USA
| |
Collapse
|
3
|
Flores-Arguedas H, Antolin-Camarena O, Saavedra S, Angulo MT. Assembly archetypes in ecological communities. J R Soc Interface 2023; 20:20230349. [PMID: 38016640 PMCID: PMC10684342 DOI: 10.1098/rsif.2023.0349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023] Open
Abstract
An instrumental discovery in comparative and developmental biology is the existence of assembly archetypes that synthesize the vast diversity of organisms' body plans-from legs and wings to human arms-into simple, interpretable and general design principles. Here, we combine a novel mathematical formalism based on category theory with experimental data to show that similar 'assembly archetypes' exist at the larger organization scale of ecological communities when assembling a species pool across diverse environmental contexts, particularly when species interactions are highly structured. We applied our formalism to clinical data discovering two assembly archetypes that differentiate between healthy and unhealthy human gut microbiota. The concept of assembly archetypes and the methods to synthesize them can pave the way to discovering the general assembly principles of the ecological communities we observe in nature.
Collapse
Affiliation(s)
- Hugo Flores-Arguedas
- Institute of Mathematics, Universidad Nacional Autónoma de México, Juriquilla, Queretaro, Mexico
| | - Omar Antolin-Camarena
- Institute of Mathematics, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Serguei Saavedra
- Department of Civil and Environmental Engineering, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| | - Marco Tulio Angulo
- Institute of Mathematics, Universidad Nacional Autónoma de México, Juriquilla, Queretaro, Mexico
| |
Collapse
|
4
|
Auerbach BM, Savell KRR, Agosto ER. Morphology, evolution, and the whole organism imperative: Why evolutionary questions need multi-trait evolutionary quantitative genetics. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023. [PMID: 37060292 DOI: 10.1002/ajpa.24733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
Since Washburn's New Physical Anthropology, researchers have sought to understand the complexities of morphological evolution among anatomical regions in human and non-human primates. Researchers continue, however, to preferentially use comparative and functional approaches to examine complex traits, but these methods cannot address questions about evolutionary process and often conflate function with fitness. Moreover, researchers also tend to examine anatomical elements in isolation, which implicitly assumes independent evolution among different body regions. In this paper, we argue that questions asked in primate evolution are best examined using multiple anatomical regions subjected to model-bound methods built from an understanding of evolutionary quantitative genetics. A nascent but expanding number of studies over the last two decades use this approach, examining morphological integration, evolvability, and selection modeling. To help readers learn how to use these methods, we review fundamentals of evolutionary processes within a quantitative genetic framework, explore the importance of neutral evolutionary theory, and explain the basics of evolutionary quantitative genetics, namely the calculation of evolutionary potential for multiple traits in response to selection. Leveraging these methods, we demonstrate their use to understand non-independence in possible evolutionary responses across the limbs, limb girdles, and basicranium of humans. Our results show that model-bound quantitative genetic methods can reveal unexpected genetic covariances among traits that create a novel but measurable understanding of evolutionary complexity among multiple traits. We advocate for evolutionary quantitative genetic methods to be a standard whenever appropriate to keep studies of primate morphological evolution relevant for the next seventy years and beyond.
Collapse
Affiliation(s)
- Benjamin M Auerbach
- Department of Anthropology, The University of Tennessee, Knoxville, Tennessee, USA
- Department of Ecology and Evolutionary Biology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Kristen R R Savell
- Department of Biology, Sacred Heart University, Fairfield, Connecticut, USA
| | - Elizabeth R Agosto
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
5
|
Gavazzi LM, Kjosness KM, Reno PL. Ossification pattern of the unusual pisiform in two-toed (Choloepus) and three-toed sloths (Bradypus). Anat Rec (Hoboken) 2021; 305:1804-1819. [PMID: 34779120 DOI: 10.1002/ar.24832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/06/2022]
Abstract
Two-toed (Choloepus sp.) and three-toed (Bradypus sp.) sloths possess short, rounded pisiforms that are rare among mammals and differ from other members of Xenarthra like the giant anteater (Myrmecophaga tridactyla) which retain elongated, rod-like pisiforms in common with most mammals. Using photographs, radiographs, and μCT, we assessed ossification patterns in the pisiform and the paralogous tarsal, the calcaneus, for two-toed sloths, three-toed sloths, and giant anteaters to determine the process by which pisiform reduction occurs in sloths and compare it to other previously studied examples of pisiform reduction in humans and orangutans. Both extant sloth genera achieve pisiform reduction through the loss of a secondary ossification center and the likely disruption of the associated growth plate based on an unusually porous subchondral surface. This represents a third unique mechanism of pisiform reduction among mammals, along with primary ossification center loss in humans and retention of two ossification centers with likely reduced growth periods in orangutans. Given the remarkable similarities between two-toed and three-toed sloth pisiform ossification patterns and the presence of pisiform reduction in fossil sloths, extant sloth pisiform morphology does not appear to represent a recent convergent adaptation to suspensory locomotion, but instead is likely to be an ancestral trait of Folivora that emerged early in the radiation of extant and fossil sloths.
Collapse
Affiliation(s)
- Lia M Gavazzi
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA.,Musculoskeletal Research Group, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Kelsey M Kjosness
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Philip L Reno
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Agosto ER, Auerbach BM. Evolvability and Constraint in the Primate Basicranium, Shoulder, and Hip and the Importance of Multi-trait Evolution. Evol Biol 2021. [DOI: 10.1007/s11692-021-09532-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Cordero GA, Maliuk A, Schlindwein X, Werneburg I, Yaryhin O. Phylogenetic patterns and ontogenetic origins of limb length variation in ecologically diverse lacertine lizards. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Limb length is intrinsically linked to function and, ultimately, fitness. Thus, it can co-evolve with habitat structure, as exemplified by tropical lizards in highly heterogeneous environments. But does lizard limb length respond in a similar manner during adaptive diversification in temperate zones? Here, we examine variation in habitat preference and limb length in lacertine lizards from the Palaearctic. We tested the following three hypotheses: (1) species of the Lacertini tribe descended from a generalist ancestor and subsequently underwent habitat specialization; (2) specialized ecological roles are associated with relative limb length in extant species; and (3) interspecific differences in limb length emerge in embryonic development. Our comparisons supported an ancestral ‘rocky’ or ‘generalist’ habitat preference, and phenotype–habitat associations were particularly supported when examining size-adjusted forelimb length in 69 species that represented all known Lacertini genera. Moreover, we revealed an elevated interlimb ratio in high-vegetation species, which might be linked to climbing performance in species with relatively longer forelimbs. Furthermore, embryonic limb variation was detected solely against an Eremiadini outgroup species. Instead, hind limb length differences within Lacertini originated in post-hatching ontogeny. The mechanisms that modulate limb growth are likely to be limited in Lacertini, because adaptive morphological change might mirror historical contingency and the ecological context wherein this clade diversified.
Collapse
Affiliation(s)
- Gerardo A Cordero
- Fachbereich Geowissenschaften, Eberhard Karls Universität Tübingen, Hölderlinstraße, Tübingen, Germany
| | - Anastasiia Maliuk
- The National Museum of Natural History of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Xenia Schlindwein
- Fachbereich Geowissenschaften, Eberhard Karls Universität Tübingen, Hölderlinstraße, Tübingen, Germany
| | - Ingmar Werneburg
- Fachbereich Geowissenschaften, Eberhard Karls Universität Tübingen, Hölderlinstraße, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoecology an der Universität Tübingen, Sigwartstraße, Tübingen, Germany
| | - Oleksandr Yaryhin
- Senckenberg Centre for Human Evolution and Palaeoecology an der Universität Tübingen, Sigwartstraße, Tübingen, Germany
- Max Planck Institute for Evolutionary Biology, August-Thienemann Straße, Plön, Germany
- I. I. Schmalhausen Institute of Zoology of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
8
|
Stepanova N, Womack MC. Anuran limbs reflect microhabitat and distal, later‐developing bones are more evolutionarily labile*. Evolution 2020; 74:2005-2019. [DOI: 10.1111/evo.13981] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Natasha Stepanova
- Museum of Vertebrate Zoology University of California at Berkeley 3101 Valley Life Sciences Building Berkeley California 94720
- Present Address: Department of Biology Villanova University 800 Lancaster Avenue Villanova Pennsylvania 19085
| | - Molly C. Womack
- Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution 1000 Constitution Avenue NW Washington DC 20560
| |
Collapse
|
9
|
Affiliation(s)
- David Jablonski
- Department of Geophysical Sciences University of Chicago Chicago Illinois
| |
Collapse
|
10
|
Ledbetter NM, Bonett RM. Terrestriality constrains salamander limb diversification: Implications for the evolution of pentadactyly. J Evol Biol 2019; 32:642-652. [PMID: 30891861 DOI: 10.1111/jeb.13444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/04/2019] [Accepted: 03/07/2019] [Indexed: 01/03/2023]
Abstract
Patterns of phenotypic evolution can abruptly shift as species move between adaptive zones. Extant salamanders display three distinct life cycle strategies that range from aquatic to terrestrial (biphasic), to fully aquatic (paedomorphic) and to fully terrestrial (direct development). Life cycle variation is associated with changes in body form such as loss of digits, limb reduction or body elongation. However, the relationships among these traits and life cycle strategy remain unresolved. Here, we use a Bayesian modelling approach to test whether life cycle transitions by salamanders have influenced rates, optima and integration of primary locomotory structures (limbs and trunk). We show that paedomorphic salamanders have elevated rates of limb evolution with optima shifted towards smaller size and fewer digits compared to all other salamanders. Rate of hindlimb digit evolution is shown to decrease in a gradient as life cycles become more terrestrial. Paedomorphs have a higher correlation between hindlimb digit loss and increases in vertebral number, as well as reduced correlations between limb lengths. Our results support the idea that terrestrial plantigrade locomotion constrains limb evolution and, when lifted, leads to higher rates of trait diversification and shifts in optima and integration. The basic tetrapod body form of most salamanders and the independent losses of terrestrial life stages provide an important framework for understanding the evolutionary and developmental mechanisms behind major shifts in ecological zones as seen among early tetrapods during their transition from water to land.
Collapse
Affiliation(s)
| | - Ronald M Bonett
- Department of Biological Science, The University of Tulsa, Tulsa, Oklahoma
| |
Collapse
|
11
|
Watanabe J. Clade-specific evolutionary diversification along ontogenetic major axes in avian limb skeleton. Evolution 2018; 72:2632-2652. [PMID: 30328113 DOI: 10.1111/evo.13627] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 12/16/2022]
Abstract
The evolutionary diversification of birds has been facilitated by specializations for various locomotor modes, with which the proportion of the limb skeleton is closely associated. However, recent studies have identified phylogenetic signals in this system, suggesting the presence of historical factors that have affected its evolutionary variability. In this study, to explore potential roles of ontogenetic integration in biasing the evolution in the avian limb skeleton, evolutionary diversification patterns in six avian families (Anatidae, Procellariidae, Ardeidae, Phalacrocoracidae, Laridae, and Alcidae) were examined and compared to the postnatal ontogenetic trajectories in those taxa, based on measurement of 2641 specimens and recently collected ontogenetic series, supplemented by published data. Morphometric analyses of lengths of six limb bones (humerus, ulna, carpometacarpus, femur, tibiotarsus, and tarsometatarsus) demonstrated that: (1) ontogenetic trajectories are diverse among families; (2) evolutionary diversification is significantly anisotropic; and, most importantly, (3) major axes of evolutionary diversification are correlated with clade-specific ontogenetic major axes in the shape space. These results imply that the evolutionary variability of the avian limbs has been biased along the clade-specific ontogenetic trajectories. It may explain peculiar diversification patterns characteristic to some avian groups, including the long-leggedness in Ardeidae and tendency for flightlessness in Anatidae.
Collapse
Affiliation(s)
- Junya Watanabe
- Department of Geology and Mineralogy, Kyoto University, Kyoto, Japan
| |
Collapse
|