1
|
Chakraborty A, Sgrò CM, Mirth CK. Untangling plastic responses to combined thermal and dietary stress in insects. CURRENT OPINION IN INSECT SCIENCE 2024; 68:101328. [PMID: 39743206 DOI: 10.1016/j.cois.2024.101328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/27/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025]
Abstract
Animals are exposed to changes in their environmental conditions daily. Such changes will become increasingly more erratic and unpredictable with ongoing climate change. Responses to changing environments are influenced by the genetic architecture of the traits under selection and modified by a range of physiological, developmental, and behavioural changes resulting from phenotypic plasticity. Furthermore, the interactions between multiple environmental stressors to which organisms are exposed can generate unexpected phenotypic responses. Understanding how genetic and plastic variation contributes to the response to combined environmental stress will be key to predicting how animals will cope with climate change and ultimately will define their ability to persist. Here, we review the approaches used to explore how animals respond to combined stressors, specifically nutrition and temperature, the physiological mechanisms that underlie such plastic responses, and how genetic variation alters this plasticity.
Collapse
Affiliation(s)
- Avishikta Chakraborty
- University College London, London, United Kingdom; Monash University, Clayton, Melbourne, Australia
| | - Carla M Sgrò
- Monash University, Clayton, Melbourne, Australia
| | | |
Collapse
|
2
|
Hoshizaki S. Ontogenetic progression of individual head size in the larvae of the beetle Trypoxylus dichotomus (Coleoptera: Scarabaeidae): catch-up growth within stages and per-stage growth rate changes across stages. PeerJ 2023; 11:e15451. [PMID: 37273541 PMCID: PMC10239228 DOI: 10.7717/peerj.15451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 05/03/2023] [Indexed: 06/06/2023] Open
Abstract
The ontogenetic progression of insect larval head size has received much attention due to its fundamental and practical importance. However, although previous studies have analyzed the population mean head size, such an approach may not be appropriate for developmental studies of larval head sizes when the trajectory of individual head size growth is correlated with pre-molt head size and developmental stage. Additionally, there is covariation between the head and body sizes; however, few studies have compared the ontogenetic progression of individual head sizes with that of individual body sizes. In this investigation, the per-stage growth rates (PSGRs) for head width (HW) and cubic-rooted body mass at the beginning of each instar (body size, BS) were assessed in Trypoxylus dichotomus. Linear models were used to test the size- and instar-dependence of the ontogenetic progression of individual HW and BS. The individual PSGRs of the HW (iPSGRH) and BS (iPSGRB) were then compared. In addition, the allometric relationship between HW and BS was examined. The iPSGRH was negatively correlated with the pre-molt HW at every instar (i.e., head catch-up growth). Furthermore, the mean iPSGRH at L2 was relatively higher than that at L1 when the pre-molt HW was used as covariate in the analysis (i.e., instar-effect), whereas the mean iPSGRH decreased ontogenetically. The iPSGRB showed catch-up growth and instar-effects similar to those of iPSGRH; however, iPSGRH was found to be lower than iPSGRB. Due to the differences between the PSGRs for the larval head and body, the larval head size showed negative ontogenetic allometry against body size.
Collapse
|
3
|
Chakraborty A, Sgrò CM, Mirth CK. The proximate sources of genetic variation in body size plasticity: The relative contributions of feeding behaviour and development in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2021; 135:104321. [PMID: 34653505 DOI: 10.1016/j.jinsphys.2021.104321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/03/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Body size is a key life-history trait that influences many aspects of an animal's biology and is shaped by a variety of factors, both genetic and environmental. While we know that locally-adapted populations differ in the extent to which body size responds plastically to environmental conditions like diet, we have a limited understanding of what causes these differences. We hypothesized that populations could differ in the way body size responds to nutrition either by modulating growth rate, development time, feeding rate, or a combination of the above. Using three locally-adapted populations of Drosophila melanogaster from along the east coast of Australia, we investigated body size plasticity across five different diets. We then assessed how these populations differed in feeding behaviour and developmental timing on each of the diets. We observed population-specific plastic responses to nutrition for body size and feeding rate, but not development time. However, differences in feeding rate did not fully explain the differences in the way body size responded to diet. Thus, we conclude that body size variation in locally-adapted populations is shaped by a combination of growth rate and feeding behaviour. This paves the way for further studies that explore how differences in the regulation of the genetic pathways that control feeding behaviour and growth rate contribute to population-specific responses of body size to diet.
Collapse
Affiliation(s)
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia.
| | - Christen K Mirth
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|
4
|
Bertram SM, Yaremchuk DD, Reifer ML, Villarreal A, Muzzatti MJ, Kolluru GR. Tests of the positive and functional allometry hypotheses for sexually selected traits in the Jamaican field cricket. Behav Processes 2021; 188:104413. [PMID: 33957236 DOI: 10.1016/j.beproc.2021.104413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 11/19/2022]
Abstract
Sexually selected traits, including threat signals, have been shown to scale steeply positively with body size because their exaggeration maximizes honest signalling. However, the functional allometry hypothesis makes the opposite prediction for some weapons: because the biomechanics of force applied in their use may favor relatively smaller size, sexually selected weapons may exhibit negative allometry. Tests of these ideas in insects have largely focused on holometabolous species, whose adult body size is entirely dependent on nutrients acquired during the larval stage. In contrast, hemimetabolous insects may exhibit different patterns of allometry development because they forage throughout development, between successive moults. Here, we tested complementary and competing predictions made by the positive and functional allometry hypotheses, regarding intrasexually selected trait allometry in a hemimetabolous insect, the Jamaican field cricket (Gryllus assimilis). As expected, head width (a dominance and/or combat trait) was more positively allometric than non-sexually selected traits. In contrast, and consistent with the functional allometry hypothesis, mouthparts (weapons) were either isometric or negatively allometric. We also tested whether trait allometry responded to rearing diet by raising males on either a high protein diet or a high carbohydrate diet; we predicted stronger positive allometry under the high protein diet. However, diet did not influence allometry in the predicted manner. Overall, our results support the functional allometry hypothesis regarding sexually selected trait allometry and raise intriguing possibilities for integrating these ideas with recent paradigms for classifying intrasexually selected traits.
Collapse
Affiliation(s)
- Susan M Bertram
- Department of Biology, Carleton University, Ottawa, Ontario, K1S 5B6, Canada.
| | - Danya D Yaremchuk
- Department of Biology, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Mykell L Reifer
- Department of Biology, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Amy Villarreal
- Department of Biology, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Matthew J Muzzatti
- Department of Biology, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Gita R Kolluru
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, 93407, United States
| |
Collapse
|
5
|
Littler AS, Garcia MJ, Teets NM. Laboratory diet influences cold tolerance in a genotype-dependent manner in Drosophila melanogaster. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110948. [PMID: 33819503 DOI: 10.1016/j.cbpa.2021.110948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/08/2021] [Accepted: 03/30/2021] [Indexed: 11/25/2022]
Abstract
Cold stress can reduce insect fitness and is an important determinant of species distributions and responses to climate change. Cold tolerance is influenced by genotype and environmental conditions, with factors such as day length and temperature having a particularly strong influence. Recent studies also indicate that diet impacts cold tolerance, but it is unclear whether diet-mediated shifts in cold tolerance are consistent across distinct genotypes. The goal of this study was to determine the extent to which commonly used artificial diets influence cold tolerance in Drosophila melanogaster, and whether these effects are consistent across genetically distinct lines. Specifically, we tested the impact of different fly diets on 1) ability to survive cold stress, 2) critical thermal minimum (CTmin), and 3) the ability to maintain reproduction after cold stress. Experiments were conducted across six isogenic lines from the Drosophila Genetic Reference Panel, and these lines were reared on different fly diets. Cold shock survival, CTmin, and reproductive output pre- and post-cold exposure varied considerably across diet and genotype combinations, suggesting strong genotype by environment interactions shape nutritionally mediated changes in cold tolerance. For example, in some lines cold shock survival remained consistently high or low across diets, while in others cold shock survival ranged from 5% to 75% depending on diet. Ultimately, these results add to a growing literature that cold tolerance is shaped by complex interactions between genotype and environment and inform practical considerations when selecting a laboratory diet for thermal tolerance experiments in Drosophila.
Collapse
Affiliation(s)
- Aerianna S Littler
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington 40546, United States of America
| | - Mark J Garcia
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington 40546, United States of America; Department of Biology, College of Arts & Sciences, University of Louisiana at Lafayette, Lafayette, LA 70506, United States of America.
| | - Nicholas M Teets
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington 40546, United States of America
| |
Collapse
|
6
|
Nijhout HF, McKenna KZ. Allometry, Scaling, and Ontogeny of Form-An Introduction to the Symposium. Integr Comp Biol 2019; 59:1275-1280. [PMID: 31553435 DOI: 10.1093/icb/icz143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Until recently, the study of allometry has been mostly descriptive, and consisted of a diversity of methods for fitting regressions to bivariate or multivariate morphometric data. During the past decade, researchers have been developing methods to extract biological information from allometric data that could be used to deduce the underlying mechanisms that gave rise to the allometry. In addition, an increasing effort has gone into understanding the kinetics of growth and the regulatory mechanisms that control growth of the body and its component parts. The study of allometry and scaling has now become an exceptionally diverse field, with different investigators applying state of the art methods and concepts in evolution, developmental biology, cell biology, and genetics. Diversity has caused divergence, and we felt that although there is general agreement about the new goals for the study of allometry (understanding underlying mechanisms and how those evolve to produce different morphologies), progress is hindered by lack of coordination among the different approaches. We felt the time was right to bring these diverse practitioners together in a symposium to discuss their most recent work in the hope of forging new functional, conceptual, and collaborative connections among established and novice practitioners.
Collapse
|