1
|
Coelho DMN, Costa Júnior DC, da Silva DMA, Alves ACB, Chaves RDC, Rebouças MDO, Valentim JT, de Oliveira AA, Sales ISL, Nicolau LAD, de Sousa FCF. Long-term administration of omeprazole in mice: a study of behavior, inflammatory, and oxidative stress alterations with focus on central nervous system. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6165-6175. [PMID: 38433146 DOI: 10.1007/s00210-024-03023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Chronic use of omeprazole has been linked to central effects alongside with the global concern of increasing appearance of neuropsychiatric disorders. This study aimed to identifying behavioral, inflammatory, and oxidative stress alterations after long-term administration of omeprazole. C57BL/6 mice were divided in groups: OME and Sham, each received either solutions of omeprazole or vehicle, administered for 28 days by gavage. Results observed in the omeprazole-treated mice: Decrease in the crossing parameter in the open field, no change in the motor performance assessed by rotarod, an immobility time reduction in the forced swimming test, improved percentage of correct alternances in the Ymaze and an exploration time of the novel object reduction in the novel object recognition. Furthermore, a reduced weight gain and hippocampal weight were observed. There was an increase in the cytokine IL1-β levels in both prefrontal cortex (PFC) and serum, whereas TNF-α increased only in the PFC. Nitrite levels increased in the hippocampus (HP) and PFC, while malondialdehyde (MDA) and glutathione (GSH) levels decreased. These findings suggest that omeprazole improves depressive-like behavior and working memory, likely through the increase in nitrite and reduction in MDA levels in PFC and HP, whereas, the impairment of the recognition memory is more likely to be related to the reduced hippocampal weight. The diminished weight gain might be associated with the IL-1β increased levels in the peripheral blood. Altogether, omeprazole showed to have the potential to impact at central level and inflammatory and oxidative parameters might exert a role between it.
Collapse
Affiliation(s)
- Dulce Maria Nascimento Coelho
- Laboratory of Neuropsychopharmacology, Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | | | - Daniel Moreira Alves da Silva
- Laboratory of Neuropsychopharmacology, Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | - Ana Carolina Benício Alves
- Joint Master in Neuroscience/Graduate School of Pain (EURIDOL), Université de Strasbourg, Strasbourg, France
| | - Raquell de Castro Chaves
- Laboratory of Neuropsychopharmacology, Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | - Manoela de Oliveira Rebouças
- Laboratory of Neuropsychopharmacology, Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | - José Tiago Valentim
- Laboratory of Neuropsychopharmacology, Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | - Andressa Alexandre de Oliveira
- Laboratory of Neuropsychopharmacology, Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | - Iardja Stefane Lopes Sales
- Laboratory of Neuropsychopharmacology, Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | - Lucas Antonio Duarte Nicolau
- Biotechnology and Biodiversity Center Research, BIOTEC, Federal University of Parnaiba Delta, Parnaiba, Piaui, Brazil
| | - Francisca Cléa Florenço de Sousa
- Laboratory of Neuropsychopharmacology, Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil.
- , Fortaleza-Ceará, Brazil.
| |
Collapse
|
2
|
Betari N, Sahlholm K, Morató X, Godoy-Marín H, Jáuregui O, Teigen K, Ciruela F, Haavik J. Inhibition of Tryptophan Hydroxylases and Monoamine Oxidase-A by the Proton Pump Inhibitor, Omeprazole- In Vitro and In Vivo Investigations. Front Pharmacol 2020; 11:593416. [PMID: 33324221 PMCID: PMC7726444 DOI: 10.3389/fphar.2020.593416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/16/2020] [Indexed: 01/06/2023] Open
Abstract
Serotonin (5-HT) is a hormone and neurotransmitter that modulates neural activity as well as a wide range of other physiological processes including cardiovascular function, bowel motility, and platelet aggregation. 5-HT synthesis is catalyzed by tryptophan hydroxylase (TPH) which exists as two distinct isoforms; TPH1 and TPH2, which are responsible for peripheral and central 5-HT, respectively. Due to the implication of 5-HT in a number of pathologies, including depression, anxiety, autism, sexual dysfunction, irritable bowel syndrome, inflammatory bowel disease, and carcinoid syndrome, there has been a growing interest in finding modulators of these enzymes in recent years. We thus performed high-throughput screening (HTS) using a fluorescence-based thermal shift assay (DSF) to search the Prestwick Chemical Library containing 1,280 compounds, mostly FDA-approved drugs, for TPH1 binders. We here report the identification of omeprazole, a proton pump inhibitor, as an inhibitor of TPH1 and TPH2 with low micromolar potency and high selectivity over the other aromatic amino acid hydroxylases. The S-enantiomer of omeprazole, esomeprazole, has recently also been described as an inhibitor of monoamine oxidase-A (MAO-A), the main enzyme responsible for 5-HT degradation, albeit with lower potency compared to the effect on TPH1 and TPH2. In order to investigate the net effect of simultaneous inhibition of TPH and MAO-A in vivo, we administered high-dose (100 mg/kg) omeprazole to CD-1 mice for 4 days, after which the animals were subjected to the tail suspension test. Finally, central (whole brain) and peripheral (serum) 5-HT content was measured using liquid chromatography-mass spectrometry (LC-MS). Omeprazole treatment significantly increased 5-HT concentrations, both in brain and in serum, and reduced the time spent immobile in the tail suspension test relative to vehicle control. Thus, the MAO-A inhibition afforded by high-dose omeprazole appears to overcome the opposing effect on 5-HT produced by inhibition of TPH1 and TPH2. Further modification of proton pump inhibitor scaffolds may yield more selective modulators of 5-HT metabolism.
Collapse
Affiliation(s)
- Nibal Betari
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Kristoffer Sahlholm
- Department of Integrative Medical Biology, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Xavier Morató
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Héctor Godoy-Marín
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Olga Jáuregui
- Scientific and Technological Centers of University of Barcelona (CCiTUB), Barcelona, Spain
| | - Knut Teigen
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Division of Psychiatry, Bergen Center of Brain Plasticity, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|