1
|
Mamelak M. Depression and the Glutamate/GABA-Glutamine Cycle. Curr Neuropharmacol 2024; 23:75-84. [PMID: 39150032 PMCID: PMC11519819 DOI: 10.2174/1570159x22666240815120244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 08/17/2024] Open
Abstract
Many features of major depressive disorder are mirrored in rodent models of psychological stress. These models have been used to examine the relationship between the activation of the hypothalamic- pituitary axis in response to stress, the development of oxidative stress and neuroinflammation, the dominance of cholinergic neurotransmission and the associated increase in REM sleep pressure. Rodent models have also provided valuable insights into the impairment of glycolysis and brain glucose utilization by the brain under stress, the resulting decrease in brain energy production and the reduction in glutamate/GABA-glutamine cycling. The rapidly acting antidepressants, scopolamine, ketamine and ECT, all raise extracellular glutamate and scopolamine and ketamine have specifically been shown to increase glutamate/GABA-glutamine cycling in men and rodents with corresponding short-term relief of depression. The nightly use of gammahydroxybutyrate (GHB) may achieve more permanent results and may even act prophylactically to prevent the development or recurrence of depression. GHB is a GABAB agonist and restores the normal balance between cholinergic and monoaminergic neurotransmission by inhibiting cholinergic neurotransmission. It relieves REM sleep pressure. GHB's metabolism generates NADPH, a key antioxidant cofactor. Its metabolism also generates succinate, the tricarboxylic acid cycle intermediate, to provide energy to the cell and to synthesize glutamate. In both animals and man, GHB increases the level of brain glutamate.
Collapse
Affiliation(s)
- Mortimer Mamelak
- Department of Psychiatry, Baycrest Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Steuer AE, Bavato F, Schnider LK, Dornbierer DA, Bosch OG, Quednow BB, Seifritz E, Steuer C, Kraemer T. Urinary concentrations of GHB and its novel amino acid and carnitine conjugates following controlled GHB administration to humans. Sci Rep 2023; 13:8983. [PMID: 37268859 DOI: 10.1038/s41598-023-36213-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023] Open
Abstract
Gamma-hydroxybutyrate (GHB) remains a challenging clinical/forensic toxicology drug. Its rapid elimination to endogenous levels mainly causes this. Especially in drug-facilitated sexual assaults, sample collection often occurs later than the detection window for GHB. We aimed to investigate new GHB conjugates with amino acids (AA), fatty acids, and its organic acid metabolites for their suitability as ingestion/application markers in urine following controlled GHB administration to humans. We used LC-MS/MS for validated quantification of human urine samples collected within two randomized, double-blinded, placebo-controlled crossover studies (GHB 50 mg/kg, 79 participants) at approximately 4.5, 8, 11, and 28 h after intake. We found significant differences (placebo vs. GHB) for all but two analytes at 4.5 h. Eleven hours post GHB administration, GHB, GHB-AAs, 3,4-dihydroxybutyric acid, and glycolic acid still showed significantly higher concentrations; at 28 h only GHB-glycine. Three different discrimination strategies were evaluated: (a) GHB-glycine cut-off concentration (1 µg/mL), (b) metabolite ratios of GHB-glycine/GHB (2.5), and (c) elevation threshold between two urine samples (> 5). Sensitivities were 0.1, 0.3, or 0.5, respectively. Only GHB-glycine showed prolonged detection over GHB, mainly when compared to a second time- and subject-matched urine sample (strategy c).
Collapse
Affiliation(s)
- Andrea E Steuer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, 8057, Zurich, Switzerland.
| | - Francesco Bavato
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - Laura K Schnider
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - Dario A Dornbierer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, 8057, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - Oliver G Bosch
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - Boris B Quednow
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, 8057, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, 8057, Zurich, Switzerland
| | - Christian Steuer
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, 8093, Zurich, Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, 8057, Zurich, Switzerland
| |
Collapse
|
3
|
Bavato F, Esposito F, Dornbierer DA, Zölch N, Quednow BB, Staempfli P, Landolt HP, Seifritz E, Bosch OG. Subacute changes in brain functional network connectivity after nocturnal sodium oxybate intake are associated with anterior cingulate GABA. Cereb Cortex 2023:7086058. [DOI: 10.1093/cercor/bhad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/29/2023] Open
Abstract
AbstractSodium oxybate (γ-hydroxybutyrate, GHB) is an endogenous GHB/GABAB receptor agonist, clinically used to promote slow-wave sleep and reduce next-day sleepiness in disorders such as narcolepsy and fibromyalgia. The neurobiological signature of these unique therapeutic effects remains elusive. Promising current neuropsychopharmacological approaches to understand the neural underpinnings of specific drug effects address cerebral resting-state functional connectivity (rsFC) patterns and neurometabolic alterations. Hence, we performed a placebo-controlled, double-blind, randomized, cross-over pharmacological magnetic resonance imaging study with a nocturnal administration of GHB, combined with magnetic resonance spectroscopy of GABA and glutamate in the anterior cingulate cortex (ACC). In sum, 16 healthy male volunteers received 50 mg/kg GHB p.o. or placebo at 02:30 a.m. to maximize deep sleep enhancement and multi-modal brain imaging was performed at 09:00 a.m. of the following morning. Independent component analysis of whole-brain rsFC revealed a significant increase of rsFC between the salience network (SN) and the right central executive network (rCEN) after GHB intake compared with placebo. This SN-rCEN coupling was significantly associated with changes in GABA levels in the ACC (pall < 0.05). The observed neural pattern is compatible with a functional switch to a more extrinsic brain state, which may serve as a neurobiological signature of the wake-promoting effects of GHB.
Collapse
|
4
|
Mingoti MED, Bertollo AG, de Oliveira T, Ignácio ZM. Stress and Kynurenine-Inflammation Pathway in Major Depressive Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:163-190. [PMID: 36949310 DOI: 10.1007/978-981-19-7376-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Major depressive disorder (MDD) is one of the most prevalent disorders and causes severe damage to people's quality of life. Lifelong stress is one of the major villains in triggering MDD. Studies have shown that both stress and MDD, especially the more severe conditions of the disorder, are associated with inflammation and neuroinflammation and the relationship to an imbalance in tryptophan metabolism towards the kynurenine pathway (KP) through the enzymes indoleamine-2,3-dioxygenase (IDO), which is mainly stimulated by pro-inflammatory cytokines and tryptophan-2,3-dioxygenase (TDO) which is activated primarily by glucocorticoids. Considering that several pathophysiological mechanisms of MDD underlie or interact with biological processes from KP metabolites, this chapter addresses and discusses the function of these mechanisms. Activities triggered by stress and the hypothalamic-pituitary-adrenal (HPA) axis and immune and inflammatory processes, in addition to epigenetic phenomena and the gut-brain axis (GBA), are addressed. Finally, studies on the function and mechanisms of physical exercise in the KP metabolism and MDD are pointed out and discussed.
Collapse
Affiliation(s)
- Maiqueli Eduarda Dama Mingoti
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Amanda Gollo Bertollo
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Tácio de Oliveira
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Zuleide Maria Ignácio
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| |
Collapse
|
5
|
Song Y, Liu Y, Yuan Y, Jia X, Zhang W, Wang G, Jia Y, Wang X, Liu L, Li W, Li X, Cai N, Liu C, Li Y, Han Y, Zhou Y, Mi X, Shi C, Wang JQ, Vuylsteke A, Guo X, Li Z. Effects of general versus subarachnoid anaesthesia on circadian melatonin rhythm and postoperative delirium in elderly patients undergoing hip fracture surgery: A prospective cohort clinical trial. EBioMedicine 2021; 70:103490. [PMID: 34280784 PMCID: PMC8318871 DOI: 10.1016/j.ebiom.2021.103490] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Circadian rhythm disturbance is common postoperatively in older patients with hip fractures, which may contribute to the development of postoperative delirium (POD). As a reliable biomarker of endogenous circadian rhythms, melatonin regulates the sleep-wake cycle and environmental adaptation, and its secretory rhythm may be modified by anaesthesia and surgery. This study compared the impact of subarachnoid anaesthesia (SA) and general anaesthesia (GA), on the peak of melatonin secretion (primary outcome), the circadian rhythm of melatonin, cortisol and sleep, and the POD incidence (secondary outcome). METHODS In this prospective cohort observational study, hip fracture surgery patients were enrolled and assigned to receive either SA or GA. Postoperative plasma melatonin and cortisol levels were dynamically measured every six hours on seven time-points, and the circadian rhythm parameters including mesor, amplitude, and acrophase were calculated. Subjective and objective sleep assessments were performed by sleep diaries and sleep trackers, respectively. The Confusion Assessment Method was used twice daily by a specific geriatrician to screen for POD occurrence. FINDINGS In a cohort of 138 patients who underwent hip fracture surgery, the circadian rhythm disruption of the patients in the GA group (n=69) was greater than the SA group (n=69). Compared with SA, GA provided the lower peak concentration, mesor, and amplitude of melatonin secretion on postoperative day 1 (p < 0.05). Patients in the GA group experienced higher awakenings, more sleep deprivation, and poor sleep quality on surgery day (p < 0.05). A proportion of 12 patients in the SA group (17.4%) and 24 patients in the GA group (34.8%) experienced POD (p = 0.020). INTERPRETATION These results suggest that SA may be superior to GA in elderly patients undergoing hip fracture surgery as SA is associated with less impairment of the melatonin rhythm and sleep patterns, and fewer POD occurrences. FUNDING The study was supported by the National Natural Science Foundation of China (81971012, 81873726, 81901095, 81701052, and 81801070), Key Clinical Projects of Peking University Third Hospital (BYSYZD2019027), and Peking University "Clinical Medicine plus X" Youth Project (PKU2020LCXQ016).
Collapse
Affiliation(s)
- Yanan Song
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Yajie Liu
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Yi Yuan
- Department of Anesthesiology, Beijing Jishuitan Hospital, 31 Xinjiekou East Street, Xicheng District, Beijing 100035, China
| | - Xixi Jia
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Wenchao Zhang
- Department of Anesthesiology, Beijing Jishuitan Hospital, 31 Xinjiekou East Street, Xicheng District, Beijing 100035, China
| | - Geng Wang
- Department of Anesthesiology, Beijing Jishuitan Hospital, 31 Xinjiekou East Street, Xicheng District, Beijing 100035, China
| | - Yunyang Jia
- Department of Orthopaedics & Traumatology, Beijing Jishuitan Hospital, 31 Xinjiekou East Street, Xicheng District, Beijing 100035, China
| | - Xiaoxiao Wang
- Department of Research Center of Clinical Epidemiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Lei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Shandong 250012, China
| | - Weitian Li
- College of Veterinary Medicine, China Agricultural University, No.2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Xinping Li
- Department of Geriatrics, Beijing Jishuitan Hospital, 31 Xinjiekou East Street, Xicheng District, Beijing 100035, China
| | - Nan Cai
- Department of Anesthesiology, Beijing Jishuitan Hospital, 31 Xinjiekou East Street, Xicheng District, Beijing 100035, China
| | - Chang Liu
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Yue Li
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Yongzheng Han
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Yang Zhou
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Xinning Mi
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Chengmei Shi
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - John Q Wang
- Department of Anesthesiology, University of Missouri Kansas City, School of Medicine, Kansas 64110, MO, USA
| | - Alain Vuylsteke
- Department of Anaesthesia and Intensive Care, Royal Papworth Hospital NHS Foundation Trust, CB2 0AY Cambridge, UK
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China.
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China.
| |
Collapse
|
6
|
Steuer AE, Raeber J, Simbuerger F, Dornbierer DA, Bosch OG, Quednow BB, Seifritz E, Kraemer T. Towards Extending the Detection Window of Gamma-Hydroxybutyric Acid-An Untargeted Metabolomics Study in Serum and Urine Following Controlled Administration in Healthy Men. Metabolites 2021; 11:metabo11030166. [PMID: 33809281 PMCID: PMC7998200 DOI: 10.3390/metabo11030166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/28/2022] Open
Abstract
In forensic toxicology, gamma-hydroxybutyrate (GHB) still represents one of the most challenging drugs of abuse in terms of analytical detection and interpretation. Given its rapid elimination, the detection window of GHB in common matrices is short (maximum 12 h in urine). Additionally, the differentiation from naturally occurring endogenous GHB, is challenging. Thus, novel biomarkers to extend the detection window of GHB are urgently needed. The present study aimed at searching new potential biomarkers of GHB use by means of mass spectrometry (MS) metabolomic profiling in serum (up to 16.5 h) and urine samples (up to 8 h after intake) collected during a placebo-controlled crossover study in healthy men. MS data acquired by different analytical methods (reversed phase and hydrophilic interaction liquid chromatography; positive and negative electrospray ionization each) were filtered for significantly changed features applying univariate and mixed-effect model statistics. Complementary to a former study, conjugates of GHB with glycine, glutamate, taurine, carnitine and pentose (ribose) were identified in urine, with particularly GHB-pentose being promising for longer detection. None of the conjugates were detectable in serum. Therein, mainly energy metabolic substrates were identified, which may be useful for more detailed interpretation of underlying pathways but are too unspecific as biomarkers.
Collapse
Affiliation(s)
- Andrea E. Steuer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, 8057 Zurich, Switzerland; (J.R.); (F.S.); (D.A.D.); (T.K.)
- Correspondence: ; Tel.: +41-(0)4-4635-5679
| | - Justine Raeber
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, 8057 Zurich, Switzerland; (J.R.); (F.S.); (D.A.D.); (T.K.)
| | - Fabio Simbuerger
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, 8057 Zurich, Switzerland; (J.R.); (F.S.); (D.A.D.); (T.K.)
| | - Dario A. Dornbierer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, 8057 Zurich, Switzerland; (J.R.); (F.S.); (D.A.D.); (T.K.)
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8032 Zurich, Switzerland; (O.G.B.); (B.B.Q.); (E.S.)
| | - Oliver G. Bosch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8032 Zurich, Switzerland; (O.G.B.); (B.B.Q.); (E.S.)
| | - Boris B. Quednow
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8032 Zurich, Switzerland; (O.G.B.); (B.B.Q.); (E.S.)
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, 8057 Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8032 Zurich, Switzerland; (O.G.B.); (B.B.Q.); (E.S.)
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, 8057 Zurich, Switzerland
- Zurich Center for Interdisciplinary Sleep Research (ZiS), University of Zurich, 8091 Zurich, Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, 8057 Zurich, Switzerland; (J.R.); (F.S.); (D.A.D.); (T.K.)
| |
Collapse
|