1
|
Fuochi S, Galligioni V. Disease Animal Models for Cancer Research. Methods Mol Biol 2023; 2645:105-125. [PMID: 37202613 DOI: 10.1007/978-1-0716-3056-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Despite nonanimal methods (NAMs) are more and more exploited and new NAMs are developed and validated, animal models are still used in cancer research. Animals are used at multiple levels, from understanding molecular traits and pathways, to mimicking clinical aspects of tumor progression, to drug testing. In vivo approaches are not trivial and involve cross-disciplinary knowledge: animal biology and physiology, genetics, pathology, and animal welfare.The aim of this chapter is not to list and address all animal models used in cancer research. Instead, the authors would like to guide experimenters in the strategies to adopt in both planning and performing in vivo experimental procedures, including the choice of cancer animal models.
Collapse
Affiliation(s)
- Sara Fuochi
- Universität Bern, Experimental Animal Center, Bern, Switzerland
| | - Viola Galligioni
- Netherlands Institute for Neuroscience - KNAW, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Abstract
Translational biomedical research relies on animal experiments and provides the underlying proof of practice for clinical trials, which places an increased duty of care on translational researchers to derive the maximum possible output from every experiment performed. The implementation of open science practices has the potential to initiate a change in research culture that could improve the transparency and quality of translational research in general, as well as increasing the audience and scientific reach of published research. However, open science has become a buzzword in the scientific community that can often miss mark when it comes to practical implementation. In this Essay, we provide a guide to open science practices that can be applied throughout the research process, from study design, through data collection and analysis, to publication and dissemination, to help scientists improve the transparency and quality of their work. As open science practices continue to evolve, we also provide an online toolbox of resources that we will update continually. Open science has become a buzzword in the scientific community that too often misses the practical application for individual researchers. This Essay, provides a guide to choosing the most appropriate tools to make animal research more transparent.
Collapse
|
3
|
Cooper TK, Meyerholz DK, Beck AP, Delaney MA, Piersigilli A, Southard TL, Brayton CF. Research-Relevant Conditions and Pathology of Laboratory Mice, Rats, Gerbils, Guinea Pigs, Hamsters, Naked Mole Rats, and Rabbits. ILAR J 2022; 62:77-132. [PMID: 34979559 DOI: 10.1093/ilar/ilab022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/12/2021] [Indexed: 12/31/2022] Open
Abstract
Animals are valuable resources in biomedical research in investigations of biological processes, disease pathogenesis, therapeutic interventions, safety, toxicity, and carcinogenicity. Interpretation of data from animals requires knowledge not only of the processes or diseases (pathophysiology) under study but also recognition of spontaneous conditions and background lesions (pathology) that can influence or confound the study results. Species, strain/stock, sex, age, anatomy, physiology, spontaneous diseases (noninfectious and infectious), and neoplasia impact experimental results and interpretation as well as animal welfare. This review and the references selected aim to provide a pathology resource for researchers, pathologists, and veterinary personnel who strive to achieve research rigor and validity and must understand the spectrum of "normal" and expected conditions to accurately identify research-relevant experimental phenotypes as well as unusual illness, pathology, or other conditions that can compromise studies involving laboratory mice, rats, gerbils, guinea pigs, hamsters, naked mole rats, and rabbits.
Collapse
Affiliation(s)
- Timothy K Cooper
- Department of Comparative Medicine, Penn State Hershey Medical Center, Hershey, PA, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa, USA
| | - Amanda P Beck
- Department of Pathology, Yeshiva University Albert Einstein College of Medicine, Bronx, New York, USA
| | - Martha A Delaney
- Zoological Pathology Program, University of Illinois at Urbana-Champaign College of Veterinary Medicine, Urbana-Champaign, Illinois, USA
| | - Alessandra Piersigilli
- Laboratory of Comparative Pathology and the Genetically Modified Animal Phenotyping Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Teresa L Southard
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Cory F Brayton
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Gifford AJ, Murray J, Fletcher JI, Marshall GM, Norris MD, Haber M. A Primer for Assessing the Pathology in Mouse Models of Neuroblastoma. Curr Protoc 2021; 1:e310. [PMID: 34826366 DOI: 10.1002/cpz1.310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neuroblastoma, the most common extracranial solid tumor in young children, arises from the sympathetic nervous system. Our understanding of neuroblastoma has been improved by the development of both genetically engineered and xenograft mouse models of the disease. Anatomical pathology is an essential component of the phenotyping of mouse models of cancer, characterizing the morphologic effects of genetic manipulation and drug treatment. The Th-MYCN model, the most widely used of several genetically engineered mouse models of neuroblastoma, was established by targeted expression of the human MYCN gene to murine neural crest cells under the control of the rat tyrosine hydroxylase promoter. Neuroblastoma development in Th-MYCN mice is preceded by neuroblast hyperplasia-the persistence and proliferation of neural crest-derived neuroblasts within the sympathetic autonomic ganglia. The neuroblastomas that subsequently develop morphologically resemble human neuroblastoma and carry chromosomal gains and losses in regions syntenic with those observed in human tumors. In this overview, we describe the essential pathologic features for investigators when assessing mouse models of neuroblastoma. We outline human neuroblastoma as the foundation for understanding the murine disease, followed by details of the murine sympathetic ganglia from which neuroblastoma arises. Sympathetic ganglia, both with and without neuroblast hyperplasia, are described. The macroscopic and microscopic features of murine neuroblastoma are explained, including assessment of xenografts and tumors following drug treatment. An approach to experimental design is also detailed. Increased understanding of the pathology of murine neuroblastoma should improve reproducibility and comparability of research findings and assist investigators working with mouse models of neuroblastoma. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Andrew J Gifford
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia.,Anatomical Pathology, NSW Heath Pathology, Prince of Wales Hospital, Randwick, New South Wales, Australia.,School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jayne Murray
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia.,School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Glenn M Marshall
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia.,School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia.,Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Murray D Norris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia.,UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, New South Wales, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia.,School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Hoenerhoff MJ, Meyerholz DK, Brayton C, Beck AP. Challenges and Opportunities for the Veterinary Pathologist in Biomedical Research. Vet Pathol 2020; 58:258-265. [PMID: 33327888 DOI: 10.1177/0300985820974005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Animal models have critical roles in biomedical research in promoting understanding of human disease and facilitating development of new therapies and diagnostic techniques to improve human and animal health. In the study of myriad human conditions, each model requires in-depth characterization of its assets and limitations in order for it to be used to greatest advantage. Veterinary pathology expertise is critical in understanding the relevance and translational validity of animal models to conditions under study, assessing morbidity and mortality, and validating outcomes as relevant or not to the study interventions. Clear communication with investigators and education of research personnel on the use and interpretation of pathology endpoints in animal models are critical to the success of any research program. The veterinary pathologist is underutilized in biomedical research due to many factors including misconceptions about high fiscal costs, lack of perceived value, limited recognition of their expertise, and the generally low number of veterinary pathologists currently employed in biomedical research. As members of the multidisciplinary research team, veterinary pathologists have an important role to educate scientists, ensure accurate interpretation of pathology data, maximize rigor, and ensure reproducibility to provide the most reliable data for animal models in biomedical research.
Collapse
|