1
|
Zhu Y, Zhang Y, Jiang Y, Cai H, Liang J, Li H, Wang C, Hou J. Retinoic Acid Upregulates METTL14 Expression and the m 6A Modification Level to Inhibit the Proliferation of Embryonic Palate Mesenchymal Cells in Cleft Palate Mice. Int J Mol Sci 2024; 25:4538. [PMID: 38674123 PMCID: PMC11050043 DOI: 10.3390/ijms25084538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Cleft palate only (CPO) is one of the most common craniofacial birth defects. Environmental factors can induce cleft palate by affecting epigenetic modifications such as DNA methylation, histone acetylation, and non-coding RNA. However, there are few reports focusing on the RNA modifications. In this study, all-trans retinoic acid (atRA) was used to simulate environmental factors to induce a C57BL/6J fetal mouse cleft palate model. Techniques such as dot blotting and immunofluorescence were used to find the changes in m6A modification when cleft palate occurs. RNA-seq and KEGG analysis were used to screen for significantly differentially expressed pathways downstream. Primary mouse embryonic palate mesenchymal (MEPM) cells were successfully isolated and used for in vitro experimental verification. We found that an increased m6A methylation level was correlated with suppressed cell proliferation in the palatine process mesenchyme of cleft palate mice. This change is due to the abnormally high expression of m6A methyltransferase METTL14. When using siRNAs and the m6A methyltransferase complex inhibitor SAH to interfere with the expression or function of METTL14, the teratogenic effect of atRA on primary cells was partially alleviated. In conclusion, METTL14 regulates palatal mesenchymal cell proliferation and cycle-related protein expression relies on m6A methylation modification, affecting the occurrence of cleft palate.
Collapse
Affiliation(s)
- Yue Zhu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Y.Z.); (Y.Z.); (Y.J.); (H.C.); (J.L.); (H.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yadong Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Y.Z.); (Y.Z.); (Y.J.); (H.C.); (J.L.); (H.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yaoqi Jiang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Y.Z.); (Y.Z.); (Y.J.); (H.C.); (J.L.); (H.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Hongshi Cai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Y.Z.); (Y.Z.); (Y.J.); (H.C.); (J.L.); (H.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Jianfeng Liang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Y.Z.); (Y.Z.); (Y.J.); (H.C.); (J.L.); (H.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Hongyu Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Y.Z.); (Y.Z.); (Y.J.); (H.C.); (J.L.); (H.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Cheng Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Y.Z.); (Y.Z.); (Y.J.); (H.C.); (J.L.); (H.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Jinsong Hou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Y.Z.); (Y.Z.); (Y.J.); (H.C.); (J.L.); (H.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| |
Collapse
|
2
|
Yu Z, Wang G, Song S, Zhang Y, Wu Y, Zhang Y, Duan W, Liu X. Associations between the proliferation of palatal mesenchymal cells, Tgfβ2 promoter methylation, Meg3 expression, and Smad signaling in atRA-induced cleft palate. Reprod Toxicol 2023; 122:108486. [PMID: 37866657 DOI: 10.1016/j.reprotox.2023.108486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
All-trans retinoic acid (atRA) is a teratogen that can induce cleft palate formation. During palatal development, murine embryonic palate mesenchymal (MEPM) cell proliferation is required for the appropriate development of the palatal frame, with Meg3 serving as a key regulator of the proliferative activity of these cells and the associated epithelial-mesenchymal transition process. DNA methylation and signaling via the TGFβ/Smad pathway are key in regulating embryonic development. Here, the impact of atRA on MEPM cell proliferation and associations between Tgfβ2 promoter methylation, Meg3, and signaling via the Smad pathway were explored using C57BL/6 N mice treated with atRA (100 mg/kg) to induce fetal cleft palate formation. Immunohistochemistry and BrdU assays were used to detect MEPM proliferation and DNA methylation assays were performed to detect Tgfβ2 promoter expression. These analyses revealed that atRA suppressed MEPM cell proliferation, promoted the upregulation of Meg3, and reduced the levels of Smad2 and Tgfβ2 expression phosphorylation, whereas Tgfβ2 promoter methylation was unaffected. RNA immunoprecipitation experiments indicated that the TgfβI receptor is directly targeted by Meg3, suggesting that the ability of atRA to induce cleft palate may be mediated through the Tgfβ/Smad signaling pathway.
Collapse
Affiliation(s)
- Zengli Yu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guoxu Wang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuaixing Song
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yaxin Zhang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yang Wu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Yuwei Zhang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Wenjing Duan
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xiaozhuan Liu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| |
Collapse
|
3
|
Pereira MCDM, Silva CM, Queiroz TBD, Neves LTD. Oral Cleft and Maternal History of Spontaneous Abortion: A Case-Control Study. Cleft Palate Craniofac J 2023:10556656231213726. [PMID: 37964519 DOI: 10.1177/10556656231213726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
To investigate and compare the occurrence of previous spontaneous abortion among mothers of children with nonsyndromic oral clefts (NSOC) and mothers of children without NSOC; to understand if previous spontaneous abortion could be a risk factor for the occurrence of NSOC in subsequent pregnancies. Case-control study. Nonsyndromic oral clefts is an important public health problem. In the context of investigating risk factors for the occurrence of this malformation, previous spontaneous abortion have been considered in the etiology at NSOC. There were 1004 participants. In the case group 502 mothers of children with NSOC, and in the control group 502 mothers of children without NSOC or any other malformation or syndrome. A standardized questionnaire was utilized to interview the maternal history of spontaneous abortion. The data were evaluated using descriptive statistics, and comparisons were performed using the Chi-square test, adopting a significance level of 5%. The prevalence of maternal history of spontaneous abortion was 16.3% in the case group and 15.9% in the control group. Comparing the groups there was no statistical difference (p-value = 0.93). Analyzing the occurrence of previous spontaneous abortion, separating the case group according to the type of cleft in the child, no statistical differences were observed when comparing these groups between them. Maternal history of spontaneous abortion was not associated with NSOC, not representing an independent risk factor for NSOC in the Brazilian population.
Collapse
Affiliation(s)
- Maria Carolina de Moraes Pereira
- Department of Post-Graduation in Rehabilitation Sciences, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo (HRAC/USP), Bauru, Sao Paulo, 17012-900, Brazil
| | - Carolina Maia Silva
- Department of Post-Graduation in Rehabilitation Sciences, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo (HRAC/USP), Bauru, Sao Paulo, 17012-900, Brazil
| | - Thaís Bernardes de Queiroz
- Department of Post-Graduation in Rehabilitation Sciences, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo (HRAC/USP), Bauru, Sao Paulo, 17012-900, Brazil
| | - Lucimara Teixeira das Neves
- Department of Post-Graduation in Rehabilitation Sciences, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo (HRAC/USP), Bauru, Sao Paulo, 17012-900, Brazil
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, (FOB/USP), Bauru, Sao Paulo, 17012-901, Brazil
| |
Collapse
|
4
|
Sun B, Reynolds K, Saha SK, Zhang S, McMahon M, Zhou CJ. Ezh2-dependent methylation in oral epithelia promotes secondary palatogenesis. Birth Defects Res 2023; 115:1851-1865. [PMID: 37435868 PMCID: PMC10784412 DOI: 10.1002/bdr2.2216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND In addition to genomic risk variants and environmental influences, increasing evidence suggests epigenetic modifications are important for orofacial development and their alterations can contribute to orofacial clefts. Ezh2 encodes a core catalytic component of the Polycomb repressive complex responsible for addition of methyl marks to Histone H3 as a mechanism of repressing target genes. The role of Ezh2 in orofacial clefts remains unknown. AIMS To investigate the epithelial role of Ezh2-dependent methylation in secondary palatogenesis. METHODS We used conditional gene-targeting methods to ablate Ezh2 in the surface ectoderm-derived oral epithelium of mouse embryos. We then performed single-cell RNA sequencing combined with immunofluorescence and RT-qPCR to investigate gene expression in conditional mutant palate. We also employed double knockout analyses of Ezh1 and Ezh2 to address if they have synergistic roles in palatogenesis. RESULTS We found that conditional inactivation of Ezh2 in oral epithelia results in partially penetrant cleft palate. Double knockout analyses revealed that another family member Ezh1 is dispensable in orofacial development, and it does not have synergistic roles with Ezh2 in palatogenesis. Histochemistry and single-cell RNA-seq analyses revealed dysregulation of cell cycle regulators in the palatal epithelia of Ezh2 mutant mouse embryos disrupts palatogenesis. CONCLUSION Ezh2-dependent histone H3K27 methylation represses expression of cell cycle regulator Cdkn1a and promotes proliferation in the epithelium of the developing palatal shelves. Loss of this regulation may perturb movement of the palatal shelves, causing a delay in palate elevation which may result in failure of the secondary palate to close altogether.
Collapse
Affiliation(s)
| | | | - Subbroto Kuma Saha
- Institute for Pediatric Regenerative Medicine of Shriners Hospital for Children – Northern California & Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Shuwen Zhang
- Institute for Pediatric Regenerative Medicine of Shriners Hospital for Children – Northern California & Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Moira McMahon
- Institute for Pediatric Regenerative Medicine of Shriners Hospital for Children – Northern California & Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Chengji J Zhou
- Institute for Pediatric Regenerative Medicine of Shriners Hospital for Children – Northern California & Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| |
Collapse
|
5
|
Guo T, Han X, He J, Feng J, Jing J, Janečková E, Lei J, Ho TV, Xu J, Chai Y. KDM6B interacts with TFDP1 to activate P53 signalling in regulating mouse palatogenesis. eLife 2022; 11:74595. [PMID: 35212626 PMCID: PMC9007587 DOI: 10.7554/elife.74595] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Epigenetic regulation plays extensive roles in diseases and development. Disruption of epigenetic regulation not only increases the risk of cancer, but can also cause various developmental defects. However, the question of how epigenetic changes lead to tissue-specific responses during neural crest fate determination and differentiation remains understudied. Using palatogenesis as a model, we reveal the functional significance of Kdm6b, an H3K27me3 demethylase, in regulating mouse embryonic development. Our study shows that Kdm6b plays an essential role in cranial neural crest development, and loss of Kdm6b disturbs P53 pathway-mediated activity, leading to complete cleft palate along with cell proliferation and differentiation defects in mice. Furthermore, activity of H3K27me3 on the promoter of Trp53 is antagonistically controlled by Kdm6b, and Ezh2 in cranial neural crest cells. More importantly, without Kdm6b, the transcription factor TFDP1, which normally binds to the promoter of Trp53, cannot activate Trp53 expression in palatal mesenchymal cells. Furthermore, the function of Kdm6b in activating Trp53 in these cells cannot be compensated for by the closely related histone demethylase Kdm6a. Collectively, our results highlight the important role of the epigenetic regulator KDM6B and how it specifically interacts with TFDP1 to achieve its functional specificity in regulating Trp53 expression, and further provide mechanistic insights into the epigenetic regulatory network during organogenesis.
Collapse
Affiliation(s)
- Tingwei Guo
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, United States
| | - Xia Han
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, United States
| | - Jinzhi He
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, United States
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, United States
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, United States
| | - Eva Janečková
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, United States
| | - Jie Lei
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, United States
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, United States
| | - Jian Xu
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, United States
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, United States
| |
Collapse
|
6
|
Expression and Function of ZEB1 in the Cornea. Cells 2021; 10:cells10040925. [PMID: 33923743 PMCID: PMC8074155 DOI: 10.3390/cells10040925] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
ZEB1 is an important transcription factor for epithelial to mesenchymal transition (EMT) and in the regulation of cell differentiation and transformation. In the cornea, ZEB1 presents in all three layers: the epithelium, the stroma and the endothelium. Mutations of ZEB1 have been linked to multiple corneal genetic defects, particularly to the corneal dystrophies including keratoconus (KD), Fuchs endothelial corneal dystrophy (FECD), and posterior polymorphous corneal dystrophy (PPCD). Accumulating evidence indicates that dysfunction of ZEB1 may affect corneal stem cell homeostasis, and cause corneal cell apoptosis, stromal fibrosis, angiogenesis, squamous metaplasia. Understanding how ZEB1 regulates the initiation and progression of these disorders will help us in targeting ZEB1 for potential avenues to generate therapeutics to treat various ZEB1-related disorders.
Collapse
|
7
|
Iwata J. Gene-Environment Interplay and MicroRNAs in Cleft Lip and Cleft Palate. ORAL SCIENCE INTERNATIONAL 2021; 18:3-13. [PMID: 36855534 PMCID: PMC9969970 DOI: 10.1002/osi2.1072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cleft lip (CL) with/without cleft palate (CP) (hereafter CL/P) is the second most common congenital birth defect, affecting 7.94 to 9.92 children per 10,000 live births worldwide, followed by Down syndrome. An increasing number of genes have been identified as affecting susceptibility and/or as causative genes for CL/P in mouse genetic and chemically-induced CL and CP studies, as well as in human genome-wide association studies and linkage analysis. While marked progress has been made in the identification of genetic and environmental risk factors for CL/P, the interplays between these factors are not yet fully understood. This review aims to summarize our current knowledge of CL and CP from genetically engineered mouse models and environmental factors that have been studied in mice. Understanding the regulatory mechanism(s) of craniofacial development may not only advance our understanding of craniofacial developmental biology, but could also provide approaches for the prevention of birth defects and for tissue engineering in craniofacial tissue regeneration.
Collapse
Affiliation(s)
- Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, 77054 USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, 77054 USA.,Pediatric Research Center, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, 77030 USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, 77030 USA
| |
Collapse
|
8
|
Lakkakula BV, Sengupta S, Agrawal J, Singh S, Mendhey P, Jangde P, Sharma A, Pande PA, Krishan P, Shukla P, Momin S, Nagaraju GP, Pattnaik S. Maternal and infant MTHFR gene polymorphisms and non-syndromic oral cleft susceptibility: An updated meta-analysis. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Dynamic mRNA Expression Analysis of the Secondary Palatal Morphogenesis in Miniature Pigs. Int J Mol Sci 2019; 20:ijms20174284. [PMID: 31480549 PMCID: PMC6747431 DOI: 10.3390/ijms20174284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 08/30/2019] [Indexed: 12/12/2022] Open
Abstract
Normal mammalian palatogenesis is a complex process that requires the occurrence of a tightly regulated series of specific and sequentially regulated cellular events. Cleft lip/palate (CLP), the most frequent craniofacial malformation birth defects, may occur if any of these events undergo abnormal interference. Such defects not only affect the patients, but also pose a financial risk for the families. In our recent study, the miniature pig was shown to be a valuable alternative large animal model for exploring human palate development by histology. However, few reports exist in the literature to document gene expression and function during swine palatogenesis. To better understand the genetic regulation of palate development, an mRNA expression profiling analysis was performed on miniature pigs, Sus scrofa. Five key developmental stages of miniature pigs from embryonic days (E) 30–50 were selected for transcriptome sequencing. Gene expression profiles in different palate development stages of miniature pigs were identified. Nine hundred twenty significant differentially expressed genes were identified, and the functional characteristics of these genes were determined by gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Some of these genes were associated with HH (hedgehog), WNT (wingless-type mouse mammary tumor virus integration site family), and MAPK (mitogen-activated protein kinase) signaling, etc., which were shown in the literature to affect palate development, while some genes, such as HIP (hedgehog interacting protein), WNT16, MAPK10, and LAMC2 (laminin subunit gamma 2), were additions to the current understanding of palate development. The present study provided a comprehensive analysis for understanding the dynamic gene regulation during palate development and provided potential ideas and resources to further study normal palate development and the etiology of cleft palate.
Collapse
|
10
|
Reynolds K, Kumari P, Sepulveda Rincon L, Gu R, Ji Y, Kumar S, Zhou CJ. Wnt signaling in orofacial clefts: crosstalk, pathogenesis and models. Dis Model Mech 2019; 12:12/2/dmm037051. [PMID: 30760477 PMCID: PMC6398499 DOI: 10.1242/dmm.037051] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Diverse signaling cues and attendant proteins work together during organogenesis, including craniofacial development. Lip and palate formation starts as early as the fourth week of gestation in humans or embryonic day 9.5 in mice. Disruptions in these early events may cause serious consequences, such as orofacial clefts, mainly cleft lip and/or cleft palate. Morphogenetic Wnt signaling, along with other signaling pathways and transcription regulation mechanisms, plays crucial roles during embryonic development, yet the signaling mechanisms and interactions in lip and palate formation and fusion remain poorly understood. Various Wnt signaling and related genes have been associated with orofacial clefts. This Review discusses the role of Wnt signaling and its crosstalk with cell adhesion molecules, transcription factors, epigenetic regulators and other morphogenetic signaling pathways, including the Bmp, Fgf, Tgfβ, Shh and retinoic acid pathways, in orofacial clefts in humans and animal models, which may provide a better understanding of these disorders and could be applied towards prevention and treatments.
Collapse
Affiliation(s)
- Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) Graduate Group, University of California, Davis, CA 95616, USA
| | - Priyanka Kumari
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Lessly Sepulveda Rincon
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Ran Gu
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) Graduate Group, University of California, Davis, CA 95616, USA
| | - Santosh Kumar
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Chengji J Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA .,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) Graduate Group, University of California, Davis, CA 95616, USA
| |
Collapse
|
11
|
Shu X, Dong Z, Cheng L, Shu S. DNA hypermethylation of Fgf16 and Tbx22 associated with cleft palate during palatal fusion. J Appl Oral Sci 2019; 27:e20180649. [PMID: 31596367 PMCID: PMC6768118 DOI: 10.1590/1678-7757-2018-0649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/17/2019] [Accepted: 03/12/2019] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Cleft palate (CP) is a congenital birth defect caused by the failure of palatal fusion. Little is known about the potential role of DNA methylation in the pathogenesis of CP. This study aimed to explore the potential role of DNA methylation in the mechanism of CP. METHODOLOGY We established an all-trans retinoic acid (ATRA)-induced CP model in C57BL/6J mice and used methylation-dependent restriction enzymes (MethylRAD, FspEI) combined with high-throughput sequencing (HiSeq X Ten) to compare genome-wide DNA methylation profiles of embryonic mouse palatal tissues, between embryos from ATRA-treated vs. untreated mice, at embryonic gestation day 14.5 (E14.5) (n=3 per group). To confirm differentially methylated levels of susceptible genes, real-time quantitative PCR (qPCR) was used to correlate expression of differentially methylated genes related to CP. RESULTS We identified 196 differentially methylated genes, including 17,298 differentially methylated CCGG sites between ATRA-treated vs. untreated embryonic mouse palatal tissues (P<0.05, log2FC>1). The CP-related genes Fgf16 (P=0.008, log2FC=1.13) and Tbx22 (P=0.011, log2FC=1.64,) were hypermethylated. Analysis of Fgf16 and Tbx22, using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG), identified 3 GO terms and 1 KEGG pathway functionally related to palatal fusion. The qPCR showed that changes in expression level negatively correlated with methylation levels. CONCLUSIONS Taken together, these results suggest that hypermethylation of Fgf16 and Tbx22 is associated with decreased gene expression, which might be responsible for developmental failure of palatal fusion, eventually resulting in the formation of CP.
Collapse
Affiliation(s)
- Xuan Shu
- Second Affiliated Hospital of Shantou University Medical College, Cleft Lip and Palate Treatment Center, Shantou, Guangdong, China
| | - Zejun Dong
- Second Affiliated Hospital of Shantou University Medical College, Cleft Lip and Palate Treatment Center, Shantou, Guangdong, China
| | - Liuhanghang Cheng
- Second Affiliated Hospital of Shantou University Medical College, Cleft Lip and Palate Treatment Center, Shantou, Guangdong, China
| | - Shenyou Shu
- Second Affiliated Hospital of Shantou University Medical College, Cleft Lip and Palate Treatment Center, Shantou, Guangdong, China
- Corresponding address: Shenyou Shu Cleft Lip and Palate Treatment Center, Second Affiliated Hospital of Shantou University Medical College 69 Dongxia North Road, Jinping District, Shantou 515041 - China. Phone: +86-18023235288 - Fax: +86-0754-83141156 e-mail:
| |
Collapse
|
12
|
Shu X, Shu S, Zhai Y, Zhu L, Ouyang Z. Genome-Wide DNA Methylation Profile of Gene cis-Acting Element Methylations in All-trans Retinoic Acid-Induced Mouse Cleft Palate. DNA Cell Biol 2018; 37:993-1002. [PMID: 30277813 DOI: 10.1089/dna.2018.4369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
DNA methylation epigenetically regulates gene expression. This study is aimed to investigate genome-wide DNA methylations involved in the regulation of palatal fusion in the all-trans retinoic acid-induced mouse cleft palate model. There were 4,718,556 differentially CCGG methylated sites and 367,504 CCWGG methylated sites for 1497 genes between case and control embryonic mouse palatal tissues. The enhancers (HDAC4 and SMAD3) and promoter (MID1) of these three genes had cis-acting element methylation. HDAC4 is localized within the CCWGG, while MID1 and SMAD3 are localized within the CCGG of the gene intron. The methylation-specific polymerase chain reaction data confirmed the MethylRAD-seq results, while the quantitative reverse transcriptase-polymerase chain reaction result showed that changes in gene expression inversely were associated with the cis-acting element methylation of the gene during retinoic acid-induced palatal fusion. The GO and KEGG data showed that these three genes could regulate cell proliferation, skeletal muscle fiber development, and development-related gene signaling or activity. The cis-acting element methylation of HDAC4, SMAD3, and MID1 may play a regulatory role during palatal fusion. Further research is needed to verify these novel epigenetic biomarkers for cleft palate.
Collapse
Affiliation(s)
- Xuan Shu
- The Cleft Lip and Palate Treatment Center, The Second Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Shenyou Shu
- The Cleft Lip and Palate Treatment Center, The Second Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Yuxia Zhai
- The Cleft Lip and Palate Treatment Center, The Second Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Lin Zhu
- The Cleft Lip and Palate Treatment Center, The Second Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Zhan Ouyang
- The Cleft Lip and Palate Treatment Center, The Second Affiliated Hospital of Shantou University Medical College , Shantou, China
| |
Collapse
|
13
|
Li Y, Deng Y, Deng C, Xie L, Yu L, Liu L, Yuan Y, Liu H, Dai L. Association of long interspersed nucleotide element-1 and interferon regulatory factor 6 methylation changes with nonsyndromic cleft lip with or without cleft palate. Oral Dis 2018; 25:215-222. [PMID: 30153397 DOI: 10.1111/odi.12965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/09/2018] [Accepted: 07/04/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To examine the possible associations between methylation changes in the promoter regions of long interspersed nucleotide element-1 (LINE-1) and interferon regulatory factor 6 gene (IRF6) and nonsyndromic cleft lip with or without cleft palate (NSCL/P). METHODS A case-control investigation was performed to compare 37 infants affected by NSCL/Ps with 60 babies without cleft malformations. Their genomic DNA samples were obtained, and the LINE-1 and IRF6 methylation levels were measured by using Sequenom MassArray. Unconditional logistic regression was adopted to estimate the odds ratio. RESULTS Infants with NSCL/Ps had a higher methylation level at LINE-1 and IRF6 promoter regions than controls. High levels of LINE-1 (≥64.07%) and IRF6 (≥6.46%) methylation were associated with an increased risk of NSCL/P (LINE-1, OR = 2.63, 95% CI: 1.07-6.57; IRF6, OR = 4.73, 95% CI: 2.10-13.07), and the associations remained to be significant after adjusting for potential confounders. Similar associations were also found for cleft lip only, cleft lip, and palate. CONCLUSION Our study suggested that aberrant methylation of LINE-1 and IRF6 might contribute to the development of NSCL/Ps. Further studies are needed to replicate the findings.
Collapse
Affiliation(s)
- Yanhua Li
- Obstetric and Gynecologic Department, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ying Deng
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Changfei Deng
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Liang Xie
- Key Laboratory of Obstetrics & Gynecology and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Li Yu
- Key Laboratory of Obstetrics & Gynecology and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Pediatric Department, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lijun Liu
- Key Laboratory of Obstetrics & Gynecology and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Pediatric Department, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yumei Yuan
- Hengyang Women and Children Hospital, Hengyang, China
| | - Hanmin Liu
- Key Laboratory of Obstetrics & Gynecology and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Pediatric Department, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Li Dai
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetrics & Gynecology and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Suzuki A, Abdallah N, Gajera M, Jun G, Jia P, Zhao Z, Iwata J. Genes and microRNAs associated with mouse cleft palate: A systematic review and bioinformatics analysis. Mech Dev 2018; 150:21-27. [PMID: 29475039 DOI: 10.1016/j.mod.2018.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/13/2018] [Accepted: 02/17/2018] [Indexed: 01/22/2023]
Abstract
Cleft palate (CP) is the most prevalent craniofacial deformity, with ethnic and geographic variation in prevalence in humans. Mice have been used as an animal model to study the cause(s) of CP by several approaches, including genetic and chemical-induced approaches. Mouse genetic approaches revealed that significant amounts of genes are involved in the CP pathology. The aim of this study was to identify common features of CP-associated genes and to explore the roles of microRNAs (miRNAs) as important post-transcriptional regulators that may be involved in the regulation of CP genes. To generate an accurate list of genes associated with CP, we first conducted systematic literature searches through main databases such as Medline, Embase, and PubMed, as well as other sources such as Scopus and Mouse Genome Informatics. We found that 195 mouse strains with single-gene mutations and 140 mouse strains with compound-gene mutations were reported to have CP. The CP genes were categorized by functions and pathways using the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology annotations, highlighting the contribution of cellular metabolism to CP. A total of 18 miRNAs were involved in the regulation of multiple CP genes. Human genotype-phenotype analysis revealed that variants in five human homologous CP genes (IRF6, FOXE1, VAX1, WNT9B, and GAD1) significantly contributed to the human CP phenotype. Thus, our results suggest that cellular metabolism and miRNAs play an important role in the regulation of genetic pathways and networks crucial for palatal formation.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nada Abdallah
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mona Gajera
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA; Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Goo Jun
- Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA; MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhongming Zhao
- Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA; MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA; Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA; MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
15
|
Xu M, Ma L, Lou S, Du Y, Yin X, Zhang C, Fan L, Wang H, Wang Z, Zhang W, Wang L, Pan Y. Genetic variants of microRNA processing genes and risk of non-syndromic orofacial clefts. Oral Dis 2017; 24:422-428. [PMID: 28833944 DOI: 10.1111/odi.12741] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE MicroRNA (miRNA) processing genes play important roles in the craniofacial development. The aim of this study was to explore the associations between single nucleotide polymorphisms (SNPs) of miRNA processing genes with the risk of non-syndromic orofacial clefts (NSOC). METHODS We genotyped 12 potentially functional SNPs from seven miRNA processing genes (GEMIN3, DROSHA, DGCR8, GEMIN4, PIWIL1, XPO5, and DICER) in a case-control study of 602 NSOC cases and 605 controls. RESULTS Two SNPs were associated with the susceptibility of CL/P: rs10719 in DROSHA led to an increased risk of cleft lip with or without palate (CL/P) (GA/AA: p = .024, OR = 1.33, 95% CI = [1.04, 1.70]; GG + GA/AA: p = .037, OR = 1.29, 95% CI = [1.02, 1.63]), while rs493760 in DROSHA (CC/TT: p = .049, OR = 0.58, 95% CI = [0.34, 0.99]) could reduce the risk of CL/P. In addition, rs10719 (A)-rs493760 (C) haplotype contributed to a decreased risk of CL/P (OR = 0.77, 95% CI = [0.63, 0.94]), whereas the rs10719 (G)-rs493760 (C) haplotype contributed to the increased risk of cleft palate only (CPO) (OR = 2.70, 95% CI = [1.15, 6.35]). However, there was no difference observed in these SNPs after the Bonferroni correction. CONCLUSION Taken together, our results provided the potential evidence that rs10719 and rs493760 might contribute to the risk of CL/P and suggested potential genetic basis and mechanisms of CL/P. The lack of association between these SNPs and CPO might be due to the limited sample size of CPO subgroup.
Collapse
Affiliation(s)
- M Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - L Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - S Lou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Y Du
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - X Yin
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - C Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - L Fan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - H Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Z Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - W Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - L Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Y Pan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Abstract
Development of the mammalian secondary palate involves highly dynamic morphogenetic processes, including outgrowth of palatal shelves from the oral side of the embryonic maxillary prominences, elevation of the initially vertically oriented palatal shelves to the horizontal position above the embryonic tongue, and subsequently adhesion and fusion of the paired palatal shelves at the midline to separate the oral cavity from the nasal cavity. Perturbation of any of these processes could cause cleft palate, a common birth defect that significantly affects patients' quality of life even after surgical treatment. In addition to identifying a large number of genes required for palate development, recent studies have begun to unravel the extensive cross-regulation of multiple signaling pathways, including Sonic hedgehog, bone morphogenetic protein, fibroblast growth factor, transforming growth factor β, and Wnt signaling, and multiple transcription factors during palatal shelf growth and patterning. Multiple studies also provide new insights into the gene regulatory networks and/or dynamic cellular processes underlying palatal shelf elevation, adhesion, and fusion. Here we summarize major recent advances and integrate the genes and molecular pathways with the cellular and morphogenetic processes of palatal shelf growth, patterning, elevation, adhesion, and fusion.
Collapse
Affiliation(s)
- C Li
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Y Lan
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,2 Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - R Jiang
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,2 Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
17
|
Sharp GC, Ho K, Davies A, Stergiakouli E, Humphries K, McArdle W, Sandy J, Davey Smith G, Lewis SJ, Relton CL. Distinct DNA methylation profiles in subtypes of orofacial cleft. Clin Epigenetics 2017; 9:63. [PMID: 28603561 PMCID: PMC5465456 DOI: 10.1186/s13148-017-0362-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/26/2017] [Indexed: 11/13/2022] Open
Abstract
Background Epigenetic data could help identify risk factors for orofacial clefts, either by revealing a causal role for epigenetic mechanisms in causing clefts or by capturing information about causal genetic or environmental factors. Given the evidence that different subtypes of orofacial cleft have distinct aetiologies, we explored whether children with different cleft subtypes showed distinct epigenetic profiles. Methods In whole-blood samples from 150 children from the Cleft Collective cohort study, we measured DNA methylation at over 450,000 sites on the genome. We then carried out epigenome-wide association studies (EWAS) to test the association between methylation at each site and cleft subtype (cleft lip only (CLO) n = 50; cleft palate only (CPO) n = 50; cleft lip and palate (CLP) n = 50). We also compared methylation in the blood to methylation in the lip or palate tissue using genome-wide data from the same 150 children and conducted an EWAS of CLO compared to CLP in lip tissue. Results We found four genomic regions in blood differentially methylated in CLO compared to CLP, 17 in CPO compared to CLP and 294 in CPO compared to CLO. Several regions mapped to genes that have previously been implicated in the development of orofacial clefts (for example, TBX1, COL11A2, HOXA2, PDGFRA), and over 250 associations were novel. Methylation in blood correlated with that in lip/palate at some regions. There were 14 regions differentially methylated in the lip tissue from children with CLO and CLP, with one region (near KIAA0415) showing up in both the blood and lip EWAS. Conclusions Our finding of distinct methylation profiles in different orofacial cleft (OFC) subtypes represents a promising first step in exploring the potential role of epigenetic modifications in the aetiology of OFCs and/or as clinically useful biomarkers of OFC subtypes. Electronic supplementary material The online version of this article (doi:10.1186/s13148-017-0362-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gemma C Sharp
- MRC Integrative Epidemiology Unit, School of Oral and Dental Sciences, University of Bristol, Bristol, England
| | - Karen Ho
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, England
| | - Amy Davies
- School of Oral and Dental Sciences, University of Bristol, Bristol, England
| | - Evie Stergiakouli
- MRC Integrative Epidemiology Unit, School of Oral and Dental Sciences, University of Bristol, Bristol, England
| | - Kerry Humphries
- School of Oral and Dental Sciences, University of Bristol, Bristol, England
| | - Wendy McArdle
- School of Social and Community Medicine, University of Bristol, Bristol, England
| | - Jonathan Sandy
- School of Oral and Dental Sciences, University of Bristol, Bristol, England
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, England
| | - Sarah J Lewis
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, England
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, England
| |
Collapse
|
18
|
Wang C, Yuan XG, Liu CP, Zhai SN, Zhang DW, Fu YX. Preliminary research on DNA methylation changes during murine palatogenesis induced by TCDD. J Craniomaxillofac Surg 2017; 45:678-684. [PMID: 28336320 DOI: 10.1016/j.jcms.2017.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 12/18/2016] [Accepted: 02/06/2017] [Indexed: 11/29/2022] Open
Abstract
2,3,7,8-Tetrachlrodibenzo-p-dioxin (TCDD) has been shown to induce cleft palate through growth factor and receptor expression changes during palatogenesis. DNA methylation is an important epigenetic modification that can regulate gene expressions and may be involved in TCDD-induced cleft palate. In this study, we investigated the effects of TCDD on the global and CpG DNA methylation status and the expression levels of DNA methyltransferases (Dnmts) in palate tissue of fetal mice. Pregnant C57BL/6J mice were administered with corn oil or TCDD 28 μg/kg at gestation day 10.5(GD10.5), and sacrificed at GD13.5, 14.5, 15.5. Fetal palates were collected for molecular analysis. Global DNA methylation status was detected by Methylamp™ Global DNA Methylation Quantification Ultra Kit. The expression of DNA methyltransferases were examined by quantitative real-time PCR(q-PCR). Methylation Specific PCR (MSP) was performed to analyze CpG methylation status of Dnmts. We found that the global DNA methylation level and the expression of Dnmt3a were higher at GD13.5 in the TCDD group. The methylation level of CpG site 2 in the promoter region of Dnmt3a in the control group was higher than that of the TCDD group at GD13.5. The low CpG methylation level of Dnmt3a at GD13.5 which causes the up-expression of Dnmt3a may induce global hypermethylation in fetal palate tissue. The aberrant global methylation status at GD13.5 may be the cause of palate malformation in fetal mice induced by TCDD.
Collapse
Affiliation(s)
- Chen Wang
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Department of Burns and Plastic Surgery, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xin-Gang Yuan
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Department of Burns and Plastic Surgery, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Cui-Ping Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Department of Burns and Plastic Surgery, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Sha-Na Zhai
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Department of Burns and Plastic Surgery, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Ding-Wen Zhang
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Department of Burns and Plastic Surgery, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yue-Xian Fu
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Department of Burns and Plastic Surgery, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
19
|
Determinants of orofacial clefting I: Effects of 5-Aza-2'-deoxycytidine on cellular processes and gene expression during development of the first branchial arch. Reprod Toxicol 2016; 67:85-99. [PMID: 27915011 DOI: 10.1016/j.reprotox.2016.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/19/2016] [Accepted: 11/29/2016] [Indexed: 12/27/2022]
Abstract
In this study, we identify gene targets and cellular events mediating the teratogenic action(s) of 5-Aza-2'-deoxycytidine (AzaD), an inhibitor of DNA methylation, on secondary palate development. Exposure of pregnant mice (on gestation day (GD) 9.5) to AzaD for 12h resulted in the complete penetrance of cleft palate (CP) in fetuses. Analysis of cells of the embryonic first branchial arch (1-BA), in fetuses exposed to AzaD, revealed: 1) significant alteration in expression of genes encoding several morphogenetic factors, cell cycle inhibitors and regulators of apoptosis; 2) a decrease in cell proliferation; and, 3) an increase in apoptosis. Pyrosequencing of selected genes, displaying pronounced differential expression in AzaD-exposed 1-BAs, failed to reveal significant alterations in CpG methylation levels in their putative promoters or gene bodies. CpG methylation analysis suggested that the effects of AzaD on gene expression were likely indirect.
Collapse
|
20
|
Yuan X, Qiu L, Pu Y, Liu C, Zhang X, Wang C, Pu W, Fu Y. Histone acetylation is involved in TCDD‑induced cleft palate formation in fetal mice. Mol Med Rep 2016; 14:1139-45. [PMID: 27279340 PMCID: PMC4940082 DOI: 10.3892/mmr.2016.5348] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 03/21/2016] [Indexed: 01/21/2023] Open
Abstract
The aim of the present was to evaluate the effects of DNA methylation and histone acetylation on 2,3,7,8-tetrachlo-rodibenzo-p-dioxin (TCDD)-induced cleft palate in fetal mice. Pregnant mice (n=10) were randomly divided into two groups: i) TCDD group, mice were treated with 28 µg/kg TCDD on gestation day (GD) 10 by oral gavage; ii) control group, mice were treated with an equal volume of corn oil. On GD 16.5, the fetal mice were evaluated for the presence of a cleft palate. An additional 36 pregnant mice were divided into the control and TCDD groups, and palate samples were collected on GD 13.5, GD 14.5 and GD 15.5, respectively. Transforming growth factor-β3 (TGF-β3) mRNA expression, TGF-β3 promoter methylation, histone acetyltransferase (HAT) activity and histone H3 (H3) acetylation in the palates were evaluated in the two groups. The incidence of a cleft palate in the TCDD group was 93.55%, and no cases of cleft palate were identified in the control group. On GD 13.5 and GD 14.5, TGF-β3 mRNA expression, HAT activity and acetylated H3 levels were significantly increased in the TCDD group compared with the control. Methylated bands were not observed in the TCDD or control groups. In conclusion, at the critical period of palate fusion (GD 13.5–14.5), TCDD significantly increased TGF-β3 gene expression, HAT activity and H3 acetylation. Therefore, histone acetylation may be involved in TCDD-induced cleft palate formation in fetal mice.
Collapse
Affiliation(s)
- Xingang Yuan
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, P.R. China
| | - Lin Qiu
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, P.R. China
| | - Yalan Pu
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, P.R. China
| | - Cuiping Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, P.R. China
| | - Xuan Zhang
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, P.R. China
| | - Chen Wang
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, P.R. China
| | - Wei Pu
- Biology Teaching and Research Section of Medical Technology College, Chengdu University of Transitional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Yuexian Fu
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, P.R. China
| |
Collapse
|
21
|
Blanco R, Colombo A, Suazo J. Maternal obesity is a risk factor for orofacial clefts: a meta-analysis. Br J Oral Maxillofac Surg 2015; 53:699-704. [DOI: 10.1016/j.bjoms.2015.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 05/16/2015] [Indexed: 01/07/2023]
|
22
|
Lane J, Kaartinen V. Signaling networks in palate development. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2014; 6:271-8. [PMID: 24644145 DOI: 10.1002/wsbm.1265] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/24/2014] [Accepted: 01/24/2014] [Indexed: 01/04/2023]
Abstract
UNLABELLED Palatogenesis, the formation of the palate, is a dynamic process regulated by a complex series of context-dependent morphogenetic signaling events. Many genes involved in palatogenesis have been discovered through the use of genetically manipulated mouse models as well as from human genetic studies, but the roles of these genes and their products in signaling networks regulating palatogenesis are still poorly known. In this review, we give a brief overview on palatogenesis and introduce key signaling cascades leading to formation of the intact palate. Moreover, we review conceptual differences between pathway biology and network biology and discuss how some of the recent technological advances in conjunction with mouse genetic models have contributed to our understanding of signaling networks regulating palate growth and fusion. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Jamie Lane
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | | |
Collapse
|
23
|
Dolinoy DC, Faulk C. Introduction: The use of animals models to advance epigenetic science. ILAR J 2014; 53:227-31. [PMID: 23744962 DOI: 10.1093/ilar.53.3-4.227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Dana C Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2200, USA.
| | | |
Collapse
|