1
|
Athni Hiremath S, Surulescu C. Data driven modeling of pseudopalisade pattern formation. J Math Biol 2023; 87:4. [PMID: 37300719 DOI: 10.1007/s00285-023-01933-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/19/2023] [Accepted: 04/29/2023] [Indexed: 06/12/2023]
Abstract
Pseudopalisading is an interesting phenomenon where cancer cells arrange themselves to form a dense garland-like pattern. Unlike the palisade structure, a similar type of pattern first observed in schwannomas by pathologist J.J. Verocay (Wippold et al. in AJNR Am J Neuroradiol 27(10):2037-2041, 2006), pseudopalisades are less organized and associated with a necrotic region at their core. These structures are mainly found in glioblastoma (GBM), a grade IV brain tumor, and provide a way to assess the aggressiveness of the tumor. Identification of the exact bio-mechanism responsible for the formation of pseudopalisades is a difficult task, mainly because pseudopalisades seem to be a consequence of complex nonlinear dynamics within the tumor. In this paper we propose a data-driven methodology to gain insight into the formation of different types of pseudopalisade structures. To this end, we start from a state of the art macroscopic model for the dynamics of GBM, that is coupled with the dynamics of extracellular pH, and formulate a terminal value optimal control problem. Thus, given a specific, observed pseudopalisade pattern, we determine the evolution of parameters (bio-mechanisms) that are responsible for its emergence. Random histological images exhibiting pseudopalisade-like structures are chosen to serve as target pattern. Having identified the optimal model parameters that generate the specified target pattern, we then formulate two different types of pattern counteracting ansatzes in order to determine possible ways to impair or obstruct the process of pseudopalisade formation. This provides the basis for designing active or live control of malignant GBM. Furthermore, we also provide a simple, yet insightful, mechanism to synthesize new pseudopalisade patterns by linearly combining the optimal model parameters responsible for generating different known target patterns. This particularly provides a hint that complex pseudopalisade patterns could be synthesized by a linear combination of parameters responsible for generating simple patterns. Going even further, we ask ourselves if complex therapy approaches can be conceived, such that some linear combination thereof is able to reverse or disrupt simple pseudopalisade patterns; this is investigated with the help of numerical simulations.
Collapse
Affiliation(s)
- Sandesh Athni Hiremath
- Mechanical and Process Engineering, TU Kaiserslautern, Gottlieb-Daimler-Straße 42, 67663, Kaiserslautern, Rhineland-Palatinate, Germany.
| | - Christina Surulescu
- Felix-Klein-Zentrum für Mathematik, TU Kaiserslautern, Paul-Ehrlich-Str. 31, 67663, Kaiserslautern, Rhineland-Palatinate, Germany
| |
Collapse
|
2
|
Buckwar E, Conte M, Meddah A. A stochastic hierarchical model for low grade glioma evolution. J Math Biol 2023; 86:89. [PMID: 37147527 PMCID: PMC10163130 DOI: 10.1007/s00285-023-01909-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 05/07/2023]
Abstract
A stochastic hierarchical model for the evolution of low grade gliomas is proposed. Starting with the description of cell motion using a piecewise diffusion Markov process (PDifMP) at the cellular level, we derive an equation for the density of the transition probability of this Markov process based on the generalised Fokker-Planck equation. Then, a macroscopic model is derived via parabolic limit and Hilbert expansions in the moment equations. After setting up the model, we perform several numerical tests to study the role of the local characteristics and the extended generator of the PDifMP in the process of tumour progression. The main aim focuses on understanding how the variations of the jump rate function of this process at the microscopic scale and the diffusion coefficient at the macroscopic scale are related to the diffusive behaviour of the glioma cells and to the onset of malignancy, i.e., the transition from low-grade to high-grade gliomas.
Collapse
Affiliation(s)
- Evelyn Buckwar
- Institute of Stochastics, Johannes Kepler University, Altenberger Straße 69, 4040, Linz, Austria
- Centre for Mathematical Sciences, Lund University, 221 00, Lund, Sweden
| | - Martina Conte
- Department of Mathematical Sciences "G. L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Amira Meddah
- Institute of Stochastics, Johannes Kepler University, Altenberger Straße 69, 4040, Linz, Austria.
| |
Collapse
|
3
|
Knobe S, Dzierma Y, Wenske M, Berdel C, Fleckenstein J, Melchior P, Palm J, Nuesken FG, Hunt A, Engwer C, Surulescu C, Yilmaz U, Reith W, Rübe C. Feasibility and clinical usefulness of modelling glioblastoma migration in adjuvant radiotherapy. Z Med Phys 2021; 32:149-158. [PMID: 33966944 PMCID: PMC9948823 DOI: 10.1016/j.zemedi.2021.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/01/2021] [Accepted: 03/18/2021] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GBM) is one of the most common primary brain tumours in adults, with a dismal prognosis despite aggressive multimodality treatment by a combination of surgery and adjuvant radiochemotherapy. A detailed knowledge of the spreading of glioma cells in the brain might allow for more targeted escalated radiotherapy, aiming to reduce locoregional relapse. Recent years have seen the development of a large variety of mathematical modelling approaches to predict glioma migration. The aim of this study is hence to evaluate the clinical applicability of a detailed micro- and meso-scale mathematical model in radiotherapy. First and foremost, a clinical workflow is established, in which the tumour is automatically segmented as input data and then followed in time mathematically based on the diffusion tensor imaging data. The influence of several free model parameters is individually evaluated, then the full model is retrospectively validated for a collective of 3 GBM patients treated at our institution by varying the most important model parameters to achieve optimum agreement with the tumour development during follow-up. Agreement of the model predictions with the real tumour growth as defined by manual contouring based on the follow-up MRI images is analyzed using the dice coefficient. The tumour evolution over 103-212 days follow-up could be predicted by the model with a dice coefficient better than 60% for all three patients. In all cases, the final tumour volume was overestimated by the model by a factor between 1.05 and 1.47. To evaluate the quality of the agreement between the model predictions and the ground truth, we must keep in mind that our gold standard relies on a single observer's (CB) manually-delineated tumour contours. We therefore decided to add a short validation of the stability and reliability of these contours by an inter-observer analysis including three other experienced radiation oncologists from our department. In total, a dice coefficient between 63% and 89% is achieved between the four different observers. Compared with this value, the model predictions (62-66%) perform reasonably well, given the fact that these tumour volumes were created based on the pre-operative segmentation and DTI.
Collapse
Affiliation(s)
- Sven Knobe
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany.
| | - Yvonne Dzierma
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Michael Wenske
- Institute for Analysis and Numerics, University of Muenster, Muenster, Germany
| | - Christian Berdel
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Jochen Fleckenstein
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Patrick Melchior
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Jan Palm
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Frank G. Nuesken
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | | | - Christian Engwer
- Institute for Analysis and Numerics, University of Muenster, Muenster, Germany
| | - Christina Surulescu
- Felix Klein Centre for Mathematics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Umut Yilmaz
- Department of Diagnostic and Interventional Radiology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Wolfgang Reith
- Department of Diagnostic and Interventional Radiology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Christian Rübe
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
4
|
Kumar P, Li J, Surulescu C. Multiscale modeling of glioma pseudopalisades: contributions from the tumor microenvironment. J Math Biol 2021; 82:49. [PMID: 33846838 PMCID: PMC8041715 DOI: 10.1007/s00285-021-01599-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/20/2021] [Accepted: 03/17/2021] [Indexed: 12/21/2022]
Abstract
Gliomas are primary brain tumors with a high invasive potential and infiltrative spread. Among them, glioblastoma multiforme (GBM) exhibits microvascular hyperplasia and pronounced necrosis triggered by hypoxia. Histological samples showing garland-like hypercellular structures (so-called pseudopalisades) centered around the occlusion site of a capillary are typical for GBM and hint on poor prognosis of patient survival. We propose a multiscale modeling approach in the kinetic theory of active particles framework and deduce by an upscaling process a reaction-diffusion model with repellent pH-taxis. We prove existence of a unique global bounded classical solution for a version of the obtained macroscopic system and investigate the asymptotic behavior of the solution. Moreover, we study two different types of scaling and compare the behavior of the obtained macroscopic PDEs by way of simulations. These show that patterns (not necessarily of Turing type), including pseudopalisades, can be formed for some parameter ranges, in accordance with the tumor grade. This is true when the PDEs are obtained via parabolic scaling (undirected tissue), while no such patterns are observed for the PDEs arising by a hyperbolic limit (directed tissue). This suggests that brain tissue might be undirected - at least as far as glioma migration is concerned. We also investigate two different ways of including cell level descriptions of response to hypoxia and the way they are related .
Collapse
Affiliation(s)
- Pawan Kumar
- TU Kaiserslautern, Felix-Klein-Zentrum für Mathematik, Paul-Ehrlich-Street 31, 67663, Kaiserslautern, Germany
| | - Jing Li
- College of Science, Minzu University of China, Beijing, 100081, People's Republic of China
| | - Christina Surulescu
- TU Kaiserslautern, Felix-Klein-Zentrum für Mathematik, Paul-Ehrlich-Street 31, 67663, Kaiserslautern, Germany.
| |
Collapse
|
5
|
Engwer C, Wenske M. Estimating the extent of glioblastoma invasion : Approximate stationalization of anisotropic advection-diffusion-reaction equations in the context of glioblastoma invasion. J Math Biol 2021; 82:10. [PMID: 33496806 PMCID: PMC7838148 DOI: 10.1007/s00285-021-01563-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 11/11/2020] [Accepted: 12/07/2020] [Indexed: 12/02/2022]
Abstract
Glioblastoma Multiforme is a malignant brain tumor with poor prognosis. There have been numerous attempts to model the invasion of tumorous glioma cells via partial differential equations in the form of advection–diffusion–reaction equations. The patient-wise parametrization of these models, and their validation via experimental data has been found to be difficult, as time sequence measurements are mostly missing. Also the clinical interest lies in the actual (invisible) tumor extent for a particular MRI/DTI scan and not in a predictive estimate. Therefore we propose a stationalized approach to estimate the extent of glioblastoma (GBM) invasion at the time of a given MRI/DTI scan. The underlying dynamics can be derived from an instationary GBM model, falling into the wide class of advection-diffusion-reaction equations. The stationalization is introduced via an analytic solution of the Fisher-KPP equation, the simplest model in the considered model class. We investigate the applicability in 1D and 2D, in the presence of inhomogeneous diffusion coefficients and on a real 3D DTI-dataset.
Collapse
Affiliation(s)
- Christian Engwer
- Institut für Numerische und Angewandte Mathematik, WWU Münster, Münster, Germany
| | - Michael Wenske
- Institut für Numerische und Angewandte Mathematik, WWU Münster, Münster, Germany.
| |
Collapse
|
6
|
Abstract
We propose a model for glioma patterns in a microlocal tumor environment under the influence of acidity, angiogenesis, and tissue anisotropy. The bottom-up model deduction eventually leads to a system of reaction–diffusion–taxis equations for glioma and endothelial cell population densities, of which the former infers flux limitation both in the self-diffusion and taxis terms. The model extends a recently introduced (Kumar, Li and Surulescu, 2020) description of glioma pseudopalisade formation with the aim of studying the effect of hypoxia-induced tumor vascularization on the establishment and maintenance of these histological patterns which are typical for high-grade brain cancer. Numerical simulations of the population level dynamics are performed to investigate several model scenarios containing this and further effects.
Collapse
|
7
|
Glioma invasion and its interplay with nervous tissue and therapy: A multiscale model. J Theor Biol 2020; 486:110088. [DOI: 10.1016/j.jtbi.2019.110088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/23/2019] [Accepted: 11/18/2019] [Indexed: 01/05/2023]
|
8
|
Kinetic models with non-local sensing determining cell polarization and speed according to independent cues. J Math Biol 2019; 80:373-421. [PMID: 31375892 DOI: 10.1007/s00285-019-01411-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 07/26/2019] [Indexed: 12/25/2022]
Abstract
Cells move by run and tumble, a kind of dynamics in which the cell alternates runs over straight lines and re-orientations. This erratic motion may be influenced by external factors, like chemicals, nutrients, the extra-cellular matrix, in the sense that the cell measures the external field and elaborates the signal eventually adapting its dynamics. We propose a kinetic transport equation implementing a velocity-jump process in which the transition probability takes into account a double bias, which acts, respectively, on the choice of the direction of motion and of the speed. The double bias depends on two different non-local sensing cues coming from the external environment. We analyze how the size of the cell and the way of sensing the environment with respect to the variation of the external fields affect the cell population dynamics by recovering an appropriate macroscopic limit and directly integrating the kinetic transport equation. A comparison between the solutions of the transport equation and of the proper macroscopic limit is also performed.
Collapse
|
9
|
Engwer C, Knappitsch M, Surulescu C. A multiscale model for glioma spread including cell-tissue interactions and proliferation. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2016; 13:443-60. [PMID: 27105989 DOI: 10.3934/mbe.2015011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Glioma is a broad class of brain and spinal cord tumors arising from glia cells, which are the main brain cells that can develop into neoplasms. They are highly invasive and lead to irregular tumor margins which are not precisely identifiable by medical imaging, thus rendering a precise enough resection very difficult. The understanding of glioma spread patterns is hence essential for both radiological therapy as well as surgical treatment. In this paper we propose a multiscale model for glioma growth including interactions of the cells with the underlying tissue network, along with proliferative effects. Our current accounting for two subpopulations of cells to accomodate proliferation according to the go-or-grow dichtomoty is an extension of the setting in [16]. As in that paper, we assume that cancer cells use neuronal fiber tracts as invasive pathways. Hence, the individual structure of brain tissue seems to be decisive for the tumor spread. Diffusion tensor imaging (DTI) is able to provide such information, thus opening the way for patient specific modeling of glioma invasion. Starting from a multiscale model involving subcellular (microscopic) and individual (mesoscale) cell dynamics, we perform a parabolic scaling to obtain an approximating reaction-diffusion-transport equation on the macroscale of the tumor cell population. Numerical simulations based on DTI data are carried out in order to assess the performance of our modeling approach.
Collapse
Affiliation(s)
- Christian Engwer
- WWU Munster, Institute for Computational und Applied Mathematics and Cluster of Excellence EXC 1003, Cells in Motion, Orleans-Ring 10, 48149 Münster, Germany.
| | | | | |
Collapse
|
10
|
New trends in mathematical biology: from the subcellular scale to cell populations and tissues: comment on "On the interplay between mathematics and biology. Hallmarks toward a new systems biology" by N. Bellomo et al. Phys Life Rev 2015; 12:83-4. [PMID: 25619153 DOI: 10.1016/j.plrev.2015.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 11/21/2022]
|