1
|
Wang D, Shi Y, Cheng Z, Luo L, Cheng K, Gan S, Liu C, Chen Z, Yang B. A Toxoplasma gondii thioredoxin with cell adhesion and antioxidant function. Front Cell Infect Microbiol 2024; 14:1404120. [PMID: 39211799 PMCID: PMC11358088 DOI: 10.3389/fcimb.2024.1404120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Background Toxoplasma gondii (T. gondii) is a widespread, zoonotic protozoan intracellular parasite with a complex life cycle, which can cause toxoplasmosis, a potentially serious disease. During the invasion process, T. gondii proteins first bind to the relevant host cell receptors, such as glycosaminoglycan molecule (GAG-binding motif), which is one of the main receptors for parasites or virus to infect host cells. However, research on TGME49_216510 (T. gondii Trx21), a protein from Toxoplasma gondii, is limited. Methods Bioinformatics analysis of the Trx21 protein was performed firstly. And specific primers were then designed using the conserved domain and GAG-binding motif to amplify, express, and purify a fragment of the Trx21 protein. The purified Trx21-GST protein was used for antioxidant and cell adhesion experiments. Simultaneously, mice were immunized with Trx21-His to generate specific polyclonal antibodies for subcellular localization analysis. Results The Trx21 protein, consisting of 774 amino acids, included a transmembrane region, three GAG-binding motifs, and a Thioredoxin-like domain. The recombinant Trx21-His protein had a molecular mass of about 31 kDa, while the Trx21-GST protein had a molecular mass of about 55 kDa, which was analyzed by SDS-PAGE and Western blot. Subcellular localization analysis by IFA revealed that Trx21 is predominantly distributed in the cytoplasm of T. gondii. Furthermore, Trx21 exhibited a protective effect on supercoiled DNA against metal-catalyzed oxidation (MCO) and demonstrated adhesion abilities to Vero cells. Conclusions These results indicate that Trx21 plays an important role in host cell interaction and oxidative damage.
Collapse
Affiliation(s)
- Dawei Wang
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
- Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yuyi Shi
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
- Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ziwen Cheng
- Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Like Luo
- Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Kuo Cheng
- Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Shengqi Gan
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
- Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Che Liu
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
- Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Zeliang Chen
- Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Baoling Yang
- Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning, China
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
2
|
Li C, Jiang N, Liu Y, Zhang Y, Chen R, Feng Y, Sang X, Chen Q. Toxoplasma sortilin interacts with secretory proteins and it is critical for parasite proliferation. Parasit Vectors 2024; 17:105. [PMID: 38439083 PMCID: PMC10910794 DOI: 10.1186/s13071-024-06207-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/18/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND The human sortilin protein is an important drug target and detection marker for cancer research. The sortilin from Toxoplasma gondii transports proteins associated with the apical organelles of the parasite. In this study, we aimed to determine the intracellular localization and structural domains of T. gondii sortilin, which may mediate protein transportation. Approaches to the functional inhibition of sortilin to establish novel treatments for T. gondii infections were explored. METHODS A gene encoding the sortilin protein was identified in the T. gondii genome. Immunoprecipitation and mass spectrometry were performed to identify the protein species transported by T. gondii sortilin. The interaction of each structural domain of sortilin with the transported proteins was investigated using bio-layer interferometry. The binding regions of the transported proteins in sortilin were identified. The effect of the sortilin inhibitor AF38469 on the infectivity of T. gondii was investigated. The binding site of AF38469 on sortilin was determined. RESULTS The subdomains Vps10, sortilin-C, and sortilin-M of the sortilin were identified as the binding regions for intracellular transportation of the target proteins. The sortilin inhibitor AF38469 bound to the Vps10 structural domain of T. gondii sortilin, which inhibited parasite invasion, replication, and intracellular growth in vitro and was therapeutic in mice infected with T. gondii. CONCLUSION The Vps10, sortilin-C, and sortilin-M subdomains of T. gondii sortilin were identified as functional regions for intracellular protein transport. The binding region for the sortilin inhibitor AF38469 was also identified as the Vps10 subdomain. This study establishes sortilin as a promising drug target against T. gondii and provides a valuable reference for the development of anti-T. gondii drug-target studies.
Collapse
Affiliation(s)
- Chenghuan Li
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Yize Liu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Yiwei Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China.
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China.
| |
Collapse
|
3
|
Wang D, Liu Y, Yang B, Zhang Z, El-Ashram S, Liu X, Li B. Toxoplasma gondii surface antigen 1 (SAG1) interacts in vitro with host cell receptor for activated C kinase 1 (RACK1). Acta Trop 2024; 251:107112. [PMID: 38157925 DOI: 10.1016/j.actatropica.2023.107112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Toxoplasma gondii (T. gondii) surface antigen 1 (SAG1) is crucial for tachyzoite invasion into host cells. However, the role of SAG1 in interaction with host cells remains unknown. The primary objective of this study was to analyze and validate the interaction between SAG1 and host cells. RACK1, an intracellular multifunctional protein, was identified as a SAG1 binding partner in host cells. Furthermore, the expression of RACK1 is manipulated by SAG1, and depletion of RACK1 negatively regulated host cell viability. These results imply that through interaction with RACK1, SAG1 preserves the viability of host cells to satisfy the survival needs of T. gondii. Our findings suggest a novel role for SAG1 in intracellular parasitism.
Collapse
Affiliation(s)
- Dawei Wang
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China; Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Yuming Liu
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China; Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Baoling Yang
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China; Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Zixuan Zhang
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China; Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Saeed El-Ashram
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan, Guangdong Province, China; Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Xiaogang Liu
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China; Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning Province, China.
| | - Bing Li
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China; Collaborative Innovation Center for Prevention and Control of Zoonoses, Jinzhou Medical University, Jinzhou, Liaoning Province, China.
| |
Collapse
|
4
|
Sang X, Li X, Chen R, Feng Y, He T, Zhang X, El-Ashram S, Al-Olayan E, Yang N. Co-Immunization with DNA Vaccines Expressing SABP1 and SAG1 Proteins Effectively Enhanced Mice Resistance to Toxoplasma gondii Acute Infection. Vaccines (Basel) 2023; 11:1190. [PMID: 37515006 PMCID: PMC10384583 DOI: 10.3390/vaccines11071190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Toxoplasma gondii (T. gondii) has many intermediate hosts, obligately invades nucleated cells, and seriously threatens human and animal health due to a lack of effective drugs and vaccines. Sialic acid-binding protein 1 (SABP1) is a novel invasion-related protein that, like surface antigen 1 (SAG1), is found on the plasma membrane of T. gondii. To investigate the immunogenicity and protective efficacy of DNA vaccines expressing SABP1 and SAG1 proteins against T. gondii acute infection, the recombinant plasmids pVAX1-SABP1 and pVAX1-SAG1 were produced and administered intramuscularly in Balb/c mice. Serum antibody levels and subtypes, lymphocyte proliferation, and cytokines were used to assess immunized mice's humoral and cellular immune responses. Furthermore, the ability of DNA vaccines to protect mice against T. gondii RH tachyzoites was tested. Immunized mice exhibited substantially higher IgG levels, with IgG2a titers higher than IgG1. When the immune group mice's splenocytes were stimulated with T. gondii lysate antigen, Th1-type cytokines (IL-12p70, IFN-γ, and IL-2) and Th2-type cytokine (IL-4) increased significantly. The combined DNA vaccine significantly increased the immunized mouse survival compared to the control group, with an average death time extended by 4.33 ± 0.6 days (p < 0.0001). These findings show that DNA vaccines based on the SABP1 and SAG1 genes induced robust humoral and cellular immunity in mice, effectively protecting against acute toxoplasmosis and potentially serving as a viable option for vaccination to prevent T. gondii infection.
Collapse
Affiliation(s)
- Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiang Li
- Key Laboratory of Livestock Infectious Diseases, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ting He
- Key Laboratory of Livestock Infectious Diseases, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaohan Zhang
- Key Laboratory of Livestock Infectious Diseases, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Saeed El-Ashram
- Department of Zoology, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Ebtsam Al-Olayan
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Na Yang
- Key Laboratory of Livestock Infectious Diseases, Shenyang Agricultural University, Ministry of Education, Shenyang 110866, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
5
|
Cao Y, Song W, Chen X. Multivalent sialic acid materials for biomedical applications. Biomater Sci 2023; 11:2620-2638. [PMID: 36661319 DOI: 10.1039/d2bm01595a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Sialic acid is a kind of monosaccharide expressed on the non-reducing end of glycoproteins or glycolipids. It acts as a signal molecule combining with its natural receptors such as selectins and siglecs (sialic acid-binding immunoglobulin-like lectins) in intercellular interactions like immunological surveillance and leukocyte infiltration. The last few decades have witnessed the exploration of the roles that sialic acid plays in different physiological and pathological processes and the use of sialic acid-modified materials as therapeutics for related diseases like immune dysregulation and virus infection. In this review, we will briefly introduce the biomedical function of sialic acids in organisms and the utilization of multivalent sialic acid materials for targeted drug delivery as well as therapeutic applications including anti-inflammation and anti-virus.
Collapse
Affiliation(s)
- Yusong Cao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. .,University of Science and Technology of China, Hefei, 230026, China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. .,University of Science and Technology of China, Hefei, 230026, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. .,University of Science and Technology of China, Hefei, 230026, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| |
Collapse
|
6
|
Carbohydrates: Binding Sites and Potential Drug Targets for Neural-Affecting Pathogens. ADVANCES IN NEUROBIOLOGY 2023; 29:449-477. [DOI: 10.1007/978-3-031-12390-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Shaw S, Knüsel S, Abbühl D, Naguleswaran A, Etzensperger R, Benninger M, Roditi I. Cyclic AMP signalling and glucose metabolism mediate pH taxis by African trypanosomes. Nat Commun 2022; 13:603. [PMID: 35105902 PMCID: PMC8807625 DOI: 10.1038/s41467-022-28293-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/18/2022] [Indexed: 01/20/2023] Open
Abstract
The collective movement of African trypanosomes on semi-solid surfaces, known as social motility, is presumed to be due to migration factors and repellents released by the parasites. Here we show that procyclic (insect midgut) forms acidify their environment as a consequence of glucose metabolism, generating pH gradients by diffusion. Early and late procyclic forms exhibit self-organising properties on agarose plates. While early procyclic forms are repelled by acid and migrate outwards, late procyclic forms remain at the inoculation site. Furthermore, trypanosomes respond to exogenously formed pH gradients, with both early and late procyclic forms being attracted to alkali. pH taxis is mediated by multiple cyclic AMP effectors: deletion of one copy of adenylate cyclase ACP5, or both copies of the cyclic AMP response protein CARP3, abrogates the response to acid, while deletion of phosphodiesterase PDEB1 completely abolishes pH taxis. The ability to sense pH is biologically relevant as trypanosomes experience large changes as they migrate through their tsetse host. Supporting this, a CARP3 null mutant is severely compromised in its ability to establish infections in flies. Based on these findings, we propose that the expanded family of adenylate cyclases in trypanosomes might govern other chemotactic responses in their two hosts. African trypanosomes collectively move in a process called social motility. Here, the authors show that procyclic forms acidify their environment as a consequence of glucose metabolism, generating pH gradients by diffusion that are sensed via cyclic AMP signalling. Parasite mutants defective in cAMP signaling are inhibited in fly infection.
Collapse
Affiliation(s)
- Sebastian Shaw
- Institute of Cell Biology, University of Bern, Bern, Switzerland.,Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sebastian Knüsel
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Daniel Abbühl
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | | | | | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland.
| |
Collapse
|
8
|
De Mattos LC, Ferreira AIC, de Oliveira KY, Nakashima F, Brandão CC. The Potential Contribution of ABO, Lewis and Secretor Histo-Blood Group Carbohydrates in Infection by Toxoplasma gondii. Front Cell Infect Microbiol 2021; 11:671958. [PMID: 34222043 PMCID: PMC8251793 DOI: 10.3389/fcimb.2021.671958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/31/2021] [Indexed: 11/19/2022] Open
Abstract
The glycosyltransferases encoded by genes from the human ABO, Lewis, and Secretor histo-blood group systems synthesize part of the carbohydrate antigens in hematopoietic and non-hematopoietic tissues. The combined action of these glycosyltransferases strongly influences cell, tissue, mucosa, and exocrine secretion carbohydrate phenotypes, including those serving as habitat for mutualistic and pathogenic microorganisms. A set of reports investigated associations between Toxoplasma gondii infection and the ABO histo-blood group system, but the results are contradictory. As T. gondii uses the gastrointestinal tract as a route for infection, and in this organ, the expression of ABO, Lewis, and Secretor histo-blood group carbohydrates occurs, it is reasonable to suppose some biological relationship between them. This text reviewed association studies published in recent decades focusing on the potential contribution of the ABO, Lewis, and Secretor histo-blood group carbohydrates and infection by T. gondii.
Collapse
Affiliation(s)
- Luiz Carlos De Mattos
- Immunogenetics Laboratory, Molecular Biology Department, Faculty of Medicine – FAMERP, São José do Rio Preto, Brazil
| | - Ana Iara Costa Ferreira
- Immunogenetics Laboratory, Molecular Biology Department, Faculty of Medicine – FAMERP, São José do Rio Preto, Brazil
| | - Karina Younan de Oliveira
- Immunogenetics Laboratory, Molecular Biology Department, Faculty of Medicine – FAMERP, São José do Rio Preto, Brazil
| | - Fabiana Nakashima
- Immunogenetics Laboratory, Molecular Biology Department, Faculty of Medicine – FAMERP, São José do Rio Preto, Brazil
| | - Cinara Cássia Brandão
- Immunogenetics Laboratory, Molecular Biology Department, Faculty of Medicine – FAMERP, São José do Rio Preto, Brazil
- FAMERP Toxoplasma Research Group, Molecular Biology Department, Faculty of Medicine – FAMERP, São José do Rio Preto, Brazil
| |
Collapse
|
9
|
Burzyńska P, Sobala ŁF, Mikołajczyk K, Jodłowska M, Jaśkiewicz E. Sialic Acids as Receptors for Pathogens. Biomolecules 2021; 11:831. [PMID: 34199560 PMCID: PMC8227644 DOI: 10.3390/biom11060831] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022] Open
Abstract
Carbohydrates have long been known to mediate intracellular interactions, whether within one organism or between different organisms. Sialic acids (Sias) are carbohydrates that usually occupy the terminal positions in longer carbohydrate chains, which makes them common recognition targets mediating these interactions. In this review, we summarize the knowledge about animal disease-causing agents such as viruses, bacteria and protozoa (including the malaria parasite Plasmodium falciparum) in which Sias play a role in infection biology. While Sias may promote binding of, e.g., influenza viruses and SV40, they act as decoys for betacoronaviruses. The presence of two common forms of Sias, Neu5Ac and Neu5Gc, is species-specific, and in humans, the enzyme converting Neu5Ac to Neu5Gc (CMAH, CMP-Neu5Ac hydroxylase) is lost, most likely due to adaptation to pathogen regimes; we discuss the research about the influence of malaria on this trait. In addition, we present data suggesting the CMAH gene was probably present in the ancestor of animals, shedding light on its glycobiology. We predict that a better understanding of the role of Sias in disease vectors would lead to more effective clinical interventions.
Collapse
Affiliation(s)
| | | | | | | | - Ewa Jaśkiewicz
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland; (P.B.); (Ł.F.S.); (K.M.); (M.J.)
| |
Collapse
|
10
|
Cavalcante T, Medeiros MM, Mule SN, Palmisano G, Stolf BS. The Role of Sialic Acids in the Establishment of Infections by Pathogens, With Special Focus on Leishmania. Front Cell Infect Microbiol 2021; 11:671913. [PMID: 34055669 PMCID: PMC8155805 DOI: 10.3389/fcimb.2021.671913] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022] Open
Abstract
Carbohydrates or glycans are ubiquitous components of the cell surface which play crucial biological and structural roles. Sialic acids (Sias) are nine-carbon atoms sugars usually present as terminal residues of glycoproteins and glycolipids on the cell surface or secreted. They have important roles in cellular communication and also in infection and survival of pathogens. More than 20 pathogens can synthesize or capture Sias from their hosts and incorporate them into their own glycoconjugates and derivatives. Sialylation of pathogens’ glycoconjugates may be crucial for survival inside the host for numerous reasons. The role of Sias in protozoa such as Trypanosoma and Leishmania was demonstrated in previous studies. This review highlights the importance of Sias in several pathogenic infections, focusing on Leishmania. We describe in detail the contributions of Sias, Siglecs (sialic acid binding Ig-like lectins) and Neuraminidase 1 (NEU 1) in the course of Leishmania infection. A detailed view on the structural and functional diversity of Leishmania-related Sias and host-cell receptors will be provided, as well as the results of functional studies performed with different Leishmania species.
Collapse
Affiliation(s)
- Tainá Cavalcante
- Laboratory of Leishmaniasis, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Mariana Medina Medeiros
- Laboratory of Leishmaniasis, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Simon Ngao Mule
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Beatriz Simonsen Stolf
- Laboratory of Leishmaniasis, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
11
|
Ricci-Azevedo R, Mendonça-Natividade FC, Santana AC, Alcoforado Diniz J, Roque-Barreira MC. Microneme Proteins 1 and 4 From Toxoplasma gondii Induce IL-10 Production by Macrophages Through TLR4 Endocytosis. Front Immunol 2021; 12:655371. [PMID: 33912181 PMCID: PMC8071938 DOI: 10.3389/fimmu.2021.655371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/22/2021] [Indexed: 01/09/2023] Open
Abstract
The protozoan parasite Toxoplasma gondii modulates host cell responses to favor its success in the early stage of infections by secreting proteins from its apical organelles. Some of these proteins, including microneme proteins (MICs) 1 and 4, trigger pro-inflammatory host cell responses. The lectins MIC1 and MIC4 interact with N-linked glycans on TLR2 and TLR4, activating NF-κB and producing IL-12, TNF-α, and IL-6. Interestingly, MIC1 and MIC4 also trigger secretion of the anti-inflammatory cytokine IL-10 through mechanisms as yet unknown. Herein, we show that the ability of these MICs to induce macrophages to produce IL-10 depends on TLR4 internalization from the cell surface. Macrophages subjected to blockade of endocytosis by Dynasore continued to release TNF-α, but failed to produce IL-10, in response to MIC1 or MIC4 exposure. Similarly, IL-10 was not produced by Dynasore-conditioned T. gondii-infected macrophages. Furthermore, MIC1- or MIC4-stimulated macrophages gained transient tolerance to LPS. We report a previously undiscovered mechanism by which well-defined T. gondii components inhibit a host inflammatory response.
Collapse
Affiliation(s)
- Rafael Ricci-Azevedo
- Laboratory of Immunochemistry and Glycobiology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Flavia Costa Mendonça-Natividade
- Laboratory of Immunochemistry and Glycobiology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana Carolina Santana
- Laboratory of Cellular and Molecular Biology of Mast Cells, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Juliana Alcoforado Diniz
- Laboratory of Molecular Parasitology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria Cristina Roque-Barreira
- Laboratory of Immunochemistry and Glycobiology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|