1
|
Horsten F, Chou S, Gillemot S, Debaveye Y, Naesens M, Pirenne J, Vanhoutte T, Vanuytsel T, Vos R, Maes P, Snoeck R, Andrei G. Dynamics and Evolution of Donor-derived Cytomegalovirus Infection in 3 Solid Organ Transplant Recipients With the Same Multiorgan Donor. Transplantation 2024:00007890-990000000-00878. [PMID: 39348287 DOI: 10.1097/tp.0000000000005209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
BACKGROUND Cytomegalovirus (CMV) infection poses a significant risk to immunosuppressed transplant recipients, manifesting through primary infection, reinfection, or reactivation. METHODS We analyzed the emergence of drug resistance in CMV infection in 3 patients who were later found to have received an allograft from a shared, deceased donor. The seronegative transplant recipients developed symptomatic CMV infections after bowel/pancreas, kidney, or lung transplantation. Prospective Sanger sequencing was used to identify mutations in the viral DNA polymerase (DP) and protein kinase (PK). DP and PK variants were retrospectively quantified by targeted next-generation sequencing. The impact of the novel DP-A505G substitution on drug susceptibility was assessed using a recombinant virus. Whole-genome sequencing of clinical CMV samples was enabled through target DNA enrichment. RESULTS The DP-A505G substitution was found in all patient samples and could be associated with a natural polymorphism. A subsequent review of the patients' clinical histories revealed that they had all received organs from a single donor. The CMV infection exhibited divergent evolution among the patients: patient 1 developed resistance to ganciclovir and foscarnet because of 2 DP mutations (V715M and V781I), patient 2 showed no genotypic resistance, and patient 3 developed ganciclovir (PK-L595S) and maribavir resistance (PK-T409M). Interpatient variation across the entire CMV genome was minimal, with viral samples clustering in phylogenetic analysis. CONCLUSIONS All 3 transplant recipients were infected with the same donor-derived CMV strain and readily developed different drug susceptibility profiles. This underscores the importance of judicious antiviral drug use and surveillance in preventing antiviral resistance emergence.
Collapse
Affiliation(s)
- Fien Horsten
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sunwen Chou
- Department of Veterans Affairs Medical Center, Research Service, Portland, OR
| | - Sarah Gillemot
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, KU Leuven, Leuven, Belgium
| | - Yves Debaveye
- Department of Intensive Care, University Hospitals Leuven, Leuven, Belgium
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Jacques Pirenne
- Abdominal Transplant Surgery Unit, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Abdominal Transplant Surgery and Transplant Coordination, University Hospitals Leuven, Leuven, Belgium
- Leuven Intestinal Failure and Transplantation Center (LIFT), University Hospitals Leuven, Leuven, Belgium
| | - Thomas Vanhoutte
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Department of Chronic Diseases and Metabolism (ChroMetA), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Robin Vos
- Department of Chronic Diseases and Metabolism (ChroMetA), KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Piet Maes
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Robert Snoeck
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, KU Leuven, Leuven, Belgium
| | - Graciela Andrei
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Külekci B, Mollik M, Schwarz S, Perkmann-Nagele N, Geleff S, Jaksch P, Hoetzenecker K, Lambers C, Puchhammer-Stöckl E, Goerzer I. Bidirectional transfer of human cytomegalovirus strains in donor and recipient seropositive lung transplant patients. J Med Virol 2024; 96:e29770. [PMID: 38949200 DOI: 10.1002/jmv.29770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
Donor and recipient human cytomegalovirus (HCMV) seropositive (D+R+) lung transplant recipients (LTRs) often harbor multiple strains of HCMV, likely due to transmitted donor (D) strains and reactivated recipient (R) strains. To date, the extent and timely occurrence of each likely source in shaping the post-transplantation (post-Tx) strain population is unknown. Here, we deciphered the D and R origin of the post-Tx HCMV strain composition in blood, bronchoalveolar lavage (BAL), and CD45+ BAL cell subsets. We investigated either D and/or R formalin-fixed paraffin-embedded blocks or fresh D lung tissue from four D+R+ LTRs obtained before transplantation. HCMV strains were characterized by short amplicon deep sequencing. In two LTRs, we show that the transplanted lung is reseeded by R strains within the first 6 months after transplantation, likely by infiltrating CD14+ CD163+/- alveolar macrophages. In three LTRs, we demonstrate both rapid D-strain dissemination and persistence in the transplanted lung for >1 year post-Tx. Broad inter-host diversity contrasts with intra-host genotype sequence stability upon transmission, during follow-up and across compartments. In D+R+ LTRs, HCMV strains of both, D and R origin can emerge first and dominate long-term in subsequent episodes of infection, indicating replication of both sources despite pre-existing immunity.
Collapse
Affiliation(s)
- Büsra Külekci
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Madlen Mollik
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Stefan Schwarz
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Nicole Perkmann-Nagele
- Divison of Clinical Virology, Department of Laboratory Medicine, University of Vienna, Vienna, Austria
| | - Silvana Geleff
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Peter Jaksch
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Christopher Lambers
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Irene Goerzer
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
High-Risk Oncogenic Human Cytomegalovirus. Viruses 2022; 14:v14112462. [PMID: 36366560 PMCID: PMC9695668 DOI: 10.3390/v14112462] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a herpesvirus that infects between 40% and 95% of the population worldwide, usually without symptoms. The host immune response keeps the virus in a latent stage, although HCMV can reactivate in an inflammatory context, which could result in sequential lytic/latent viral cycles during the lifetime and thereby participate in HCMV genomic diversity in humans. The high level of HCMV intra-host genomic variability could participate in the oncomodulatory role of HCMV where the virus will favor the development and spread of cancerous cells. Recently, an oncogenic role of HCMV has been highlighted in which the virus will directly transform primary cells; such HCMV strains are named high-risk (HR) HCMV strains. In light of these new findings, this review defines the criteria that characterize HR-HCMV strains and their molecular as well as the phenotypic impact on the infected cell and its tumor microenvironment.
Collapse
|
4
|
Külekci B, Schwarz S, Brait N, Perkmann-Nagele N, Jaksch P, Hoetzenecker K, Puchhammer-Stöckl E, Goerzer I. Human cytomegalovirus strain diversity and dynamics reveal the donor lung as a major contributor after transplantation. Virus Evol 2022; 8:veac076. [PMID: 36128049 PMCID: PMC9477073 DOI: 10.1093/ve/veac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/05/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Mixed human cytomegalovirus (HCMV) strain infections are frequent in lung transplant recipients (LTRs). To date, the influence of the donor (D) and recipient (R) HCMV serostatus on intra-host HCMV strain composition and viral population dynamics after transplantation is only poorly understood. Here, we investigated ten pre-transplant lungs from HCMV-seropositive donors and 163 sequential HCMV-DNA-positive plasma and bronchoalveolar lavage samples from fifty LTRs with multiviremic episodes post-transplantation. The study cohort included D+R+ (38 per cent), D+R- (36 per cent), and D-R+ (26 per cent) patients. All samples were subjected to quantitative genotyping by short amplicon deep sequencing, and twenty-four of them were additionally PacBio long-read sequenced for genotype linkages. We find that D+R+ patients show a significantly elevated intra-host strain diversity compared to D+R- and D-R+ patients (P = 0.0089). Both D+ patient groups display significantly higher viral population dynamics than D- patients (P = 0.0061). Five out of ten pre-transplant donor lungs were HCMV DNA positive, whereof three multiple HCMV strains were detected, indicating that multi-strain transmission via lung transplantation is likely. Using long reads, we show that intra-host haplotypes can share distinctly linked genotypes, which limits overall intra-host diversity in mixed infections. Together, our findings demonstrate donor-derived strains as the main source of increased HCMV strain diversity and dynamics post-transplantation. These results foster strategies to mitigate the potential transmission of the donor strain reservoir to the allograft, such as ex vivo delivery of HCMV-selective immunotoxins prior to transplantation to reduce latent HCMV.
Collapse
Affiliation(s)
- Büsra Külekci
- Center for Virology, Medical University of Vienna, Kinderspitalgasse 15, Vienna 1090, Austria
| | - Stefan Schwarz
- Department of Thoracic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Nadja Brait
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| | - Nicole Perkmann-Nagele
- Division of Clinical Virology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Peter Jaksch
- Department of Thoracic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | | | - Irene Goerzer
- Center for Virology, Medical University of Vienna, Kinderspitalgasse 15, Vienna 1090, Austria
| |
Collapse
|
5
|
Tumors and Cytomegalovirus: An Intimate Interplay. Viruses 2022; 14:v14040812. [PMID: 35458542 PMCID: PMC9028007 DOI: 10.3390/v14040812] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/19/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a herpesvirus that alternates lytic and latent infection, infecting between 40 and 95% of the population worldwide, usually without symptoms. During its lytic cycle, HCMV can result in fever, asthenia, and, in some cases, can lead to severe symptoms such as hepatitis, pneumonitis, meningitis, retinitis, and severe cytomegalovirus disease, especially in immunocompromised individuals. Usually, the host immune response keeps the virus in a latent stage, although HCMV can reactivate in an inflammatory context, which could result in sequential lytic/latent viral cycles during the lifetime and thereby participate in the HCMV genomic diversity in humans and the high level of HCMV intrahost genomic variability. The oncomodulatory role of HCMV has been reported, where the virus will favor the development and spread of cancerous cells. Recently, an oncogenic role of HCMV has been highlighted in which the virus will directly transform primary cells and might therefore be defined as the eighth human oncovirus. In light of these new findings, it is critical to understand the role of the immune landscape, including the tumor microenvironment present in HCMV-harboring tumors. Finally, the oncomodulatory/oncogenic potential of HCMV could lead to the development of novel adapted therapeutic approaches against HCMV, especially since immunotherapy has revolutionized cancer therapeutic strategies and new therapeutic approaches are actively needed, particularly to fight tumors of poor prognosis.
Collapse
|
6
|
Griffiths P, Reeves M. Pathogenesis of human cytomegalovirus in the immunocompromised host. Nat Rev Microbiol 2021; 19:759-773. [PMID: 34168328 PMCID: PMC8223196 DOI: 10.1038/s41579-021-00582-z] [Citation(s) in RCA: 258] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2021] [Indexed: 12/16/2022]
Abstract
Human cytomegalovirus (HCMV) is a herpesvirus that infects ~60% of adults in developed countries and more than 90% in developing countries. Usually, it is controlled by a vigorous immune response so that infections are asymptomatic or symptoms are mild. However, if the immune system is compromised, HCMV can replicate to high levels and cause serious end organ disease. Substantial progress is being made in understanding the natural history and pathogenesis of HCMV infection and disease in the immunocompromised host. Serial measures of viral load defined the dynamics of HCMV replication and are now used routinely to allow intervention with antiviral drugs in individual patients. They are also used as pharmacodynamic read-outs to evaluate prototype vaccines that may protect against HCMV replication and to define immune correlates of this protection. This novel information is informing the design of randomized controlled trials of new antiviral drugs and vaccines currently under evaluation. In this Review, we discuss immune responses to HCMV and countermeasures deployed by the virus, the establishment of latency and reactivation from it, exogenous reinfection with additional strains, pathogenesis, development of end organ disease, indirect effects of infection, immune correlates of control of replication, current treatment strategies and the evaluation of novel vaccine candidates.
Collapse
Affiliation(s)
- Paul Griffiths
- Institute for Immunity and Transplantation, University College London, London, UK.
| | - Matthew Reeves
- grid.83440.3b0000000121901201Institute for Immunity and Transplantation, University College London, London, UK
| |
Collapse
|