1
|
Zhan L, Ge J, Xia L, Zhang Y. Reciprocal regulation between bacterial secretion systems and host metabolism: Enhancing bacterial intracellular survival capability. Microbiol Res 2024; 292:128025. [PMID: 39705830 DOI: 10.1016/j.micres.2024.128025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/23/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Secretion systems are intricate nanomachines present on many bacterial cell membranes that deliver various bacterially-encoded effector proteins into eukaryotic or prokaryotic cells. They are pivotal in bacterial invasion, host colonization, and pathogenesis. After infection, bacteria employ these machines to deliver toxic effectors to the cytoplasm of host cells that disrupt their metabolic balance, such as interfering with glucose metabolism, promoting lipid droplets formation, altering amino acid profiles and mitochondrial morphology, and reducing ROS levels, to ensure bacterial intracellular survival. Furthermore, metabolites within host cells can modulate the expression and/or function of bacterial secretion systems. This review summarizes recent advancements in understanding the impact of bacterial secretion systems on host cell metabolism and the feedback regulation of host metabolites on these machines, providing novel perspectives on host-pathogen interactions and mechanisms of bacterial pathogenesis.
Collapse
Affiliation(s)
- Lina Zhan
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu 212013, China
| | - Jiongchen Ge
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu 212013, China
| | - Lin Xia
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
2
|
Motta EVS, Lariviere PJ, Jones KR, Song Y, Moran NA. Type VI secretion systems promote intraspecific competition and host interactions in a bee gut symbiont. Proc Natl Acad Sci U S A 2024; 121:e2414882121. [PMID: 39441627 PMCID: PMC11536156 DOI: 10.1073/pnas.2414882121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
The Type VI Secretion System (T6SS) is a sophisticated mechanism utilized by gram-negative bacteria to deliver toxic effector proteins into target cells, influencing microbial community dynamics and host interactions. In this study, we investigated the role of T6SSs in Snodgrassella alvi wkB2, a core bacterial symbiont of the honey bee gut microbiota. We generated single- and double-knockout mutants targeting essential genes (tssD and tssE) in both T6SS-1 and T6SS-2 and assessed their colonization and competition capabilities in vivo. Our results indicate that T6SSs are nonessential for colonization of the bee gut, although T6SS-2 mutant strains exhibited significantly lower colonization levels compared to the wild-type (WT) strain. Further, a defined community experiment showed that S. alvi wkB2 T6SSs do not significantly impact interspecific competition among core gut bacteria. However, cocolonization experiments with closely related S. alvi strains demonstrated that T6SS-1 plays a role in mediating intraspecific competition. Transcriptomic analysis of bee guts monocolonized by WT or T6SS mutants revealed differential expression of host immunity-related genes relative to microbiota-deprived bees, such as upregulation of the antimicrobial peptide apidaecin in the presence of WT S. alvi and the antimicrobial peptide defensin in the presence of T6SS-2 mutant S. alvi, suggesting that T6SSs contribute to shaping host immune responses. These findings provide insight into the ecological roles of T6SSs in the honey bee gut microbiota, emphasizing their importance in maintaining competitive dynamics and influencing host-bacterial interactions.
Collapse
Affiliation(s)
- Erick V. S. Motta
- Department of Integrative Biology, The University of Texas at Austin, TX78712
- Department of Entomology, Texas A&M University, College Station, TX77843
| | - Patrick J. Lariviere
- Department of Integrative Biology, The University of Texas at Austin, TX78712
- Department of Molecular Biosciences, The University of Texas at Austin, TX78712
| | - Korin R. Jones
- Department of Integrative Biology, The University of Texas at Austin, TX78712
| | - Yulin Song
- Department of Integrative Biology, The University of Texas at Austin, TX78712
| | - Nancy A. Moran
- Department of Integrative Biology, The University of Texas at Austin, TX78712
| |
Collapse
|
3
|
Chansa O, Shantavasinkul PC, Monsuwan W, Sirivarasai J. Association between Gut Microbiota Profiles, Dietary Intake, and Inflammatory Markers in Overweight and Obese Women. Foods 2024; 13:2592. [PMID: 39200519 PMCID: PMC11353678 DOI: 10.3390/foods13162592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Being overweight and obesity are significant global public health challenges due to their association with adipose tissue dysfunction, pro-inflammatory marker production, and alterations in gut microbiota composition. To explore the relationship between gut microbiota, dietary factors, and inflammatory markers in overweight or obese women, we conducted a cross-sectional study involving a healthy group (n = 20) and an overweight or obese group (n = 75). We collected data, including clinical, anthropometric, and dietary assessments, and carried out a blood biochemical analysis, the measurement of inflammatory biomarkers (hs-CRP, IL-6, and TNF-α), and the 16S rRNA gene sequencing of fecal samples. The gut microbiota analysis revealed notable differences in alpha and beta diversity between the two groups. Moreover, the abundance of gut microbiota in the overweight or obese group correlated positively with adiposity markers, blood pressure, lipid profiles, and inflammatory markers. These findings highlight significant changes in gut microbiota associated with obesity, potentially implicating pathways such as lipopolysaccharide biosynthesis. Understanding the role of the gut microbiome in obesity could reveal specific avenues for intervention.
Collapse
Affiliation(s)
- Orada Chansa
- Master of Science Program in Nutrition, Faculty of Medicine Ramathibodi Hospital, Institute of Nutrition, Mahidol University, Bangkok 10400, Thailand;
| | | | - Wutarak Monsuwan
- Nutrition Unit, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Jintana Sirivarasai
- Nutrition Unit, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| |
Collapse
|
4
|
Liu S, Zhao S, Cheng Z, Ren Y, Shi X, Mu J, Ge X, Dai Y, Li L, Zhang Z. Akkermansia muciniphila Protects Against Antibiotic-Associated Diarrhea in Mice. Probiotics Antimicrob Proteins 2024; 16:1190-1204. [PMID: 37314693 DOI: 10.1007/s12602-023-10101-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 06/15/2023]
Abstract
Probiotics are used to prevent antibiotic-associated diarrhea (AAD) via the restoration of the gut microbiota. However, the precise effects of Akkermansia muciniphila (Akk), which is a promising probiotics, on AAD are unknown. Here, AAD models were established via the administration of lincomycin and ampicillin with or without pasteurized Akk or Amuc_1100 treatment. A diffusion test revealed that Akk was susceptible to the majority of the antibiotics, such as ampicillin. These effects were confirmed by the reduced Akk abundance in AAD model mice. Pasteurized Akk or Amuc_1100 significantly decreased the diarrhea status score and colon injury of AAD model mice. Additionally, these treatments significantly decreased the relative abundance of Citrobacter at genus level and reshaped the metabolic function of gut microbiota. Notably, pasteurized Akk or Amuc_1100 significantly changed the serum metabolome of AAD model mice. In addition, pasteurized Akk or Amuc_1100 suppressed intestinal inflammation by upregulating the expression of GPR109A and SLC5A8 and downregulating the expression of TNFα, IFNγ, IL1β, and IL6. Furthermore, they enhanced water and electrolyte absorption by upregulating AQP4, SLC26A3, and NHE3. Pasteurized Akk or Amuc_1100 also restored intestinal barrier function by ameliorating the downregulation of ZO-1, OCLN, CLDN4, and Muc2 in AAD model mice. In summary, optimizing intestinal health with pasteurized Akk or Amuc_1100 may serve as an approach for preventing AAD.
Collapse
Affiliation(s)
- Shenyin Liu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China
| | - Suying Zhao
- Department of Laboratory Medicine, The Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, 210009, People's Republic of China
| | - Zhiwei Cheng
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China
| | - Yilin Ren
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China
| | - Xinyi Shi
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China
| | - Jing Mu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China
| | - Xiangyang Ge
- Technical Department of Sujiu Group, Suqian, 223800, People's Republic of China
| | - Yuan Dai
- Technical Department of Sujiu Group, Suqian, 223800, People's Republic of China
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China.
| | - Zhan Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China.
| |
Collapse
|
5
|
Maghembe RS, Magulye MAK, Eilu E, Sekyanzi S, Makaranga A, Mwesigwa S, Katagirya E. A sophisticated virulence repertoire and colistin resistance of Citrobacter freundii ST150 from a patient with sepsis admitted to ICU in a tertiary care hospital in Uganda, East Africa: Insight from genomic and molecular docking analyses. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 120:105591. [PMID: 38604286 PMCID: PMC11069293 DOI: 10.1016/j.meegid.2024.105591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Sepsis and multidrug resistance comprise a complex of factors attributable to mortality among intensive care unit (ICU) patients globally. Pathogens implicated in sepsis are diverse, and their virulence and drug resistance remain elusive. From a tertiary care hospital ICU in Uganda, we isolated a Citrobacter freundii strain RSM030 from a patient with sepsis and phenotypically tested it against a panel of 16 antibiotics including imipenem levofloxacin, cotrimoxazole and colistin, among others. We sequenced the organism's genome and integrated multilocus sequencing (MLST), PathogenFinder with Virulence Factor analyzer (VFanalyzer) to establish its pathogenic relevance. Thereafter, we combined antiSMASH and PRISM genome mining with molecular docking to predict biosynthetic gene clusters (BGCs), pathways, toxin structures and their potential targets in-silico. Finally, we coupled ResFinder with comprehensive antibiotic resistance database (CARD) to scrutinize the genomic antimicrobial resistance profile of the isolate. From PathogenFinder and MLST, this organism was confirmed to be a human pathogen (p = 0.843), sequence type (ST)150, whose virulence is determined by chromosomal type III secretion system (T3SS) (the injectosome) and plasmid-encoded type IV secretion system (T4SS), the enterobactin biosynthetic gene cluster and biofilm formation through the pgaABCD operon. Pathway and molecular docking analyses revealed that the shikimate pathway can generate a toxin targeting multiple host proteins including spectrin, detector of cytokinesis protein 2 (Dock2) and plasmalemma vesicle-associated protein (PLVAP), potentially distorting the host cell integrity. From phenotypic antibiotic testing, we found indeterminate results for amoxicillin/clavulanate and levofloxacin, with resistance to cotrimoxazole and colistin. Detailed genome analysis revealed chromosomal beta lactam resistance genes, i.e. blaCMY-79, blaCMY-116 and blaTEM-1B, along with multiple mutations of the lipopolysaccharide modifying operon genes PmrA/PmrB, pmrD, mgrA/mgrB and PhoP/PhoQ, conferring colistin resistance. From these findings, we infer that Citrobacter freundii strain RSM030 is implicated in sepsis and resistance to standard antibiotics, including colistin, the last resort.
Collapse
Affiliation(s)
- Reuben S Maghembe
- Biological and Marine Sciences Unit, Faculty of Natural and Applied Sciences, Marian University College, P. O. Box 47, Bagamoyo, Tanzania; Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, P. O. Box 7072, Kampala, Uganda; Department of Microbiology and Immunology, Faculty of Biomedical Sciences, Kampala International University, Wester Campus, Ishaka, Uganda.; Microbiology Section, Department of Biological Sciences, University of Botswana, Private Bag 0704, Gaborone, Botswana.
| | - Maximilian A K Magulye
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, P. O. Box 7072, Kampala, Uganda
| | - Emmanuel Eilu
- Department of Microbiology and Immunology, Faculty of Biomedical Sciences, Kampala International University, Wester Campus, Ishaka, Uganda
| | - Simon Sekyanzi
- Department of Medical Microbiology, College of Health Sciences, Makerere University, P. O. Box 7072, Kampala, Uganda
| | - Abdalah Makaranga
- Biological and Marine Sciences Unit, Faculty of Natural and Applied Sciences, Marian University College, P. O. Box 47, Bagamoyo, Tanzania
| | - Savannah Mwesigwa
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, P. O. Box 7072, Kampala, Uganda
| | - Eric Katagirya
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, P. O. Box 7072, Kampala, Uganda
| |
Collapse
|
6
|
Yu M, Xie F, Xu C, Yu T, Wang Y, Liang S, Dong Q, Wang L. Characterization of cytotoxic Citrobacter braakii isolated from human stomach. FEBS Open Bio 2024; 14:487-497. [PMID: 38268325 PMCID: PMC10909985 DOI: 10.1002/2211-5463.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/25/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024] Open
Abstract
Citrobacter braakii (C. braakii) is an anaerobic, gram-negative bacterium that has been isolated from the environment, food, and humans. Infection by C. braakii has been associated with acute mucosal inflammation in the intestine, respiratory tract, and urinary tract. However, the pathogenesis of C. braakii in the gastric mucosa has not yet been clarified. In this study, the bacterium was detected in 35.5% (61/172) of patients with chronic gastritis (CG) and was closely associated with the severity of mucosal inflammation. Citrobacter braakii P1 isolated from a patient with CG exhibited urease activity and acid resistance. It contained multiple secretion systems, including a complete type I secretion system (T1SS), T5aSS and T6SS. We then predicted the potential pilus-related adhesins. Citrobacter braakii P1 diffusely adhered to AGS cells and significantly increased lactate dehydrogenase (LDH) release; the adhesion rate and LDH release were much lower in HEp-2 cells. Strain P1 also induced markedly increased mRNA and protein expression of IL-8 and TNF-α in AGS cells, and the fold increase was much higher than that in HEp-2 cells. Our results demonstrate proinflammatory and cytotoxic role of C. braakii in gastric epithelial cells, indicating the bacterium is potentially involved in inducing gastric mucosa inflammation.
Collapse
Affiliation(s)
- Mengchao Yu
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal HospitalUniversity of Health and Rehabilitation SciencesQingdaoChina
| | - Fangyu Xie
- Department of Cardiology, Qingdao Municipal HospitalUniversity of Health and Rehabilitation SciencesQingdaoChina
| | - Chengzhen Xu
- Department of Chinese MedicineQingdao No. 6 People's HospitalChina
| | - Ting Yu
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal HospitalUniversity of Health and Rehabilitation SciencesQingdaoChina
| | - Yixuan Wang
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal HospitalUniversity of Health and Rehabilitation SciencesQingdaoChina
| | - Shuzhen Liang
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal HospitalUniversity of Health and Rehabilitation SciencesQingdaoChina
| | - Quanjiang Dong
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal HospitalUniversity of Health and Rehabilitation SciencesQingdaoChina
| | - Lili Wang
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal HospitalUniversity of Health and Rehabilitation SciencesQingdaoChina
| |
Collapse
|
7
|
Wang H, Bi H, Yang M, Wang X, Song C, Yang W, Wang Y, Xie D, Li H, Zhou Z. Intestinal flora altered and correlated with interleukin-2/4 in patients with primary immune thrombocytopenia. Hematology 2023; 28:2277501. [PMID: 37921501 DOI: 10.1080/16078454.2023.2277501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Little is known about the changes and mechanisms of intestinal flora in primary immune thrombocytopenia (ITP) patients. AIM To explore the structural and functional differences of intestinal flora between ITP patients and healthy controls, and clarify the correlation between intestinal flora and Th1/Th2 imbalance. METHODS Feces from ITP patients and healthy controls were studied by 16S rRNA and metagenomic techniques at phylum, genus, species or functional levels. Blood samples were collected for the detection of interleukin -2 (IL-2) and IL-4 concentrations. RESULTS The following changes in ITP patients were found: a decrease of Bacteroidetes phylum, an increase of Proteobacteria phylum and alterations of ten genera and 1045 species. IL-2 and IL-4 were significantly correlated with six and five genera, respectively. Species of C. freundii, C. rodentium, and C. youngae were negatively correlated with bleeding scores, and S. infantis was positively related to platelet counts. Functionally, the intestinal flora of ITP patients changed mainly in terms of motility, chemotaxis, membrane transport, and metabolism. CONCLUSION The mechanism underlying functional and structural changes of intestinal flora in ITP patients may be related to inflammation and immunity, providing possibilities of probiotics or fecal transplants for ITP.
Collapse
Affiliation(s)
- Honghui Wang
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Hui Bi
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Muran Yang
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Xiuli Wang
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Chuanju Song
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Wen Yang
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Yacan Wang
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Dongmei Xie
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Huiting Li
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Zeping Zhou
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| |
Collapse
|
8
|
Zepeda-Velazquez AP, Gómez-De-Anda FR, Aguilar-Mendoza LF, Castrejón-Jiménez NS, Hernández-González JC, Varela-Guerrero JA, de-la-Rosa-Arana JL, Vega-Sánchez V, Reyes-Rodríguez NE. Bullfrogs (Lithobates catesbeianus) as a Potential Source of Foodborne Disease. J Food Prot 2023; 86:100067. [PMID: 36948016 DOI: 10.1016/j.jfp.2023.100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 03/24/2023]
Abstract
In Mexico, bullfrogs (Lithobates catesbeianus) are produced as gourmet food. However, bullfrogs can be carriers of pathogens because the frogs' preferred living conditions occur in stagnant water. The present study aimed to identify bacteria that cause foodborne diseases or are associated with human diseases. For molecular identification, based on the sequential analysis by 16S rRNA or rpoD was conducted on all isolates obtained from bullfrog. A total of 91 bacterial isolates were obtained from bullfrogs; 14 genera and 23 species were identified, including Acinetobacter johnsonii 16.5%; Aeromonas media 14.3%; Aeromonas veronii 13.2%; Providencia rettgeri 7.7%; Citrobacter freundii 6.6%; Aeromonas caviae 4.4%; Aeromonas hydrophila and Elizabethkingia ursingii 3.3%; Pseudomonas stutzeri, Raoultella ornithinolytica, and Shewanella putrefaciens 2.2%; Acinetobacter guillouiae, Acinetobacter pseudolwoffii, Citrobacter portucalensis, Citrobacter werkmanii, Edwardsiella anguillarum, Klebsiella michiganensis, Kluyvera intermedia, Kocuria rosea, Myroides odoratimimus, Myroides odoratus, Proteus sp., and Proteus hauseri 1.1%. In this study, 49.4% of the isolates obtained cause foodborne disease, 19.8% are bacteria that play an important role in the spoilage of food, 5.5% of isolates have nosocomial significance, 13.2% of bacteria are considered to be pollutants of the ecosystem, and in the case of A. salmonicida and Edwardsiella anguillarum (12.1%) to have a negative impact on aquaculture. Acinetobacter pseudolwoffii and Citrobacter portucalensis have not been reported to cause disease. Lastly of these isolates, 97.8% (89/91) can cause disease by food consumption or by direct contact for immunocompromised persons. The presence of these bacteria in bullfrogs represents a significant problem for human health. There is evidence that these microorganisms are pathogenic and frogs may also be reservoirs.
Collapse
Affiliation(s)
- Andrea P Zepeda-Velazquez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo 43600, Mexico.
| | - Fabián-Ricardo Gómez-De-Anda
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo 43600, Mexico.
| | - Luis F Aguilar-Mendoza
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo 43600, Mexico
| | - Nayeli Shantal Castrejón-Jiménez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo 43600, Mexico.
| | - Juan Carlos Hernández-González
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo 43600, Mexico.
| | - Jorge A Varela-Guerrero
- Universidad Autónoma del Estado de México, Centro de Investigación y Estudios Avanzados en Salud Animal (CIESA), Facultad de Medicina Veterinaria y Zootecnia, km 15.5 Carretera Panamericana Toluca-Atlacomulco, Toluca, Estado de México, Mexico.
| | - Jorge-Luis de-la-Rosa-Arana
- Microbiología en Salud Humana, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Avenida 1 de mayo S/N, Campo Uno, Cuautitlán Izcalli, CP 54743 Estado de México, Mexico.
| | - Vicente Vega-Sánchez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo 43600, Mexico.
| | - Nydia E Reyes-Rodríguez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo 43600, Mexico.
| |
Collapse
|
9
|
Wang H, Lv LB, Chen LP, Xiao JL, Shen J, Gao B, Zhao JG, Han DM, Chen BX, Wang S, Liu G, Xin AG, Xiao P, Gao H. Hemolysin Co-Regulatory Protein 1 Enhances the Virulence of Clinically Isolated Escherichia coli in KM Mice by Increasing Inflammation and Inducing Pyroptosis. Toxins (Basel) 2023; 15:171. [PMID: 36977062 PMCID: PMC10058142 DOI: 10.3390/toxins15030171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Hemolysin-coregulated protein 1 (Hcp1) is an effector released by the type VI secretion system (T6SS) in certain pathogenic strains of Escherichia coli (E. coli) that causes apoptosis and contributes to the development of meningitis. The exact toxic consequences of Hcp1 and whether it intensifies the inflammatory response by triggering pyroptosis are yet unknown. Here, utilizing the CRISPR/Cas9 genome editing method, we removed the gene expressing Hcp1 from wild-type E. coli W24 and examined the impact of Hcp1 on E. coli virulence in Kunming (KM) mice. It was found that Hcp1-sufficient E. coli was more lethal, exacerbating acute liver injury (ALI) and acute kidney injury (AKI) or even systemic infections, structural organ damage, and inflammatory factor infiltration. These symptoms were alleviated in mice infected with W24Δhcp1. Additionally, we investigated the molecular mechanism by which Hcp1 worsens AKI and found that pyroptosis is involved, manifested as DNA breaks in many renal tubular epithelial cells. Genes or proteins closely related to pyroptosis are abundantly expressed in the kidney. Most importantly, Hcp1 promotes the activation of the NLRP3 inflammasome and the expression of active caspase-1, thereby cleaving GSDMD-N and accelerating the release of active IL-1β and ultimately leading to pyroptosis. In conclusion, Hcp1 enhances the virulence of E. coli, aggravates ALI and AKI, and promotes the inflammatory response; moreover, Hcp1-induced pyroptosis is one of the molecular mechanisms of AKI.
Collapse
Affiliation(s)
- Hao Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Long-Bao Lv
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Li-Ping Chen
- College of Foreign Languages, Yunnan Agricultural University, Kunming 650201, China
| | - Jin-Long Xiao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Jue Shen
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Bin Gao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jin-Gang Zhao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Dong-Mei Han
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Bin-Xun Chen
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Shuai Wang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Gen Liu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Ai-Guo Xin
- National Foot-and-Mouth Disease Para-Reference Laboratory (Kunming), Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Peng Xiao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Hong Gao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
10
|
Lin Q, Duan H, Wang S, Guo Z, Wang S, Chang Y, Chen C, Shen M, Shou H, Zhou C. Endometrial microbiota in women with and without adenomyosis: A pilot study. Front Microbiol 2023; 14:1075900. [PMID: 36744089 PMCID: PMC9895119 DOI: 10.3389/fmicb.2023.1075900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/02/2023] [Indexed: 01/21/2023] Open
Abstract
Introduction The endometrial microbiota plays an essential role in the health of the female reproductive system. However, the interactions between the microbes in the endometrium and their effects on adenomyosis remain obscure. Materials and methods We profile endometrial samples from 38 women with (n=21) or without (n=17) adenomyosis to characterize the composition of the microbial community and its potential function in adenomyosis using 5R 16S rRNA gene sequencing. Results The microbiota profiles of patients with adenomyosis were different from the control group without adenomyosis. Furthermore, analysis identified Lactobacillus zeae, Burkholderia cepacia, Weissella confusa, Prevotella copri, and Citrobacter freundii as potential biomarkers for adenomyosis. In addition, Citrobacter freundii, Prevotella copri, and Burkholderia cepacia had the most significant diagnostic value for adenomyosis. PICRUSt results identified 30 differentially regulated pathways between the two groups of patients. In particular, we found that protein export, glycolysis/gluconeogenesis, alanine, aspartate, and glutamate metabolism were upregulated in adenomyosis. Our results clarify the relationship between the endometrial microbiota and adenomyosis. Discussion The endometrial microbiota of adenomyosis exhibits a unique structure and Citrobacter freundii, Prevotella copri, and Burkholderia cepacia were identified as potential pathogenic microorganisms associated with adenomyosis. Our findings suggest that changes in the endometrial microbiota of patients with adenomyosis are of potential value for determining the occurrence, progression, early of diagnosis, and treatment oadenomyosis.
Collapse
Affiliation(s)
- Qi Lin
- Department of Minimally Invasive Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Hua Duan
- Department of Minimally Invasive Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China,*Correspondence: Hua Duan, ✉
| | - Sha Wang
- Department of Minimally Invasive Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Zhengchen Guo
- Department of Minimally Invasive Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Sirui Wang
- Department of Minimally Invasive Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yanan Chang
- Department of Minimally Invasive Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Chao Chen
- Department of Minimally Invasive Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Minghong Shen
- Department of Gynecology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Hejun Shou
- Department of Minimally Invasive Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Chang Zhou
- Department of Minimally Invasive Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
11
|
Wang H, Ainiwaer A, Song Y, Qin L, Peng A, Bao H, Qin H. Perturbed gut microbiome and fecal and serum metabolomes are associated with chronic kidney disease severity. MICROBIOME 2023; 11:3. [PMID: 36624472 PMCID: PMC9827681 DOI: 10.1186/s40168-022-01443-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a severe public health problem associated with a disordered gut microbiome. However, the functional alterations of microbiota and their cross talk with metabolism pathways based on disease severity remain unclear. RESULTS We performed metagenomics and untargeted metabolomics in a cohort of 68 patients with CKD of differing severities and 20 healthy controls to characterize the complex interplay between the gut microbiome and fecal and serum metabolites during CKD progression. We identified 26 microbial species that significantly changed in patients with CKD; 18 species changed as the disease progressed, and eight species changed only in a specific CKD group. These distinct changes in gut microbiota were accompanied by functional alterations in arginine and proline, arachidonic acid, and glutathione metabolism and ubiquinone and other terpenoid-quinone biosynthesis pathways during CKD progression. Further metabolomic analyses revealed that the distributions of toxic and pro-oxidant metabolites from these four essential metabolic pathways varied in the feces and serum as CKD progressed. Furthermore, we observed a complex co-occurrence between CKD severity-related bacteria and the characterized metabolites from the four essential metabolic pathways. Notably, Ruminococcus bromii, fecal hydroquinone, and serum creatinine were identified as the main contributors to the integrated network, indicating their key roles in CKD progression. Moreover, a noninvasive model including R. bromii and fecal hydroquinone, L-cystine, and 12-keto-tetrahydro-LTB4 levels classified the CKD severity (area under the curve [AUC]: > 0.9) and had better performance than the serum creatinine level for mild CKD (AUC: 0.972 vs. 0.896). CONCLUSIONS Perturbed CKD severity-related gut microbiota may contribute to unbalanced toxic and pro-oxidant metabolism in the gut and host, accelerating CKD progression, which may be an early diagnostic and therapeutic target for CKD. Video Abstract.
Collapse
Affiliation(s)
- Haichao Wang
- Department of Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Aisima Ainiwaer
- Department of Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Yaxiang Song
- Department of Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Ling Qin
- Department of Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Ai Peng
- Department of Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Hui Bao
- Department of Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| |
Collapse
|
12
|
Guo Y, Chen H, Liu P, Wang F, Li L, Ye M, Zhao W, Chen J. Microbial composition of carapace, feces, and water column in captive juvenile green sea turtles with carapacial ulcers. Front Vet Sci 2022; 9:1039519. [PMID: 36590814 PMCID: PMC9797667 DOI: 10.3389/fvets.2022.1039519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Green sea turtles are endangered marine reptiles. Carapacial ulcers will develop on juvenile green sea turtles during artificial rescue, seriously affecting their health and potentially leading to death. Methods To determine the pathogens causing ulcerative carapacial disease, we performed 16S and ITS high-throughput sequencing, and microbial diversity analysis on samples from carapacial ulcers, healthy carapaces, feces, and seawater of juvenile green sea turtles. Results Our analysis showed that changes in microbial diversity of green sea turtle feces and seawater were not significantly associated with ulcerative carapacial disease. Discussion Psychrobacter sp. is the dominant species in the carapacial ulcers of green sea turtles. The bacterium is present in both healthy turtles and seawater where carapacial ulcers did not occur and decreasing seawater temperatures are likely responsible for the infection of juvenile green turtles with Psychrobacter sp. This is the first study on carapacial ulcers in captive juvenile green sea turtles. Our research provides theoretical guidance for the prevention and control of carapacial ulcers in captive juvenile green sea turtles.
Collapse
Affiliation(s)
- Yide Guo
- College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, China,Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province, China
| | - Hualing Chen
- Huidong Sea Turtle National Reserve Management Bureau, Sea Turtle Bay, Huidong, Guangdong, China
| | - Ping Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province, China
| | - Fumin Wang
- Huidong Sea Turtle National Reserve Management Bureau, Sea Turtle Bay, Huidong, Guangdong, China
| | - Linmiao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province, China
| | - Mingbin Ye
- Huidong Sea Turtle National Reserve Management Bureau, Sea Turtle Bay, Huidong, Guangdong, China
| | - Wenge Zhao
- College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, China,*Correspondence: Wenge Zhao
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province, China,Jinping Chen
| |
Collapse
|
13
|
Williams BM, Cliff CL, Lee K, Squires PE, Hills CE. The Role of the NLRP3 Inflammasome in Mediating Glomerular and Tubular Injury in Diabetic Nephropathy. Front Physiol 2022; 13:907504. [PMID: 35755447 PMCID: PMC9218738 DOI: 10.3389/fphys.2022.907504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
The NOD-like receptor protein 3 (NLRP3) inflammasome is a multi-protein signalling complex integral to the chronic inflammatory response, activated in response to sterile and non-sterile cellular damage. The assembly and activation of the NLRP3 inflammasome comprise a two-step process involving nuclear factor kappa B (NFkB)-mediated priming, followed by canonical, non-canonical or alternative signalling pathways. These result in the maturation and release of inflammatory cytokines interleukin 1 beta (IL1ß) and interleukin-18 (IL18), which are associated with chronic inflammatory conditions including diabetic kidney disease. Diabetic nephropathy is a condition affecting ∼40% of people with diabetes, the key underlying pathology of which is tubulointerstitial inflammation and fibrosis. There is growing evidence to suggest the involvement of the NLRP3 inflammasome in this chronic inflammation. Early deterioration of kidney function begins in the glomerulus, with tubular inflammation dictating the progression of late-stage disease. Priming and activation of the NLRP3 inflammasome have been linked to several clinical markers of nephropathy including proteinuria and albuminuria, in addition to morphological changes including mesangial expansion. Treatment options for diabetic nephropathy are limited, and research that examines the impact of directly targeting the NLRP3 inflammasome, or associated downstream components are beginning to gain favour, with several agents currently in clinical trials. This review will explore a role for NLRP3 inflammasome activation and signalling in mediating inflammation in diabetic nephropathy, specifically in the glomerulus and proximal tubule, before briefly describing the current position of therapeutic research in this field.
Collapse
Affiliation(s)
- B M Williams
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - C L Cliff
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - K Lee
- Lincoln County Hospital, Lincoln, United Kingdom
| | - P E Squires
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - C E Hills
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| |
Collapse
|
14
|
Zhou Y, Shi X, Fu W, Xiang F, He X, Yang B, Wang X, Ma WL. Gut Microbiota Dysbiosis Correlates with Abnormal Immune Response in Moderate COVID-19 Patients with Fever. J Inflamm Res 2021; 14:2619-2631. [PMID: 34168484 PMCID: PMC8217908 DOI: 10.2147/jir.s311518] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Background Most COVID-19 patients are moderate, and fever is the most common clinical manifestation and associated with poorer prognosis. Gut microbiota may also play important roles in COVID-19 pathogenesis. However, the association between gut microbiota and fever in individuals with moderate COVID-19 remains unclear. Methods We compared the clinical features and laboratory results of 187 moderate COVID-19 patients with fever and without fever and identified several inflammatory markers in patients with fever. Then, we performed gut metagenome-wide association study for 31 individuals to identify the microbes and their epitopes which have potential role in fever and hyperinflammation. Results Among 187 moderate COVID-19 patients, 127 (67.9%) patients presented with fever. Lymphocytes, CD3+ T cells, CD4+ T cells and the ratio of CD4+ T cells to CD8+ T cells were significantly reduced, while AST, LDH, CRP, IL-6 and IL-10 were significantly elevated in patients with fever. Gut microbiome composition was significantly altered in patients with fever compared with those with non-fever. Opportunistic pathogens such as Enterococcus faecalis and Saccharomyces cerevisiae were enriched in patients with fever. E. faecalis was positively correlated with LDH and D-dimer and negatively correlated with CD8+T cells and IL-4, while S. cerevisiae was positively correlated with diarrhea symptom. Furthermore, several species with anti-inflammatory and protective effects, such as Bacteroides fragilis and Eubacterium ramulus, were enriched in patients with non-fever. B. fragilis was positively correlated with lymphocytes, and E. ramulus was negatively correlated with LDH, AST and IL-6. Finally, we found that several bacterial epitopes of GroEL, a homolog of human HSP60, were enriched in patients with fever and positively correlated with IL-6, IL-10, WBC, neutrophils, D-dimer, LDH, CRP, and E. faecalis. Conclusion Gut microbiota dysbiosis correlates with abnormal immune response in moderate COVID-19 patients with fever.
Collapse
Affiliation(s)
- Yaya Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Xing Shi
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, 518020, People's Republic of China
| | - Wei Fu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Fei Xiang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Xinliang He
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Bohan Yang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Xiaorong Wang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Wan-Li Ma
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| |
Collapse
|