1
|
Chirumbolo S, Pandolfi S, Valdenassi L. Seasonality of COVID-19 deaths. Did social restrictions and vaccination actually impact the official reported dynamic of COVID-19 pandemic in Italy? ENVIRONMENTAL RESEARCH 2022; 212:113229. [PMID: 35405125 PMCID: PMC8989664 DOI: 10.1016/j.envres.2022.113229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 05/30/2023]
|
2
|
Biasin M, Strizzi S, Bianco A, Macchi A, Utyro O, Pareschi G, Loffreda A, Cavalleri A, Lualdi M, Trabattoni D, Tacchetti C, Mazza D, Clerici M. UV and violet light can Neutralize SARS-CoV-2 Infectivity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022; 10:100107. [PMID: 35036965 PMCID: PMC8741330 DOI: 10.1016/j.jpap.2021.100107] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 12/15/2022] Open
Abstract
We performed an in-depth analysis of the virucidal effect of discrete wavelengths: UV-C (278 nm), UV-B (308 nm), UV-A (366 nm) and violet (405 nm) on SARS-CoV-2. By using a highly infectious titer of SARS-CoV-2 we observed that the violet light-dose resulting in a 2-log viral inactivation is only 104 times less efficient than UV-C light. Moreover, by qPCR (quantitative Polymerase chain reaction) and fluorescence in situ hybridization (FISH) approach we verified that the viral titer typically found in the sputum of COVID-19 patients can be completely inactivated by the long UV-wavelengths corresponding to UV-A and UV-B solar irradiation. The comparison of the UV action spectrum on SARS-CoV-2 to previous results obtained on other pathogens suggests that RNA viruses might be particularly sensitive to long UV wavelengths. Our data extend previous results showing that SARS-CoV-2 is highly susceptible to UV light and offer an explanation to the reduced incidence of SARS-CoV-2 infection seen in the summer season.
Collapse
Affiliation(s)
- Mara Biasin
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Sergio Strizzi
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Andrea Bianco
- Italian National Institute for Astrophysics (INAF) - Brera Astronomical Observatory, Merate, Italy
| | - Alberto Macchi
- Italian National Institute for Astrophysics (INAF) - Brera Astronomical Observatory, Merate, Italy
| | - Olga Utyro
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Giovanni Pareschi
- Italian National Institute for Astrophysics (INAF) - Brera Astronomical Observatory, Merate, Italy
| | - Alessia Loffreda
- Experimental Imaging Center, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Adalberto Cavalleri
- Epidemiology and Prevention Unit, IRCCS Foundation, Istituto Nazionale dei Tumori, Milan, Italy
| | - Manuela Lualdi
- Department of Imaging Diagnostic and Radioterapy, IRCCS Foundation, Istituto Nazionale dei Tumori, Milan, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Carlo Tacchetti
- Experimental Imaging Center, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Davide Mazza
- Experimental Imaging Center, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Don C. Gnocchi Foundation, IRCCS Foundation, Milan, Italy
| |
Collapse
|
3
|
Coccia M. COVID-19 pandemic over 2020 (withlockdowns) and 2021 (with vaccinations): similar effects for seasonality and environmental factors. ENVIRONMENTAL RESEARCH 2022; 208:112711. [PMID: 35033552 PMCID: PMC8757643 DOI: 10.1016/j.envres.2022.112711] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 05/19/2023]
Abstract
How is the dynamics of Coronavirus Disease 2019 (COVID-19) in 2020 with an health policy of full lockdowns and in 2021 with a vast campaign of vaccinations? The present study confronts this question here by developing a comparative analysis of the effects of COVID-19 pandemic between April-September 2020 (based upon strong control measures) and April-September 2021 (focused on health policy of vaccinations) in Italy, which was one of the first European countries to experience in 2020 high numbers of COVID-19 related infected individuals and deaths and in 2021 Italy has a high share of people fully vaccinated against COVID-19 (>89% of population aged over 12 years in January 2022). Results suggest that over the period under study, the arithmetic mean of confirmed cases, hospitalizations of people and admissions to Intensive Care Units (ICUs) in 2020 and 2021 is significantly equal (p-value<0.01), except fatality rate. Results suggest in December 2021 lower hospitalizations, admissions to ICUs, and fatality rate of COVID-19 than December 2020, though confirmed cases and mortality rates are in 2021 higher than 2020, and likely converging trends in the first quarter of 2022. These findings reveal that COVID-19 pandemic is driven by seasonality and environmental factors that reduce the negative effects in summer period, regardless control measures and/or vaccination campaigns. These findings here can be of benefit to design health policy responses of crisis management considering the growth of COVID-19 pandemic in winter months having reduced temperatures and low solar radiations ( COVID-19 has a behaviour of influenza-like illness). Hence, findings here suggest that strategies of prevention and control of infectious diseases similar to COVID-19 should be set up in summer months and fully implemented during low-solar-irradiation periods (autumn and winter period).
Collapse
Affiliation(s)
- Mario Coccia
- CNR, National Research Council of Italy - Via Real Collegio, n. 30 (Collegio Carlo Alberto), 10024, Moncalieri (TO), Italy.
| |
Collapse
|